Some sketches for a topos-theoretic AI

by Laurent Lafforgue

(Huawei Paris Research Center, Boulogne-Billancourt, France)

Barcelona Mathematics and Machine Learning online Colloquium Series

Thursday February 8th, 2024

The problem of representing elements of reality :

Question:

How can elements of reality be represented in computers?

- Conditions to verify:
 - $\overline{\ }$ These representations have to allow storage.
 - → They also have to allow processing, especially processes of information extraction.
- First consequences:
 - → Representations of elements of reality in computers have to consist in finite sequences of symbols, or equivalent other types of data.
 - → The different symbols that may appear can be called words. (Rk: Any number is a name, but names are not necessarily numbers.)
 - → <u>Grammar rules</u> (= "<u>axioms</u>"), expressing <u>identities</u> or <u>equivalences</u> <u>between different expressions</u>, are needed to allow processing, i.e. computing.
- The need for formal languages:
 - \rightarrow The list of symbols (names) and <u>axioms</u> (gammar rules) has to be fully explicit.

The problem of representing families of elements of reality:

Question:

How to represent elements of reality

in a way which expresses the fact that they belong to a common family? (For example: how to represent images?)

- Conditions to verify:
 - → We need to express the fact that some series of elements of reality belong to the same family.
 - \rightarrow At the same time, we need

to represent different elements of reality

by different representations.

- What our experience with natural languages teaches us:
 - → A natural way to express the fact that a series of elements of reality belong to the same family is to describe them by using the same vocabulary.
 - \rightarrow In other words, they should be represented by a joint description language,

consisting in a joint vocabulary and joint grammar rules.

→ Each particular element of reality should be distinguished by additional specific grammar rules (ex: setting coordinates).

A general notion of formalized language:

Definition. – A first-order "geometric" theory \mathbb{T} is a datum of

(1) a vocabulary Σ consisting in

- a family of "<u>sorts</u>" (= object names) E_i, i ∈ I, such as for instance "group G", "ring A", "module M", · · ·
- a family of "function symbols" (= map names) $E_1 \cdots E_n \xrightarrow{f} E_r$,

such as for instance $GG \xrightarrow{\cdot} G, G \xrightarrow{(\bullet)^{-1}} G$,

or
$$AA \xrightarrow{+} A, AA \xrightarrow{-} A, A \xrightarrow{-(\bullet)} A, \cdots$$

 a family of "relation symbols" (= <u>relation names</u>) R → E₁ · · · E_n, such as for instance ≤ → EE, ~ → EE, · · ·

(2) a family of "<u>axioms</u>" which consist in <u>implications</u> $(\vec{a}) + 1 + (\vec{a})$

 $\varphi(\vec{x}) \vdash \psi(\vec{x})$ where

- x

 x
 = (x₁^{E₁} ··· x_n^{E_n}) is a finite family of "variables" x_i^{E_i} associated with sorts E_i,
- φ, ψ are "<u>formulas</u>" in the variables x₁^{E₁} · · · x_n^{E_n} which are constructed from function or relation symbols and can be interpreted in terms of "images of maps", "arbitrary unions of subobjects" and "<u>finite intersections</u>".

The notion of model:

The usual relationship between

- \int natural languages (vocabulary + grammar rules),
- elements of reality to which natural languages apply,
- inspires the mathematical relationship between
 - formal languages $\mathbb T$ (vocabulary $\Sigma+$ list of "axioms"),
 - "models" of \mathbb{T} .

