Reliability of Artificial Intelligence: Chances and Challenges

Gitta Kutyniok
(Ludwig-Maximilians-Universität München)

Barcelona Mathematics and Machine Learning Colloquium Series Universitat Autònoma de Barcelona, March 11, 2024

The Dawn of Artificial Intelligence in Public Life

Artificial Intelligence = Alchemy?

Ali Rahimi, a researcher in artificial intelligence (AI) at Google in San Francisco, California, took a swipe at his field last December-and received a 40 -second ovation for it. Speaking at an AI conference, Rahimi charged that machine learning algorithms, in which computers learn through trial and error, have become a form of "alchemy." Researchers, he said, do not know why some algorithms work and others don't, nor do they have rigorous criteria for choosing one AI architecture over another. Now, in a paper presented on 30 April at the International Conference on Learning Representations in Vancouver, Canada, Rahimi and his collaborators document examples of what they see as the alchemy problem and offer prescriptions for bolstering Al's rigor.

Problem with Reliability

Problems with Security
Example:
Risks in self-driving cars

Problems with Responsibility
Example:
Black-box and biased decisions

Problem with Reliability

Problems with Security
Example:
Risks in self-driving cars

Problems with Privacy

Example:
Privacy violations of health data

Problems with Responsibility
Example:
Black-box and biased decisions

Current major problem worldwide:
Lack of reliability of AI technology!

Strong Requirements for Reliability

International Position on Reliable AI:

- AI Act of the European Union
- G7 Hiroshima AI Process

MONCHEN

Strong Requirements for Reliability

International Position on Reliable AI:

- AI Act of the European Union
- G7 Hiroshima AI Process

Major Challenge:

Derive a profound mathematical understanding!

Delving Deeper into Artificial Intelligence...

First Appearance of Neural Networks

Key Task of McCulloch and Pitts (1943):

- Develop an algorithmic approach to learning.
- Mimicking the functionality of the human brain.

> Goal: Artifical Intelligence!

Artificial Neurons

Artificial Neurons

Artificial Neurons

Definition: An artificial neuron with weights $w_{1}, \ldots, w_{n} \in \mathbb{R}$, bias $b \in \mathbb{R}$ and activation function $\rho: \mathbb{R} \rightarrow \mathbb{R}$ is defined as the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\rho\left(\sum_{i=1}^{n} x_{i} w_{i}-b\right)=\rho(\langle x, w\rangle-b)
$$

where $w=\left(w_{1}, \ldots, w_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$.

Artificial Neurons

Definition: An artificial neuron with weights $w_{1}, \ldots, w_{n} \in \mathbb{R}$, bias $b \in \mathbb{R}$ and activation function $\rho: \mathbb{R} \rightarrow \mathbb{R}$ is defined as the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\rho\left(\sum_{i=1}^{n} x_{i} w_{i}-b\right)=\rho(\langle x, w\rangle-b)
$$

where $w=\left(w_{1}, \ldots, w_{n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$.

Examples of Activation Functions:

\Rightarrow Heaviside function $\rho(x)= \begin{cases}1, & x>0, \\ 0, & x \leq 0 .\end{cases}$
\Rightarrow Sigmoid function $\rho(x)=\frac{1}{1+e^{-x}}$.
\Rightarrow Rectifiable Linear Unit $(\operatorname{ReLU}) \rho(x)=\max \{0, x\}$.

Affine Linear Maps and Weights

Remark: Concatenating artificial neurons leads to compositions of affine linear maps and activation functions.

Example: The following part of a neural network is given by

$$
\begin{aligned}
& \Phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad \Phi(x)=W^{(2)} \rho\left(W^{(1)} x+b^{(1)}\right)+b^{(2)} . \\
& W^{(1)}=\left(\begin{array}{ccc}
w_{11}^{(1)} & w_{12}^{(1)} & 0 \\
0 & 0 & w_{23}^{(1)} \\
0 & 0 & w_{33}^{(1)}
\end{array}\right) \\
& W^{(2)}=\left(\begin{array}{ccc}
w_{11}^{(2)} & w_{12}^{(2)} & 0 \\
0 & 0 & w_{23}^{(2)}
\end{array}\right)
\end{aligned}
$$

Definition of a Deep Neural Network

Definition:

Assume the following notions:
$\nabla d \in \mathbb{N}$: Dimension of input layer.

