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Universitat Autònoma de Barcelona, March 11, 2024



The Dawn of Artificial Intelligence in Public Life

Health Care

Telecommunication/
Speech RecognitionSelf-Driving Cars

Legal Issues



Artificial Intelligence = Alchemy?



Problem with Reliability

Current major problem worldwide:
Lack of reliability of AI technology!
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Delving Deeper into Artificial Intelligence...



First Appearance of Neural Networks

Key Task of McCulloch and Pitts (1943):

▶ Develop an algorithmic approach to learning.

▶ Mimicking the functionality of the human brain.

Goal: Artifical Intelligence!
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Artificial Neurons

Definition: An artificial neuron with weights w1, ...,wn ∈ R, bias b ∈ R
and activation function ρ : R → R is defined as the function f : Rn → R
given by

f (x1, ..., xn) = ρ

(
n∑

i=1

xiwi − b

)
= ρ(⟨x ,w⟩ − b),

where w = (w1, ...,wn) and x = (x1, ..., xn).

Examples of Activation Functions:

▶ Heaviside function ρ(x) =

{
1, x > 0,

0, x ≤ 0.

▶ Sigmoid function ρ(x) = 1
1+e−x .

▶ Rectifiable Linear Unit (ReLU) ρ(x) = max{0, x}.
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Affine Linear Maps and Weights

Remark: Concatenating artificial neurons leads to compositions of affine
linear maps and activation functions.

Example: The following part of a neural network is given by

Φ : R3 → R2, Φ(x) = W (2)ρ(W (1)x + b(1)) + b(2).
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Definition of a Deep Neural Network

Definition:
Assume the following notions:

▶ d ∈ N: Dimension of input layer.

▶ L: Number of layers.

▶ ρ : R → R: (Non-linear) function called activation function.

▶ Tℓ : RNℓ−1 → RNℓ , ℓ = 1, . . . , L, where Tℓx = W (ℓ)x + b(ℓ)

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).



Training of Deep Neural Networks

High-Level Set Up:

▶ Samples (xi , f (xi ))
m
i=1 of a function

such as f : M → {1, 2, . . . ,K}.
; Training- and test data set.

▶ Select an architecture of a deep neural network,
i.e., a choice of d , L, (Nℓ)

L
ℓ=1, and ρ.

Sometimes selected entries of the matrices (W (ℓ))Lℓ=1,

i.e., weights, are set to zero at this point.

▶ Learn the affine-linear functions (Tℓ)
L
ℓ=1 = (W (ℓ) ·+b(ℓ))Lℓ=1 by

min
(W (ℓ),b(ℓ))ℓ

m∑
i=1

L(Φ(W (ℓ),b(ℓ))ℓ
(xi ), f (xi ))

yielding the network Φ(W (ℓ),b(ℓ))ℓ
: Rd → RNL ,

Φ(W (ℓ),b(ℓ))ℓ
(x) = TLρ(TL−1ρ(. . . ρ(T1(x))).

This is often done by stochastic gradient descent.

Goal: Φ(W (ℓ),b(ℓ))ℓ
(xi ) ≈ f (xi ) for the test data!
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Main Research Directions

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?
; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?
; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ Can we derive overall success guarantees (on the test data set)?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?

; Information Theory, Uncertainty Quantification, ...

Are there fundamental limitations?
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Let’s start with generalization!



Generalization: Mysteries

Surprising Phenomenon:

Underfitting Overfitting

(Source: Belkin, Hsu, Ma, Mandal; 2019)

Common Approaches:

▶ VC dimension

▶ Rademacher complexity

▶ Neural tangent kernels
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Some Facts about Graph Convolutional Neural Networks

Graph convolutional neural networks
generalize classical CNNs to signals over
graph domains. [Sperduti, Starita; 1997],
[Gori, Monfardini, Scarselli; 2005], [Bruna,

Zaremba, Szlam, LeCun; 2013], [Masci,

Boscaini, Bronstein, Vandergheynst; 2015], ...

Graph signal: s : graph nodes → Rc

Graph CNN: graph signal → convolution → activation → pooling → . . .

Some Applications:
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A Special Form of Generalization Capability

Desirable Feature:
Graph convolutional neural networks should
generalize to graphs and signals unseen in the
training set.

The Concept of Transferability:
If two graphs model the same phenomenon, a
fixed filter/Graph CNN should have
approximately the same repercussion on both
graphs.

We prove transferability
for spectral graph filters/Graph CNNs!
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Graph Laplacian: Oscillations on Graphs

Definition: Let D be the degree matrix and W the adjacency matrix.
Then the unnormalized Graph Laplacian is defined by

∆u = D −W

and the normalized Graph Laplacian is given by

∆n = D−1/2∆uD
−1/2.

As a generic notation, we will in the following use ∆.

Remark: The Graph Laplacian ∆ is self-adjoint. We will denote its

▶ eigenvalues by {λj}j ; Frequencies,
▶ eigenvectors by {uj}j ; Fourier modes.