Definition. – A <u>set-valued model</u> M of a (first-order geometric) theory \mathbb{T} is a triple map

- any <u>sort</u> $E \mapsto \underline{set} ME$,
- any <u>function symbol</u> $(E_1 \cdots E_n \xrightarrow{f} E) \mapsto \underline{map} ME_1 \times \cdots \times ME_n \xrightarrow{Mf} ME$,
- any relation symbol $(R \rightarrow E_1 \cdots E_n) \rightarrow \underline{subset} MR \rightarrow ME_1 \times \cdots \times ME_n$, such that, for any axiom of \mathbb{T}

$$(x_1^{E_1}\cdots x_n^{E_n})\vdash \psi(x_1^{E_1}\cdots x_n^{E_n})$$
,

the interpretations of the formulas ϕ, ψ as subsets

$$\begin{array}{rccc} M\varphi & \longleftrightarrow & ME_1 \times \cdots \times ME_n \, , \\ M\psi & \longleftrightarrow & ME_1 \times \cdots \times ME_n \\ & M\varphi \subseteq M\psi \, . \end{array}$$

verify

Geometric models:

Proposition. – The <u>notion of model</u> M of a "geometric theory" \mathbb{T} as a map

- <u>sort</u> $E \mapsto \underline{object} ME$,
- *function symbol* $(E_1 \cdots E_n \xrightarrow{f} E) \mapsto \underline{morphism} (ME_1 \times \cdots \times ME_n \xrightarrow{Mf} ME)$
- *relation symbol* $(R \rightarrow E_1 \cdots E_n) \rightarrow \underline{subobject} (MR \rightarrow ME_1 \times \cdots ME_n)$

<u>makes sense</u> in any locally small category C which is "geometric" in the sense that

• <u>finite products</u> $X_1 \times \cdots \times X_n$ and <u>fiber products</u> $S' \times_S X$ (for $s' \to are well-defined in C,$

- morphisms $X' \xrightarrow{f} X$ have well-defined images $\operatorname{Im}(f) \hookrightarrow X$,
- arbitrary unions and <u>finite intersections</u> of subobjects are well-defined,
- fiber products functors $S' \times_S \bullet$ respect images, <u>unions</u> and <u>intersections</u>.

Remarks:

• A <u>model</u> *M* of \mathbb{T} in a "geometric category" \mathcal{C} is defined by the property that, for any axiom $\varphi(x_1^{E_1} \cdots x_n^{E_n}) \vdash \psi(x_1^{E_1} \cdots x_n^{E_n})$, the interpretations as subobjects $M\varphi, M\psi \hookrightarrow ME_1 \times \cdots \times ME_n$ verify the relation $M\varphi \subseteq M\psi$.

• Models of ${\mathbb T}$ in a geometric category ${\mathcal C}$ make up

a locally small category $\mathbb{T}\text{-mod}(\mathcal{C})$.

Diagrammatic models:

Definition. – For any (essentially) small category C, the associated category of "presheaves" or C-indexed diagrams of sets is $\widehat{C} = [C^{op}, Set] = \{ category of functors <math>C^{op} \rightarrow Set \}.$

Most important reminder:

 ${\mathcal C}$ and $\widehat{{\mathcal C}}$ are related by the fully faithful Yoneda functor

$$\begin{cases} \mathcal{C} & \longleftrightarrow & \widehat{\mathcal{C}}, \\ X & \longmapsto & \operatorname{Hom}(\bullet, X) \,. \end{cases}$$

Proposition. -

- (i) Any such category of diagrams C on some C shares all constructive properties of the category Set. In particular, it is geometric.
- (ii) For any geometric theory $\mathbb{T},$ the category of models

<u>identifies</u> with the <u>category</u> \mathbb{T} -mod (\mathcal{C})

 $[\mathcal{C}^{\mathrm{op}}, \mathbb{T}\operatorname{-mod}(\operatorname{Set})]$

of diagrams of set-valued models of $\mathbb T$

$$\overline{\mathcal{C}^{\mathrm{op}} \longrightarrow \mathbb{T}}\operatorname{-mod}(\operatorname{Set}).$$

L. Lafforgue

Topos-theoretic Al

Continuous family of models:

Definition. – Let \mathbb{T} be a geometric theory.