$\Rightarrow L$: Number of layers.
$\Rightarrow \rho: \mathbb{R} \rightarrow \mathbb{R}$: (Non-linear) function called activation function.
$>T_{\ell}: \mathbb{R}^{N_{\ell-1}} \rightarrow \mathbb{R}^{N_{\ell}}, \ell=1, \ldots, L$, where $T_{\ell} x=W^{(\ell)} x+b^{(\ell)}$
Then $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$ given by

$$
\Phi(x)=T_{L} \rho\left(T_{L-1} \rho\left(\ldots \rho\left(T_{1}(x)\right)\right), \quad x \in \mathbb{R}^{d}\right.
$$

is called (deep) neural network (DNN).

Training of Deep Neural Networks

High-Level Set Up:
\Rightarrow Samples $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{m}$ of a function such as $f: \mathcal{M} \rightarrow\{1,2, \ldots, K\}$. \sim Training- and test data set.

MNINERSITA
MONCHEN

Training of Deep Neural Networks

High-Level Set Up:

\Rightarrow Samples $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{m}$ of a function such as $f: \mathcal{M} \rightarrow\{1,2, \ldots, K\}$. \sim Training- and test data set.

- Select an architecture of a deep neural network, i.e., a choice of $d, L,\left(N_{\ell}\right)_{\ell=1}^{L}$, and ρ.

Sometimes selected entries of the matrices $\left(W^{(\ell)}\right)_{\ell=1}^{L}$,
 i.e., weights, are set to zero at this point.

Training of Deep Neural Networks

High-Level Set Up:

- Samples $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{m}$ of a function such as $f: \mathcal{M} \rightarrow\{1,2, \ldots, K\}$.
\sim Training- and test data set.

- Select an architecture of a deep neural network, i.e., a choice of $d, L,\left(N_{\ell}\right)_{\ell=1}^{L}$, and ρ.

Sometimes selected entries of the matrices $\left(W^{(\ell)}\right)_{\ell=1}^{L}$,
 i.e., weights, are set to zero at this point.
$>$ Learn the affine-linear functions $\left(T_{\ell}\right)_{\ell=1}^{L}=\left(W^{(\ell)} \cdot+b^{(\ell)}\right)_{\ell=1}^{L}$ by

$$
\min _{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}} \sum_{i=1}^{m} \mathcal{L}\left(\Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}\left(x_{i}\right), f\left(x_{i}\right)\right)
$$

yielding the network $\Phi_{\left(W^{\left.(\ell), b^{(\ell)}\right)_{\ell}}\right.}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$,

$$
\Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}(x)=T_{L} \rho\left(T_{L-1} \rho\left(\ldots \rho\left(T_{1}(x)\right)\right)\right.
$$

This is often done by stochastic gradient descent.

Training of Deep Neural Networks

High-Level Set Up:

- Samples $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{m}$ of a function such as $f: \mathcal{M} \rightarrow\{1,2, \ldots, K\}$.
\sim Training- and test data set.

- Select an architecture of a deep neural network, i.e., a choice of $d, L,\left(N_{\ell}\right)_{\ell=1}^{L}$, and ρ.

Sometimes selected entries of the matrices $\left(W^{(\ell)}\right)_{\ell=1}^{L}$,
 i.e., weights, are set to zero at this point.
$>$ Learn the affine-linear functions $\left(T_{\ell}\right)_{\ell=1}^{L}=\left(W^{(\ell)} \cdot+b^{(\ell)}\right)_{\ell=1}^{L}$ by

$$
\min _{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}} \sum_{i=1}^{m} \mathcal{L}\left(\Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}\left(x_{i}\right), f\left(x_{i}\right)\right)
$$

yielding the network $\Phi_{\left(W^{\left.(\ell), b^{(\ell)}\right)_{\ell}}\right.}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{N_{L}}$,

$$
\Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}(x)=T_{L} \rho\left(T_{L-1} \rho\left(\ldots \rho\left(T_{1}(x)\right)\right)\right.
$$

This is often done by stochastic gradient descent.

$$
\text { Goal: } \Phi_{\left(W^{(\ell)}, b^{(\ell)}\right)_{\ell}}\left(x_{i}\right) \approx f\left(x_{i}\right) \text { for the test data! }
$$

Main Research Directions

Expressivity:

- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...

