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Topological and geometric data analysis

Topological data analysis asks when balls in a metric space (X, d)
intersect.

Geometric data analysis asks how much balls have to be enlarged
to intersect.
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1 Many important spaces
• Hyperbolic (and Euclidean) spaces
• symmetric spaces of noncompact type
• trees, and more generally, Euclidean (Bruhat-Tits) buildings
• many moduli spaces, like those of Riemann surfaces or Abelian

varieties
• most groups are hyperbolic (Gromov), together with their

Cayley graphs
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What are characteristic properties of NPC?

• Convexity: Distance2 is at least as convex as in Euclidean case

Linear analysis (Euclidean) −→ Convex analysis (NPC)
(J.J., J.Convex Anal., 2021)

• Ball intersection properties: Balls intersect at least as easily as
in Euclidean case
(but their intersection is relatively smaller)

• Can be iterated: L2(X, NPC) is NPC (J.J.)
• Regularity properties: Generalized harmonic maps into NPC

Hölder (F.H.Lin, J.J., domain with Poincaré and ball
doubling); Lipschitz (H.C.Zhang-X.P.Zhu, domain with
curvature bounded below) with estimates
(H.C.Zhang-X.Zhong-X.P.Zhu, domain with Ricci curvature
bounded below); (N.Gigli, domain RCD space);
Convex ◦ harmonic map = subharmonic function −→
Harnack inequalities apply
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Preliminaries from metric geometry

(X, d) metric space. c : [0, 1] −→ X continuous (path) with
x = c(0), y = c(1) has length l(c) := sup

∑i=n
i=0 d(c(ti), c(ti−1)).

Supremum over all partitions of [0, 1].

Length space if for all x, y,
d(x, y) = inf{l(c) : c is a path between x and y}.
A length space (X, d) is geodesic if any x, y ∈ X connected by a
shortest geodesic c : [0, 1] −→ X, i.e. d(x, y) = l(c).
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m ∈ X is a midpoint between x, y if
d(x, m) = d(m, y) = 1

2d(x, y).

(X, d) is totally convex if for any
x1, x2 ∈ X, r1, r2 > 0, r1 + r2 ≥ d(x1, x2),
B(x1, r1) ∩ B(x2, r2) ̸= ∅
(B(x, r) = closed ball with center x, radius r.)

Slogan: Two balls that can intersect do intersect.

Any radii ri will be > 0 in the sequel.
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For r1 + r2 ≥ d(x1, x2),

ρ((x1, x2), (r1, r2)) := inf
x∈X

max
i=1,2

d(xi, x)
ri

ρ(x1, x2) := sup
r1,r2

ρ((x1, x2), (r1, r2))

Find good points x between x1 and x2

Make radii of balls small

ρ(x1, x2) = 1 achieved when
d(x1, x) + d(x2, x) = d(x1, x2).

Definition
A geodesic length space (X, d) is a tripod space if for any three
points x1, x2, x3 ∈ X, there exists a median, that is, a point
m ∈ X with

d(xi, m) + d(xj , m) = d(xi, xj), for 1 ≤ i < j ≤ 3.
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We want to find points between two points x1 and x2, and
quantify to what extent that can fail.
A key idea now is to extend this to three points.

Definition
A geodesic length space (X, d) is a tripod space if for any three
points x1, x2, x3 ∈ X, there exists a median, that is, a point
m ∈ X with

d(xi, m) + d(xj , m) = d(xi, xj), for 1 ≤ i < j ≤ 3.

9/27



For r1 + r2 ≥ d(x1, x2),

ρ((x1, x2), (r1, r2)) := inf
x∈X

max
i=1,2

d(xi, x)
ri

ρ(x1, x2) := sup
r1,r2

ρ((x1, x2), (r1, r2))

ρ(x1, x2) = 1 achieved when d(x1, x) + d(x2, x) = d(x1, x2).

Definition
A geodesic length space (X, d) is a tripod space if for any three
points x1, x2, x3 ∈ X, there exists a median, that is, a point
m ∈ X with

d(xi, m) + d(xj , m) = d(xi, xj), for 1 ≤ i < j ≤ 3.

9/27



Definition
A geodesic length space (X, d) is a tripod space if for any three
points x1, x2, x3 ∈ X, there exists a median m ∈ X with

d(xi, m) + d(xj , m) = d(xi, xj), for 1 ≤ i < j ≤ 3. (1)

d(x1, x2)+d(x2, x3)+d(x3, x1) = 2(d(x1, m)+d(x2, m)+d(x3, m))

x1 x2

x3

m

Examples:
• Metric trees
• L∞-spaces
• Hyperconvex spaces

Our strategy: Define curvature as deviation from tripod property.
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d(x1, x2)+d(x2, x3)+d(x3, x1) = 2(d(x1, m)+d(x2, m)+d(x3, m))
Most metric spaces are not tripod spaces. For instance,
Riemannian manifolds of dimension > 1 do not satisfy tripod
property.

