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Supervised learning

I Suppose that there is some subset S of Rn and some function
f : S → Rk which we can compute but do not know
‘explicitly’.

I We are given various data points v ∈ S , as well as their
images f (v).

I Machine learning algorithms provide a function F : Rn → Rk

that is an approximation to f , at least at the given points v .

I This is essentially ‘non-linear regression’.

I BUT unlike unlike linear regression we do not get an ‘explicit’
output function F , but merely the ability to compute F (w)
for other inputs w ∈ Rn.
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Example
n = the number of pixels of an input picture
v ∈ Rn is the input picture (in grey-scale)

f (v) =


−1 if v is a picture of a cat

1 if v is a picture of a dog

0 otherwise
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Knot theory is divided into three quite distinct subfields:

I hyperbolic knot theory
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Finding connections between these fields

Each field has plenty of knot invariants:

Hyperbolic invariants:

I Volume

I Cusp shape and volume

I Length spectrum

I Trace field . . .

3/4-dimensional invariants:

I signature

I Heegaard Floer homology

I Instanton Floer homology

I s, τ , ε, Υ, . . .

Goal: Find new connections between these invariants
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Knot signature

The 3/4-dimensional invariant that we focused on was the
signature.

This is defined by starting with a Seifert surface S for the knot K .

The symmetrised Seifert form for S is the bilinear form

H1(S)× H1(S)→ Z
(`1, `2) 7→ lk(`1, `

+
2 ) + lk(`2, `

+
1 )

where `+2 is the push-off of `2 in the positive normal direction from
S .

The signature σ(K ) is the signature of this bilinear form.



Connections with dimension 4

View R3 as the boundary of R4
+ = {(x1, x2, x3, x4) : x4 ≥ 0}.

R3

R4
+

Knot K

The 4-ball genus of a knot K is the minimal genus of a
(topological locally-flat) surface in R4

+ with boundary equal to K .

Theorem: [Murasugi 1965] g4(K ) ≥ |σ(K )|/2.
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Using machine learning in knot theory
Goal: can we predict the signature from hyperbolic invariants?

In other words, is there a function
f : {hyperbolic knot invariants}(⊆ Rn)→ R that outputs a knot’s
signature (or at least a good approximation to it)?

I Using snappy, we created a sample set of 2,700,000 hyperbolic
knots.

I This was the Regina census of 1,700,000 knots with ≤ 16
crossings plus 1, 000, 000 randomly chosen knots with ≤ 80
crossings.

I We randomly divided them into two groups: a training set and
a test set.

I We trained a neural network to predict the signature from the
hyperbolic invariants.

I We then tested this network using the test set.

I The network could predict the signature with impressive
accuracy.
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Saliency

The main hyperbolic invariants that were used to predict signature:



Hyperbolic structures

A hyperbolic structure on a knot complement is a complete
finite-volume Riemannian metric of constant curvature −1.

By Mostow rigidity, if such a metric exists, it is a unique up to
isometry.

Thurston’s theorem: The complement of a non-trivial knot K has a
hyperbolic structure if and only if K is not a torus knot or a
satellite knot.

satellite knot torus knot



Cusp geometry

Any knot complement has an end of the form T 2 × [1,∞).

When the knot is hyperbolic, this has a canonical geometry and is
called a cusp.

Let H3 be upper-half space {(x , y , z) : z > 0}. Let H be the
horoball {z ≥ 1}.

Then the cusp is formed H/〈group of Euclidean translations〉.

{(x, y, z) : z =1}



The cusp boundary

The boundary of the cusp is a Euclidean torus C/Λ for a lattice Λ.
We normalise Λ so that the longitude λ is real and positive, and
the meridian µ has positive imaginary part.

0 λ

μ

Cusp torus for 61

The three main features that the machine learning algorithms used
to predict signature were λ, Re(µ) and Im(µ).
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Signature and cusp geometry

A plot of signature against Re(µ) coloured by λ

Initial observation: the signs of the signature and Re(µ) are highly
correlated.
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The natural slope

I Pick a geodesic representative µ for
the meridian.

I Fire a geodesic µ⊥ orthogonally
from it.

μ

μ

I Eventually, it will return to the meridian.

I In that time, it will have gone along one longitude and some
number s of meridians.

I Define the natural slope to be −s.

slope(K ) = Re(λ/µ).
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Slope and signature



First conjectures

Conjecture: There is a constant c0 such that

σ(K ) ' c0 slope(K ).

Conjecture: There are constants c0 and c1 such that

|σ(K )− c0 slope(K )| ≤ c1 vol(K ).
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Highly twisted knots

Theorem: Let K be a knot, and let C1, . . . ,Cn be curves in the
complement that bound disjoint discs in S3. Suppose
K ∪ C1 ∪ · · · ∪ Cn is hyperbolic. Let K (q1, . . . , qn) be the knot
obtained from K by adding qi full twists along each Ci .

Let
`i = lk(K ,Ci ). Suppose `1, . . . , `m are even and `m+1, . . . , `n are
odd. Then there is a constant k such that if each |qi | >> 0,∣∣∣∣∣slope(K (q1, . . . , qn)) +

n∑
i=1

`2i qi

∣∣∣∣∣ ≤ k

∣∣∣∣∣σ(K (q1, . . . , qn)) +

(
1

2

m∑
i=1

`2i qi +
1

2

n∑
i=m+1

(`2i − 1)qi

)∣∣∣∣∣ ≤ k

vol(K (q1, . . . , qn)) ≤ k .

So the conjectures are false!
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Theorems

Theorem 1: There is a constant c1 such that

|σ(K )− (1/2) slope(K )| ≤ c1 vol(K ) inj(K )−3.

Here, inj(K ) is inf{injx(S3 − K ) : x ∈ (S3 − K )− cusp}.

Theorem 2: σ(K ) and

(1/2) slope(K ) +
∑

γ∈OddGeo

κ(γ)

differ by at most c2vol(K ) for some constant c2.

Here, OddGeo is the set of geodesics with length at most 0.1 and
that have odd linking number with K , and κ(γ) is a correction
term defined in terms of the complex length of γ.
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The machine knew all along!

Items 4 and 5 are the terms appearing in Theorems 1 and 2.



Difficulties with this method

I Finding a formula for F currently requires human input

I What about inputs other than real numbers?

I ML tends to ignore outliers
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Further examples

The Jones polynomial VK (t) ∈ Z[t, t−1] of K is a mysterious
invariant.

Is it related to other invariants?

[Jejjalaa, Kar, Parrikar]: The Jones polynomial seems to encode
information about the hyperbolic volume

But it seems hard to encapsulate this into a conjecture.

Many other connections found by [Craven, Hughes, Jejjala, Kar].
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