Main Research Directions

- Expressivity:
- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
\leadsto Algebraic/Differential Geometry, Optimal Control, Optimization, ...

Main Research Directions

- Expressivity:
- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
\leadsto Algebraic/Differential Geometry, Optimal Control, Optimization, ...

- Generalization:

- Can we derive overall success guarantees (on the test data set)?
\sim Learning Theory, Probability Theory, Statistics, ...

Main Research Directions

- Expressivity:
- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
\leadsto Algebraic/Differential Geometry, Optimal Control, Optimization, ...

- Generalization:

- Can we derive overall success guarantees (on the test data set)? $~$ Learning Theory, Probability Theory, Statistics, ...
- Explainability:
- Why did a trained deep neural network reach a certain decision?
\leadsto Information Theory, Uncertainty Quantification, ...

Main Research Directions

- Expressivity:
- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
\leadsto Algebraic/Differential Geometry, Optimal Control, Optimization, ...

- Generalization:

- Can we derive overall success guarantees (on the test data set)? \sim Learning Theory, Probability Theory, Statistics, ...
- Explainability:
- Why did a trained deep neural network reach a certain decision?
\sim Information Theory, Uncertainty Quantification, ...
Are there fundamental limitations?

Let's start with generalization!

Generalization: Mysteries

Surprising Phenomenon:

Underfitting

(Source: Belkin, Hsu, Ma, Mandal; 2019)

Generalization: Mysteries

Surprising Phenomenon:

(Source: Belkin, Hsu, Ma, Mandal; 2019)

Common Approaches:

- VC dimension
- Rademacher complexity
- Neural tangent kernels

Some Facts about Graph Convolutional Neural Networks

Graph convolutional neural networks generalize classical CNNs to signals over graph domains. [Sperduti, Starita; 1997], [Gori, Monfardini, Scarselli; 2005], [Bruna,

LeCun et st. 1989 Zaremba, Szlam, LeCun; 2013], [Masci, Boscaini, Bronstein, Vandergheynst; 2015], ...

Graph signal: s: graph nodes $\rightarrow \mathbb{R}^{c}$ Graph CNN: graph signal \rightarrow convolution \rightarrow activation \rightarrow pooling $\rightarrow \ldots$

Some Facts about Graph Convolutional Neural Networks

Graph convolutional neural networks generalize classical CNNs to signals over graph domains. [Sperduti, Starita; 1997], [Gori, Monfardini, Scarselli; 2005], [Bruna,
 Zaremba, Szlam, LeCun; 2013], [Masci, Boscaini, Bronstein, Vandergheynst; 2015], ...

Graph with N nodes

Graph signal: s: graph nodes $\rightarrow \mathbb{R}^{c}$ Graph CNN: graph signal \rightarrow convolution \rightarrow activation \rightarrow pooling $\rightarrow \ldots$

Some Applications:

Recommender system

Fake news detection

Chemistry MAXIMLIANS
MAIVERITAT
MONCHEN

A Special Form of Generalization Capability

Desirable Feature:

Graph convolutional neural networks should generalize to graphs and signals unseen in the training set.

A Special Form of Generalization Capability

Desirable Feature:

Graph convolutional neural networks should generalize to graphs and signals unseen in the training set.

The Concept of Transferability:
If two graphs model the same phenomenon, a fixed filter/Graph CNN should have approximately the same repercussion on both graphs.

A Special Form of Generalization Capability

Desirable Feature:

Graph convolutional neural networks should generalize to graphs and signals unseen in the training set.

The Concept of Transferability:
If two graphs model the same phenomenon, a fixed filter/Graph CNN should have approximately the same repercussion on both graphs.

We prove transferability

for spectral graph filters/Graph CNNs!

Graph Laplacian: Oscillations on Graphs

Definition: Let D be the degree matrix and W the adjacency matrix. Then the unnormalized Graph Laplacian is defined by

$$
\Delta_{u}=D-W
$$

and the normalized Graph Laplacian is given by

$$
\Delta_{n}=D^{-1 / 2} \Delta_{u} D^{-1 / 2}
$$

As a generic notation, we will in the following use Δ.