1

Examples:
• Metric trees
• L∞-spaces
• Hyperconvex spaces

Our strategy: Define curvature as deviation from tripod property.

10/27



Definition
A geodesic length space (X, d) is a tripod space if for any three
points x1, x2, x3 ∈ X, there exists a median m ∈ X with

d(xi, m) + d(xj , m) = d(xi, xj), for 1 ≤ i < j ≤ 3. (1)

d(x1, x2)+d(x2, x3)+d(x3, x1) = 2(d(x1, m)+d(x2, m)+d(x3, m))

Examples:
• Metric trees
• L∞-spaces

• Hyperconvex spaces
Our strategy: Define curvature as deviation from tripod property.

10/27



Definition
A geodesic length space (X, d) is a tripod space if for any three
points x1, x2, x3 ∈ X, there exists a median m ∈ X with

d(xi, m) + d(xj , m) = d(xi, xj), for 1 ≤ i < j ≤ 3. (1)

d(x1, x2)+d(x2, x3)+d(x3, x1) = 2(d(x1, m)+d(x2, m)+d(x3, m))

Examples:
• Metric trees
• L∞-spaces
• Hyperconvex spaces

Our strategy: Define curvature as deviation from tripod property.

10/27



Definition
A geodesic length space (X, d) is a tripod space if for any three
points x1, x2, x3 ∈ X, there exists a median m ∈ X with

d(xi, m) + d(xj , m) = d(xi, xj), for 1 ≤ i < j ≤ 3. (1)

d(x1, x2)+d(x2, x3)+d(x3, x1) = 2(d(x1, m)+d(x2, m)+d(x3, m))

Examples:
• Metric trees
• L∞-spaces
• Hyperconvex spaces

Our strategy: Define curvature as deviation from tripod property.

10/27



Existence of tripods if for any x1, x2, x3 ∈ X which do not lie on a
geodesic, and ri + rj ≥ d(xi, xj), 1 ≤ i < j ≤ 3,

3⋂
i=1

B(xi, ri) ̸= ∅.

Slogan: Three balls that can intersect do intersect.

For x1, x2, x3 ∈ X and ri + rj ≥ d(xi, xj),

ρ((x1, x2, x3), (r1, r2, r3)) := inf
x∈X

max
i=1,2,3

d(xi, x)
ri

ρ(x1, x2, x3)) := sup
ri+rj=d(xi,xj),i ̸=j

ρ((x1, x2, x3), (r1, r2, r3)),

ri + rj = d(xi, xj) uniquely solved by Gromov products

r1 = 1
2(d(x1, x2) + d(x1, x3) − d(x2, x3)),

r2 = 1
2(d(x1, x2) + d(x2, x3) − d(x1, x3)),

r3 = 1
2(d(x1, x3) + d(x2, x3) − d(x1, x2)). (2)
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Not satisfied in this example, but for instance in a tripod
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Gromov products

r1 = 1
2(d(x1, x2) + d(x1, x3) − d(x2, x3)),

r2 = 1
2(d(x1, x2) + d(x2, x3) − d(x1, x3)),

r3 = 1
2(d(x1, x3) + d(x2, x3) − d(x1, x2)). (3)

Therefore,
ρ(x1, x2, x3) := inf

x∈X
max

i=1,2,3

d(xi, x)
ri

, (4)

where r1, r2, r3 are obtained by (3).

m attaining the infimum in (4) is called a weighted circumcenter.
It solves an optimization problem in R3 with respect to the l∞
norm.

Existence and uniqueness of weighted circumcenter for triangles in
CAT (0) spaces (Alexandrov’s generalization of Riemannian
manifolds of sect. curv ≤ 0)
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Definition

(X, d) is hyperconvex if for any family {xi}i∈I ⊂ X and
ri + rj ≥ d(xi, xj) for i, j ∈ I,⋂

i∈I

B(xi, ri) ̸= ∅

In a convex metric space, ri + rj ≥ d(xi, xj) can be replaced by
B(xi, ri) ∩ B(xj , rj) ̸= ∅ for all i, j ∈ I. Thus, when balls intersect
pairwise, they also have a common intersection.
Slogan: Balls that can intersect do intersect.