The graph Laplacian ∆ encapsulates the geometry of the graph!
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Spectral Graph Convolution

Definition:
Letting {uj}j denote the eigenvectors of the graph Laplacian, we define
the spectral graph convolution operator by

Cf =
∑
j

cj ⟨f , uj⟩ uj .

Problem with the Implementation:
▶ Computationally demanding

▶ Eigendecomposition is slow.
▶ No general FFT for graphs.

▶ Not transferable
▶ The eigendecomposition is not stable to graph perturbations.
▶ A fixed filter has different repercussions on similar graphs.

Solution: Implement convolution using functional calculus!
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Functional Calculus

Definition:
Let T be a self-adjoint operator with discrete spectrum

Tv =
∑
j

λj ⟨v , uj⟩ uj .

A function g : R → C of T is then defined via

g(T )v =
∑
j

g(λj) ⟨v , uj⟩ uj .

Remark:

If g(λ) =
∑L

l=0 clλ
l∑L

l=0 dlλ
l
, then g(T ) =

(∑L
l=0 clT

l
)(∑L

l=0 dlT
l
)−1

.
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Spectral Filtering using Functional Calculus

Functional Calculus Filters:
The functional calculus for g : R → C applied to the graph Laplacian yields

g(∆)f =
∑
j

g(λj) ⟨f , uj⟩ uj .

Recall:
The previous implementation used

Cf =
∑
j

cj ⟨f , uj⟩ uj .

Advantages of Functional Calculus Viewpoint:
This approach...

▶ ...solves the instability problem (Levie, Isufi, K; 2019).

▶ ...solves the computational problem, if g is a rational function.
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Graphs Modeling the Same Phenomenon

Interpretation:

▶ Weighted graphs:
; Points and strength of correspondence between

pairs of points.

▶ Metric spaces:
; Points and distances.

Our Viewpoint:
Think of graphs as discretizations of metric spaces

distance ↗ ⇐⇒ edge weight ↘

Graphs that represent the same phenomenon are
discretizations of the same metric space!
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Comparing the Repercussion of a Filter on Two Graphs



DSP Framework akin to the Nyquist–Shannon Approach

Our New Setting:

▶ Analogue domain: Borel space M, with Laplacian L.
▶ Digital domains: Graphs G with graph Laplacians ∆.

▶ Paley Wiener spaces: Band-limited spaces corresponding to L.
▶ Sampling operators: Sλ : PW (λ) → L2(G ).

▶ Interpolation operator:

Rλ := (SλP(λ))∗ := (SλPPW (λ))
∗ : L2(G ) → PW (λ).



What is Transferability precisely?

Definition:
The transferability error of the filter f on the signal s ∈ L2(M), is now
defined by

∥f (L)s − Rλf (∆)Sλs∥,

the transferability error of the Laplacian is defined by

∥Ls − Rλ∆Sλs∥,

and the consistency error is defined by

∥s − RλSλs∥.



Transferability of Functional Calculus Filters

Theorem (Levie, Huang, Bucci, Bronstein, K; 2021): Let

▶ λM > 0 be a band with ∥RλM∥ < C ,

▶ g : R → C be Lipschitz continuous with constant D,

▶ ∥g∥L,M = max0≤m≤M{|g(λm)|}.

Then
∥g(L)P(λM)− RλMg(∆)SλMP(λM)∥

≤ DC
√
M∥SλMLP(λM)−∆SλMP(λM)∥+ ∥g∥L,M∥P(λM)− RλMSλMP(λM)∥

and
∥g(L)q − RλM

g(∆)SλMq∥

≤ DC
M∑

m=0

|cm|∥SλMLϕm −∆SλMϕm∥+ ∥g∥L,M∥q − RλMSλMq∥,

where q =
∑M

m=0 cmϕm ∈ PW (λM) ⊂ L2(M).

Transferability of Filter
≤ Transferability of Laplacian + Consistency Error



Transferability of Functional Calculus CNNs

Theorem (Levie, Huang, Bucci, Bronstein, K; 2021):
Consider two graphs Gj , j = 1, 2 and two graph Laplacians ∆j , j = 1, 2,
approximating the same Laplacian L in M, and consider a ReLU graph CNN with
Lipschitz filters. Further, let Gj,l be the graph in layer l with graph Laplacians
∆j,l . Also, assume that, for all layers l , bands λl , and j = 1, 2,

∥Sλl

j,lLP(λl)−∆j,lS
λl

j,lP(λl)∥ ≤ δ

and
∥P(λL)− RλL

j,LS
λL

j,LP(λL)∥ ≤ δ

for some 0 < δ < 1. Then, for all output-channels k and mappings Φk
j,L given by

the graph CNN,

∥RλL

1,LΦ
k
1,LS

λ0
1,1P(λ0)− RλL

2,LΦ
k
2,LS

λ0
2,1P(λ0)∥

≤ 2
(
LD
√
dim(PW (λ)) + L+ 1

)
δ.



Main Research Directions

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?
; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?
; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ Can we derive overall success guarantees (on the test data set)?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?

; Information Theory, Uncertainty Quantification, ...

Are there fundamental limitations?