Graph Laplacian: Oscillations on Graphs

Definition: Let D be the degree matrix and W the adjacency matrix. Then the unnormalized Graph Laplacian is defined by

$$
\Delta_{u}=D-W
$$

and the normalized Graph Laplacian is given by

$$
\Delta_{n}=D^{-1 / 2} \Delta_{u} D^{-1 / 2}
$$

As a generic notation, we will in the following use Δ.
Remark: The Graph Laplacian Δ is self-adjoint. We will denote its
\triangleright eigenvalues by $\left\{\lambda_{j}\right\}_{j} \leadsto$ Frequencies,
\Rightarrow eigenvectors by $\left\{u_{j}\right\}_{j} \leadsto$ Fourier modes.
The graph Laplacian Δ encapsulates the geometry of the graph!

Spectral Graph Convolution

Definition:

Letting $\left\{u_{j}\right\}_{j}$ denote the eigenvectors of the graph Laplacian, we define the spectral graph convolution operator by

$$
C f=\sum_{j} c_{j}\left\langle f, u_{j}\right\rangle u_{j}
$$

Spectral Graph Convolution

Definition:

Letting $\left\{u_{j}\right\}_{j}$ denote the eigenvectors of the graph Laplacian, we define the spectral graph convolution operator by

$$
C f=\sum_{j} c_{j}\left\langle f, u_{j}\right\rangle u_{j}
$$

Problem with the Implementation:

- Computationally demanding
- Eigendecomposition is slow.
- No general FFT for graphs.
- Not transferable
- The eigendecomposition is not stable to graph perturbations.
$>$ A fixed filter has different repercussions on similar graphs.

Spectral Graph Convolution

Definition:

Letting $\left\{u_{j}\right\}_{j}$ denote the eigenvectors of the graph Laplacian, we define the spectral graph convolution operator by

$$
C f=\sum_{j} c_{j}\left\langle f, u_{j}\right\rangle u_{j}
$$

Problem with the Implementation:

- Computationally demanding
- Eigendecomposition is slow.
- No general FFT for graphs.
- Not transferable
- The eigendecomposition is not stable to graph perturbations.
$>$ A fixed filter has different repercussions on similar graphs.
Solution: Implement convolution using functional calculus!

Functional Calculus

Definition:

Let T be a self-adjoint operator with discrete spectrum

$$
T v=\sum_{j} \lambda_{j}\left\langle v, u_{j}\right\rangle u_{j}
$$

A function $g: \mathbb{R} \rightarrow \mathbb{C}$ of T is then defined via

$$
g(T) v=\sum_{j} g\left(\lambda_{j}\right)\left\langle v, u_{j}\right\rangle u_{j}
$$

Functional Calculus

Definition:

Let T be a self-adjoint operator with discrete spectrum

$$
T v=\sum_{j} \lambda_{j}\left\langle v, u_{j}\right\rangle u_{j}
$$

A function $g: \mathbb{R} \rightarrow \mathbb{C}$ of T is then defined via

$$
g(T) v=\sum_{j} g\left(\lambda_{j}\right)\left\langle v, u_{j}\right\rangle u_{j} .
$$

Remark:

If $g(\lambda)=\frac{\sum_{l=0}^{L} c_{l} \lambda^{\prime}}{\sum_{l=0}^{L} d_{l} \lambda^{\prime}}$, then $g(T)=\left(\sum_{l=0}^{L} c_{l} T^{\prime}\right)\left(\sum_{l=0}^{L} d_{l} T^{\prime}\right)^{-1}$.
Spectrum of T

Spectral Filtering using Functional Calculus

Functional Calculus Filters:

The functional calculus for $g: \mathbb{R} \rightarrow \mathbb{C}$ applied to the graph Laplacian yields

$$
g(\Delta) f=\sum_{j} g\left(\lambda_{j}\right)\left\langle f, u_{j}\right\rangle u_{j}
$$

Recall:
The previous implementation used

$$
C f=\sum_{j} c_{j}\left\langle f, u_{j}\right\rangle u_{j}
$$

Spectral Filtering using Functional Calculus

Functional Calculus Filters:

The functional calculus for $g: \mathbb{R} \rightarrow \mathbb{C}$ applied to the graph Laplacian yields

$$
g(\Delta) f=\sum_{j} g\left(\lambda_{j}\right)\left\langle f, u_{j}\right\rangle u_{j} .
$$

Recall:
The previous implementation used

$$
C f=\sum_{j} c_{j}\left\langle f, u_{j}\right\rangle u_{j} .
$$

Advantages of Functional Calculus Viewpoint:
This approach...