Hyperconvex spaces are tripod spaces.
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a) Hyperconvex spaces are complete and contractible to each of
their points (Aronszajn-Panitchpakdi, 1956).

b) X is hyperconvex iff every 1−Lipschitz map from a subspace
of any metric space Y to X can be extended to a 1−Lipschitz
map over Y (Aronszajn-Panitchpakdi,1956).

c) (Isbell, 1964; Dress, 1984): every metric space is isometrically
embedded in a hyperconvex space, called its hyperconvex hull.
The hyperconvex hull of a compact space is compact and that
of a finite space is a polyhedral complex.

Relation with Topological Data Analysis (TDA): For metric
family (xi)i∈I , d and r > 0, define the Čech complex containing a
q-simplex whenever ⋂

i=1,...,q+1
B(xi, r) ̸= ∅

and record how the homology of this complex varies as a function
of r.
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i=1,...,q+1
B(xi, r) ̸= ∅

and record how the homology of this complex varies as a function
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In this example, the triangle is not filled, because no triple
intersection.

In contrast, in the Vietoris-Rips complex, simplices are filled
whenever the balls around their vertices intersect pairwise.
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no local homology

−→ Čech = Vietoris-Rips
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Variants

Definition
δ-hyperbolic (δ ≥ 0) if for any family {B(xi, ri)}i∈I with
ri + rj ≥ d(xi, xj), ⋂

i∈I

B(xi, δ + ri) ̸= ∅. (5)

Definition
λ-hyperconvex (λ ≥ 1) if for every family {B(xi, ri)}i∈I with
ri + rj ≥ d(xi, xj), ⋂

i∈I

B(xi, λri) ̸= ∅. (6)

Hilbert spaces are
√

2-hyperconvex. Reflexive and dual Banach
spaces are 2-hyperconvex. Therefore, for measure space (X, µ),
Lp(X, µ), 1 < p < ∞, are 2-hyperconvex, and if X is finite,
L1(X, µ) is also 2-hyperconvex. L∞(X, µ) is 1-hyperconvex.
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How geometry enters: Curvature

We can use these concepts to compare spaces with each other, or
with reference spaces, like Euclidean space.

In geometry, this is quantified by the concept of curvature.

From our abstract perspective, curvature relates intersection
patterns of balls to convexity properties of distance functions.
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Non-positive curvature

Definition
The geodesic space (X, d) is a CAT (0) space if for all geodesics
c1, c2 : [0, 1] −→ X with c1(0) = c2(0)

d(c1(t), c2(s)) ≤ ∥c̄1(t) − c̄2(s)∥, ∀ t, s ∈ [0, 1] (7)

where c̄1, c̄2 : [0, 1] −→ R2 are the sides of the comparison triangle
in R2 for △(c1(0), c1(1), c2(1)).

Triangles in CAT (0) spaces are not thicker than Euclidean
triangles with the same side lengths.
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Figure 1: Comparison between a triangle in a space of nonpositive curvature in
the sense of Alexandrov and the triangle with the same lengths of corresponding
sides (indicated by slashes) in the Euclidean plane.

Definition
A geodesic space (X, d) is a Busemann convex space if for every
two geodesics c1, c2 : [0, 1] −→ X with c1(0) = c2(0), the distance
function t 7→ d(c1(t), c2(t)) is convex.

Definition
(X, d) has non-positive curvature if for each triple (x1, x2, x3) in
X with the comparison triangle △(x̄1, x̄2, x̄3) in R2, one has

ρ(x1, x2, x3) ≤ ρ(x̄1, x̄2, x̄3),

where ρ(x̄1, x̄2, x̄3) is similarly defined by

ρ(x̄1, x̄2, x̄3) := min
x∈R2

max
i=1,2,3

∥x − x̄i∥
ri

.
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Geodesics in Busemann space diverge at least as fast as in
Euclidean space.
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Definition
(X, d) has non-positive curvature if for each triple (x1, x2, x3) in
X with the comparison triangle △(x̄1, x̄2, x̄3) in R2,

ρ(x1, x2, x3) ≤ ρ(x̄1, x̄2, x̄3), (8)

ρ(x1, x2, x3) := inf
x∈X

max
i=1,2,3

d(xi, x)
ri

, ri + rj ≥ d(xi, xj)

ρ(x̄1, x̄2, x̄3) := min
x∈R2

max
i=1,2,3

∥x − x̄i∥
ri

, ∥x̄i − x̄j∥ = d(xi, xj)

The circumcenter is at least as close to the vertices as in Euclidean
case.
For any triple of closed balls {B(xi, ri); i = 1, 2, 3} with pairwise
intersection,

⋂
i=1,2,3 B(xi, ρri) is non-empty whenever B(x̄i, ρri),

i = 1, 2, 3, have a common point. Thus, balls do not need to be
enlarged more than in Euclidean case to get triple intersection.
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Definition
(X, d) has non-positive curvature if for each triple (x1, x2, x3) in
X with the comparison triangle △(x̄1, x̄2, x̄3) in R2,

ρ(x1, x2, x3) ≤ ρ(x̄1, x̄2, x̄3), (9)

ρ(x1, x2, x3) := inf
x∈X

max
i=1,2,3

d(xi, x)
ri

, ri + rj ≥ d(xi, xj)

ρ(x̄1, x̄2, x̄3) := min
x∈R2

max
i=1,2,3

∥x − x̄i∥
ri

, ∥x̄i − x̄j∥ = d(xi, xj)

Examples:
• Tripod spaces have non-positive curvature, because there,

ρ = 1, which is the smallest possible value.