An Applied Harmonic Analysis Approach

to Explainability



Explainability

Main Goal: We aim to understand decisions of “black-box” predictors!

map for digit 3 map for digit 8

Selected Questions:

▶ What exactly is relevance in a mathematical sense?

▶ Can we develop a theory for optimal relevance maps?

▶ How to extend to challenging modalities?

Vision:

Questioning the AI as a human about the reason for a decision!



Rate-Distortion Viewpoint

The Setting: Let

▶ Φ: [0, 1]d → [0, 1] be aclassification function,

▶ x ∈ [0, 1]d be an input signal.

Alice Bob

Original image x Partial image S Random completion y

Φ(x) = 0.97

“Monkey”

Φ(y) = 0.91

“Monkey”

Expected Distortion:

D(S) = D(Φ, x ,S) = E
[
1

2
(Φ(x)− Φ(y))2

]



Rate-Distortion Explanation

Rate-Distortion Function:

R(ϵ) = min
S⊆{1,...,d}

{|S | : D(S) ≤ ϵ}

; Use this viewpoint for the definition of a relevance map!

Finding a minimizer of R(ϵ) is very hard!
(Wäldchen, Macdonald, Hauch, K, 2020)

Relaxed (and computable) Variant (RDE) (Macdonald, Wäldchen,
Hauch, K, 2020):

minimize D(s) + λ∥s∥1 subject to s ∈ [0, 1]d
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image SmoothGrad LRP-α-β SHAP RDE (diagonal)

Sensitivity Guided Backprop Deep Taylor LIME RDE (low-rank)



STL-10 Experiment
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Sensitivity

SmoothGrad

Guided Backprop

SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller,

2018), LIME (Ribeiro, Singh, Guestrin, 2016)



Desiderata

Problems:

▶ Modifying the image with random noise or some background color
might lead to the obfuscation not being in the domain of the network.
; Does this give meaningful information about why the network

made its decisions?

▶ The explanations are pixel-based.
; Does this lead to useful information for

different modalities?

Solutions:

▶ Take the conditional data distribution into account using an
inpainting GAN!

▶ Use a decomposition of the data and place relevance scores on the
(wavelet, etc.) coefficients!
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Telecommunication

RadioUNet (Levie, Cagkan, K, Caire; 2021):

Estimated map Explanation
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Main Research Directions

▶ Expressivity:
▶ Which aspects of a neural network architecture affect the performance

of deep learning?
; Applied Harmonic Analysis, Approximation Theory, ...

▶ Learning:
▶ Why does stochastic gradient descent converge to good local minima

despite the non-convexity of the problem?
; Algebraic/Differential Geometry, Optimal Control, Optimization, ...

▶ Generalization:
▶ Can we derive overall success guarantees (on the test data set)?

; Learning Theory, Probability Theory, Statistics, ...

▶ Explainability:
▶ Why did a trained deep neural network reach a certain decision?

; Information Theory, Uncertainty Quantification, ...

Are there fundamental limitations?



Deep Neural Networks are Not a Swiss Army Knife!

They do have Limitations!



A Serious Problem

Computability on Digital Machines (informal):

A computable problem (function) is one for which the input-output
relation can be computed on a digital machine for any given accuracy.

Theorem (Boche, Fono, K; 2022):
The solution of a finite-dimensional inverse problem is not (Turing)
computable (by a deep neural network).

General Barrier:

▶ Limits of computability on today’s hardware

Today computations are performed almost exclusively

on digital hardware!
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Some Thoughts on the Result

Serious Problems:

▶ No algorithm exists, which on digital hardware derives neural networks
approximating the solution for any given accuracy.

▶ The output of trained neural networks not reliable (no guarantees).

▶ This result could point towards why instabilities and non-robustness
occurs for deep neural networks.

Illustration of the Problem:



What now? ... Mathematics Tells Us the Answer!

Theorem (Boche, Fono, K; 2022):
The solution of a finite-dimensional inverse problem is computable (by a
deep neural network) on an analog (Blum-Shub-Smale) machine!

Reliability for certain problem settings requires novel hardware!

Possible Future Developments:

▶ Neuromorphic computing

▶ Biocomputing

▶ Quantum computing
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The Situation is Even More Serious!

Theorem (Boche, Fono, K; 2024): Many classification problems are
also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing)
computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the
Laplace and the diffusion equation on digital hardware causes a complexity
blowup.

Theorem (Lee, Boche, K; 2024): Finding the solution of most
optimization problems is not (Turing) computable!

Vision for the Future:

Mathematically Reliable AI...by Analog Computing!
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Some Final Thoughts...



Conclusions

Artificial Intelligence:

▶ Impressive performance in real-world applications!

▶ A mathematical foundation of it is largely missing!

Mathematics for Artificial Intelligence:

▶ Expressivity: Optimal architectures?

▶ Learning: Controllable, efficient algorithms?

▶ Generalization: Performance on test data sets?

▶ Explainability: Explaining network decisions?

Caution: Problems with computability on digital hardware!

Exciting Future Perspectives for Mathematical Foundations!
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New AI School in Munich (MSc & PhD)



THANK YOU!
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