- ...solves the instability problem (Levie, Isufi, K; 2019).
- ...solves the computational problem, if g is a rational function.

Graphs Modeling the Same Phenomenon

Interpretation:

- Weighted graphs:
\sim Points and strength of correspondence between pairs of points.
 MONCHEN

Graphs Modeling the Same Phenomenon

Interpretation:

- Weighted graphs:
\sim Points and strength of correspondence between pairs of points.
- Metric spaces:
\sim Points and distances.

Graphs Modeling the Same Phenomenon

Interpretation:

- Weighted graphs:
\sim Points and strength of correspondence between pairs of points.
- Metric spaces:
\sim Points and distances.

Our Viewpoint:

Think of graphs as discretizations of metric spaces

$$
\text { distance } \nearrow \Longleftrightarrow \text { edge weight } \searrow
$$

Graphs that represent the same phenomenon are discretizations of the same metric space!

Comparing the Repercussion of a Filter on Two Graphs

Comparing the Repercussion of a Filter on Two Graphs

Take a generic signal $f: \mathcal{M} \rightarrow \mathbb{C}$

Comparing the Repercussion of a Filter on Two Graphs

Sample to both graphs $\quad S_{1} f: G_{1} \rightarrow \mathbb{C}, \quad S_{2} f: G_{2} \rightarrow \mathbb{C}$

Comparing the Repercussion of a Filter on Two Graphs

Comparing the Repercussion of a Filter on Two Graphs

Interpolate back to $L^{2}(\mathcal{M})$ to get $\left\|R_{1} g\left(\boldsymbol{\Delta}_{1}\right) S_{1} f-R_{2} g\left(\boldsymbol{\Delta}_{2}\right) S_{2} f\right\| \approx 0$

DSP Framework akin to the Nyquist-Shannon Approach

Our New Setting:

- Analogue domain: Borel space \mathcal{M}, with Laplacian \mathcal{L}.
- Digital domains: Graphs G with graph Laplacians Δ.
- Paley Wiener spaces: Band-limited spaces corresponding to \mathcal{L}.
- Sampling operators: $S^{\lambda}: P W(\lambda) \rightarrow L^{2}(G)$.
- Interpolation operator:

$$
R^{\lambda}:=\left(S^{\lambda} P(\lambda)\right)^{*}:=\left(S^{\lambda} P_{P W(\lambda)}\right)^{*}: L^{2}(G) \rightarrow P W(\lambda)
$$

What is Transferability precisely?

Definition:

The transferability error of the filter f on the signal $s \in L^{2}(\mathcal{M})$, is now defined by

$$
\left\|f(\mathcal{L}) s-R^{\lambda} f(\Delta) S^{\lambda} s\right\|
$$

the transferability error of the Laplacian is defined by

$$
\left\|\mathcal{L} s-R^{\lambda} \Delta S^{\lambda} s\right\|
$$

and the consistency error is defined by

$$
\left\|s-R^{\lambda} S^{\lambda} s\right\|
$$

Transferability of Functional Calculus Filters

Theorem (Levie, Huang, Bucci, Bronstein, K; 2021): Let
$\Rightarrow \lambda_{M}>0$ be a band with $\left\|R^{\lambda_{M}}\right\|<C$,
$\Rightarrow g: \mathbb{R} \rightarrow \mathbb{C}$ be Lipschitz continuous with constant D,
$>\|g\|_{\mathcal{L}, M}=\max _{0 \leq m \leq M}\left\{\left|g\left(\lambda_{m}\right)\right|\right\}$.
Then