• Complete CAT (0) spaces have non-positive curvature.
Converse not true; in fact, our spaces need not be geodesic,
nor have unique geodesics.

• Approximate version applies to discrete spaces.
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Theorem

A complete Riemannian manifold (N, g) has non-positive curvature
iff it has non-positive sectional curvature.

Proof
Idea of NPC ⇒ Sec ≤ 0:
For triple (a, b, c) ∈ N , two Euclidean comparison triangles:
(ā, b̄, c̄) with same side lengths,
(A, B, C) with same distances from and same angles at median.

By NPC, second smaller than first.
But then, geodesics diverge faster in N than in R2, hence Sec
≤ 0.
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Conclusions

Čech construction assigns to cover U = (Ui)i∈I of X a simplicial
complex Σ(U) with vertex set I and a simplex σJ whenever⋂

j∈J Uj ̸= ∅ for J ⊂ I. When all intersections are contractible, the
homology of Σ(U) equals that of X (under some rather general
topological conditions on X). When (X, d) is metric space, use
covers by distance balls. Now, when (X, d) is a hyperconvex metric
space, and if we use a cover U by distance balls, then whenever⋂

j∈J\{j0}
Uj ̸= ∅ for every j0 ∈ J, (10)

then also ⋂
j∈J

Uj ̸= ∅, (11)

i.e., whenever Σ(U) contains all the boundary facets of some
simplex, it also contains that simplex itself. No holes, and no
corresponding homology groups.
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When only λ-hyperconvexity for λ > 1 (or δ-hyperbolicity for
δ > 0), then nontrivial homology groups may arise. From that
perspective, hyperconvex spaces are the simplest model spaces,
and homology can be seen as a topological measure for the
deviation from such a model.

Homology groups −→ Betti numbers as integer invariants.
Geometry can provide more refined real valued invariants. And
after Riemann,1 the fundamental geometric invariants are
curvatures. In our framework, the essential geometric content of
curvature can be extracted for general metric spaces. The basic
class of model spaces for curvature is given by the tripod spaces, a
special class containing hyperconvex spaces. From that
perspective, the geometric content of curvature in the abstract
setting considered here is the deviation from the tripod condition.
Euclidean spaces only have a subsidiary role, based on a
normalization of curvature that assigns the value 0 to them.

1see B.Riemann, On the hypotheses which lie at the bases of geometry, ed.
w. comm. by J.J., Birkhäuser, 2016

25/27



When only λ-hyperconvexity for λ > 1 (or δ-hyperbolicity for
δ > 0), then nontrivial homology groups may arise. From that
perspective, hyperconvex spaces are the simplest model spaces,
and homology can be seen as a topological measure for the
deviation from such a model.
Homology groups −→ Betti numbers as integer invariants.

Geometry can provide more refined real valued invariants. And
after Riemann,1 the fundamental geometric invariants are
curvatures. In our framework, the essential geometric content of
curvature can be extracted for general metric spaces. The basic
class of model spaces for curvature is given by the tripod spaces, a
special class containing hyperconvex spaces. From that
perspective, the geometric content of curvature in the abstract
setting considered here is the deviation from the tripod condition.
Euclidean spaces only have a subsidiary role, based on a
normalization of curvature that assigns the value 0 to them.
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Translating geometry into topology

Definition
Let (X, d) be a metric space. We construct a simplicial complex X̌
whose vertex set is {(x, r) : x ∈ X, r ≥ 0}. For every finite index
set I with more than two points, let (xi, ri)i∈I be a set of vertices
with all the ri > 0 and xi are different from each other, X̌ carries
a simplex spanned by these vertices whenever⋂

i∈I

B(xi, ri) ̸= ∅. (12)

A simplicial complex whose topology incorporates the geometry of
the underlying metric space.
The topology of the slices r ≡ const is evaluated in TDA.
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Questions to explore

• Regularity theory for maps into such spaces
• New schemes for Geometric Data Analysis
• Asymptotic geometry of networks (with Areejit Samal)
• Geometry of hyperconvex and tripod spaces and their variants

and generalizations
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