$$
\begin{aligned}
& \left\|g(\mathcal{L}) P\left(\lambda_{M}\right)-R^{\lambda_{M}} g(\Delta) S^{\lambda_{M}} P\left(\lambda_{M}\right)\right\| \\
& \quad \leq D C \sqrt{M}\left\|S^{\lambda_{M}} \mathcal{L} P\left(\lambda_{M}\right)-\Delta S^{\lambda_{M}} P\left(\lambda_{M}\right)\right\|+\|g\|_{\mathcal{L}, M}\left\|P\left(\lambda_{M}\right)-R^{\lambda_{M}} S^{\lambda_{M}} P\left(\lambda_{M}\right)\right\|
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\|g(\mathcal{L}) q-R_{\lambda_{M}} g(\Delta) S^{\lambda_{M}} q\right\| \\
& \quad \leq D C \sum_{m=0}^{M}\left|c_{m}\right|\left\|S^{\lambda_{M}} \mathcal{L} \phi_{m}-\Delta S^{\lambda_{M}} \phi_{m}\right\|+\|g\|_{\mathcal{L}, M}\left\|q-R^{\lambda_{M}} S^{\lambda_{M}} q\right\|
\end{aligned}
$$

where $q=\sum_{m=0}^{M} c_{m} \phi_{m} \in P W\left(\lambda_{M}\right) \subset L^{2}(\mathcal{M})$.
Transferability of Filter

Transferability of Functional Calculus CNNs

Theorem (Levie, Huang, Bucci, Bronstein, K; 2021):
Consider two graphs $G_{j}, j=1,2$ and two graph Laplacians $\Delta_{j}, j=1,2$, approximating the same Laplacian \mathcal{L} in \mathcal{M}, and consider a ReLU graph CNN with Lipschitz filters. Further, let $G_{j, /}$ be the graph in layer / with graph Laplacians $\Delta_{j, I}$. Also, assume that, for all layers I, bands λ_{I}, and $j=1,2$,

$$
\left\|S_{j, l}^{\lambda_{l}} \mathcal{L} P\left(\lambda_{l}\right)-\Delta_{j, I} S_{j, l}^{\lambda_{l}} P\left(\lambda_{l}\right)\right\| \leq \delta
$$

and

$$
\left\|P\left(\lambda_{L}\right)-R_{j, L}^{\lambda_{L}} S_{j, L}^{\lambda_{L}} P\left(\lambda_{L}\right)\right\| \leq \delta
$$

for some $0<\delta<1$. Then, for all output-channels k and mappings $\Phi_{j, L}^{k}$ given by the graph CNN,

$$
\begin{aligned}
\| R_{1, L}^{\lambda_{L}} \Phi_{1, L}^{k} S_{1,1}^{\lambda_{0}} P\left(\lambda_{0}\right)- & R_{2, L}^{\lambda_{L}} \Phi_{2, L}^{k} S_{2,1}^{\lambda_{0}} P\left(\lambda_{0}\right) \| \\
& \leq 2(L D \sqrt{\operatorname{dim}(P W(\lambda))}+L+1) \delta .
\end{aligned}
$$

Main Research Directions

- Expressivity:
- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
\leadsto Algebraic/Differential Geometry, Optimal Control, Optimization, ...

- Generalization:

- Can we derive overall success guarantees (on the test data set)? \sim Learning Theory, Probability Theory, Statistics, ...
- Explainability:
- Why did a trained deep neural network reach a certain decision?
\sim Information Theory, Uncertainty Quantification, ...
Are there fundamental limitations?

An Applied Harmonic Analysis Approach to Explainability

Explainability

Main Goal: We aim to understand decisions of "black-box" predictors!

$$
\text { map for digit } 3 \text { map for digit } 8
$$

Selected Questions:

- What exactly is relevance in a mathematical sense?
\Rightarrow Can we develop a theory for optimal relevance maps?
- How to extend to challenging modalities?

Vision:
Questioning the AI as a human about the reason for a decision!

Rate-Distortion Viewpoint

The Setting: Let
$\Phi:[0,1]^{d} \rightarrow[0,1]$ be aclassification function, $x \in[0,1]^{d}$ be an input signal.
$\Phi(x)=0.97$
"Monkey"

$\Phi(y)=0.91$
"Monkey"

Expected Distortion:

$$
D(S)=D(\Phi, x, S)=\mathbb{E}\left[\frac{1}{2}(\Phi(x)-\Phi(y))^{2}\right]
$$

Rate-Distortion Explanation

Rate-Distortion Function:

$$
R(\epsilon)=\min _{S \subseteq\{1, \ldots, d\}}\{|S|: D(S) \leq \epsilon\}
$$

\sim Use this viewpoint for the definition of a relevance map!

Rate-Distortion Explanation

Rate-Distortion Function:

$$
R(\epsilon)=\min _{S \subseteq\{1, \ldots, d\}}\{|S|: D(S) \leq \epsilon\}
$$

\sim Use this viewpoint for the definition of a relevance map!

Finding a minimizer of $R(\epsilon)$ is very hard! (Wäldchen, Macdonald, Hauch, K, 2020)

Relaxed (and computable) Variant (RDE) (Macdonald, Wäldchen, Hauch, K, 2020):

$$
\text { minimize } \quad D(s)+\lambda\|s\|_{1} \quad \text { subject to } \quad s \in[0,1]^{d}
$$

STL-10 Experiment

STL-10 Experiment

SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, 2018), LIME (Ribeiro, Singh, Guestrin, 2016)

Ludwis-LUDWIG:-
MAXIMIIANS MAXIMILIANS
MAIVERSITAT
MONCHEN MNIVESTIAT
MONCHEN

Desiderata

Problems:

$>$ Modifying the image with random noise or some background color might lead to the obfuscation not being in the domain of the network.
\sim Does this give meaningful information about why the network made its decisions?

- The explanations are pixel-based.
\sim Does this lead to useful information for different modalities?

Desiderata

Problems:

- Modifying the image with random noise or some background color might lead to the obfuscation not being in the domain of the network.
\leadsto Does this give meaningful information about why the network made its decisions?
- The explanations are pixel-based. \sim Does this lead to useful information for different modalities?

Solutions:

- Take the conditional data distribution into account using an inpainting GAN!
- Use a decomposition of the data and place relevance scores on the (wavelet, etc.) coefficients!

Cartoon X (Kolek, Nguyen, Levie, Bruna, K; 2022)

Image Compression

Telecommunication

RadioUNet (Levie, Cagkan, K, Caire; 2021):

Estimated map

Explanation

Detecting Reason for Adversarial Examples

CartoonX (Kolek, Nguyen, Levie, Bruna, K; 2022):

Diaper

Screw

Detecting Reason for Adversarial Examples

CartoonX (Kolek, Nguyen, Levie, Bruna, K; 2022):

Diaper

Screw

Detecting Reason for Adversarial Examples

CartoonX (Kolek, Nguyen, Levie, Bruna, K; 2022):

Diaper

Screw
\sim ShearletX (Kolek, Windesheim, Loarca, K, Levie; 2023)

Main Research Directions

- Expressivity:
- Which aspects of a neural network architecture affect the performance of deep learning?
$~$ Applied Harmonic Analysis, Approximation Theory, ...
- Learning:
- Why does stochastic gradient descent converge to good local minima despite the non-convexity of the problem?
\leadsto Algebraic/Differential Geometry, Optimal Control, Optimization, ...

- Generalization:

- Can we derive overall success guarantees (on the test data set)? \sim Learning Theory, Probability Theory, Statistics, ...
- Explainability:
- Why did a trained deep neural network reach a certain decision?
\sim Information Theory, Uncertainty Quantification, ...
Are there fundamental limitations?

Deep Neural Networks are Not a Swiss Army Knife!

They do have Limitations!

A Serious Problem

A Serious Problem

Computability on Digital Machines (informal):

A computable problem (function) is one for which the input-output relation can be computed on a digital machine for any given accuracy.

A Serious Problem

Computability on Digital Machines (informal):

A computable problem (function) is one for which the input-output relation can be computed on a digital machine for any given accuracy.

Theorem (Boche, Fono, K; 2022):
The solution of a finite-dimensional inverse problem is not (Turing) computable (by a deep neural network).

A Serious Problem

Computability on Digital Machines (informal):

A computable problem (function) is one for which the input-output relation can be computed on a digital machine for any given accuracy.

Theorem (Boche, Fono, K; 2022):
The solution of a finite-dimensional inverse problem is not (Turing) computable (by a deep neural network).

General Barrier:

- Limits of computability on today's hardware

Today computations are performed almost exclusively on digital hardware!

Some Thoughts on the Result

Serious Problems:

- No algorithm exists, which on digital hardware derives neural networks approximating the solution for any given accuracy.
- The output of trained neural networks not reliable (no guarantees).
- This result could point towards why instabilities and non-robustness occurs for deep neural networks.

Illustration of the Problem:

What now? ... Mathematics Tells Us the Answer!

What now? ... Mathematics Tells Us the Answer!

Theorem (Boche, Fono, K; 2022):
The solution of a finite-dimensional inverse problem is computable (by a deep neural network) on an analog (Blum-Shub-Smale) machine!

What now? ... Mathematics Tells Us the Answer!

Theorem (Boche, Fono, K; 2022):
The solution of a finite-dimensional inverse problem is computable (by a deep neural network) on an analog (Blum-Shub-Smale) machine!

Reliability for certain problem settings requires novel hardware!

Possible Future Developments:

- Neuromorphic computing
- Biocomputing
- Quantum computing

LMU

The Situation is Even More Serious!

The Situation is Even More Serious!

Theorem (Boche, Fono, K; 2024): Many classification problems are also not (Turing) computable!

The Situation is Even More Serious!

Theorem (Boche, Fono, K; 2024): Many classification problems are also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing) computable!

The Situation is Even More Serious!

Theorem (Boche, Fono, K; 2024): Many classification problems are also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing) computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the Laplace and the diffusion equation on digital hardware causes a complexity blowup.

The Situation is Even More Serious!

Theorem (Boche, Fono, K; 2024): Many classification problems are also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing) computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the Laplace and the diffusion equation on digital hardware causes a complexity blowup.

Theorem (Lee, Boche, K; 2024): Finding the solution of most optimization problems is not (Turing) computable!

The Situation is Even More Serious!

Theorem (Boche, Fono, K; 2024): Many classification problems are also not (Turing) computable!

Theorem (Boche, Fono, K; 2024): The Pseudo Inverse is not (Turing) computable!

Theorem (Bacho, Boche, K; 2024): Computing the solutions to the Laplace and the diffusion equation on digital hardware causes a complexity blowup.

Theorem (Lee, Boche, K; 2024): Finding the solution of most optimization problems is not (Turing) computable!

Vision for the Future:

Mathematically Reliable Al...by Analog Computing!

Some Final Thoughts...

Conclusions

Artificial Intelligence:

- Impressive performance in real-world applications!
- A mathematical foundation of it is largely missing!

Mathematics for Artificial Intelligence:

- Expressivity: Optimal architectures?
- Learning: Controllable, efficient algorithms?
- Generalization: Performance on test data sets?
- Explainability: Explaining network decisions?

Caution: Problems with computability on digital hardware!

Conclusions

Artificial Intelligence:

- Impressive performance in real-world applications!
- A mathematical foundation of it is largely missing!

Mathematics for Artificial Intelligence:

- Expressivity: Optimal architectures?
- Learning: Controllable, efficient algorithms?
- Generalization: Performance on test data sets?
- Explainability: Explaining network decisions?

Caution: Problems with computability on digital hardware!

New Al School in Munich (MSc \& PhD)

Konrad Zuse School of Excellence in Reliable AI
(https://zuseschoolrelai.de)

relAI
Konrad Zuse School of Excellence in Reliable AI

9614. $\begin{aligned} & \text { Federal Ministry }\end{aligned}$ of Education
and Research and Research

Mission: Train future generations of Al experts in Germany who combine technical brilliance with awareness of the importance of Al's reliability

THANK YOU!

References available at:
www.ai.math.lmu.de/kutyniok
Survey Paper (arXiv:2105.04026):
Berner, Grohs, K, Petersen, The Modern Mathematics of Deep Learning.
Check related information on Twitter (@GittaKutyniok) and Linkedln
Related Book:

- Grohs and K, eds., Mathematical Aspects of Deep Learning Cambridge University Press, 2022.