(i) The category of continuous family of *T*-models parametrized by a topological space *X* is

 $\mathbb{T}\text{-}\mathrm{mod}\left(\mathcal{E}_{X}\right)$

where \mathcal{E}_X = category of <u>set-valued</u> "sheaves" on *X*.

(ii) For any point $x \in X$, the functor of <u>evaluation</u> at x of these models

 $x^* : \mathbb{T}$ -mod $(\mathcal{E}_X) \longrightarrow \mathbb{T}$ -mod (Set)

is induced by the <u>fiber functor</u> at x

$$x^*: \mathcal{E}_X \longrightarrow \text{Set}.$$

(iii) More generally, for any continuous map $f: X' \to X$, the functor of change of parameters by $f: X' \to X$ is

$$f^*: \mathbb{T}\operatorname{-mod}(\mathcal{E}_X) \longrightarrow \mathbb{T}\operatorname{-mod}(\mathcal{E}_{X'})$$

induced by $f^*: \mathcal{E}_X \longrightarrow \mathcal{E}_{X'}$.

Justification:

- If O_X = category of open subsets $U \hookrightarrow X$ and inclusions $U \subseteq U'$, \mathcal{E}_X is defined as the full subcategory of $O(X) = \{\text{presheaves on } O(X)\}$ on "sheaves" = presheaves which verify a "glueing condition" w.r.t. coverings.
- The category of sheaves \mathcal{E}_X shares all constructive properties of Set. In particular, it is geometric.
- Any continuous map $X' \xrightarrow{f} X$ defines a pair of adjoint functors

$$\mathcal{E}_X \xrightarrow{f^*} \mathcal{E}_{X'}, \mathcal{E}_{X'} \xrightarrow{f_*} \mathcal{E}_X$$

such that

- $\begin{cases} & f_* \text{ is composition with } f^{-1}: O_X \to O_{X'}, \\ & f^* \text{ respects colimits (sums and quotients)} \\ & \text{and finite limits (finite products and fiber products).} \end{cases}$

A joint generalization of categories of diagrams and categories of sheaves:

Definition. – Let C be an essentially small category.

(i) A topology J is a notion of covering families

$$(X_i \xrightarrow{x_i} X)_{i \in I}$$
 of objects X of C ,

such that:

(A) For any X,
$$X \xrightarrow{\operatorname{id}_X} X$$
 is a covering.

 $\begin{array}{lll} (B) & \text{Any morphism } X' \to X & \underline{\text{transforms coverings of } X} \\ & \text{into coverings of } X'. \\ (C) & \text{For any covering family } (X_i \xrightarrow{x_i} X)_{i \in I}, \end{array}$

(C) For any covering family $(X_i \xrightarrow{x_i} X)_{i \in I}$, its composites with families of coverings $(X_{i,k} \xrightarrow{x_{i,k}} X_i)_{k \in K_i}$ make up a covering $(X_{i,k} \xrightarrow{x_i \circ x_{i,k}} X)_{i \in I,k \in K_i}$.

- (ii) A J-<u>sheaf</u> on C is a presheaf $C^{op} \rightarrow Set$ which verify a "glueing condition" w.r.t. J-coverings.
- (iii) J-<u>sheaves</u> on C make up a full subcategory

 $\widehat{\mathcal{C}}_J \, { \longleftrightarrow } \, \widehat{\mathcal{C}} = \textit{category of presheaves}.$

(iv) A topos is a category \mathcal{E} which is equivalent to categories of sheaves $\widehat{\mathcal{C}}_J$.

Topos-valued models:

Proposition. – Any topos \mathcal{E} has the same constructive properties as Set. In particular, it is geometric.

Consequence:

Any geometric theory T defines categories of models

 $\overline{\mathbb{T}\text{-}\mathrm{mod}(\mathcal{E})} \qquad \text{indexed by toposes } \mathcal{E}$

Definition. -

A morphism of toposes $f : \mathcal{E}' \to \mathcal{E}$ is a pair of adjoint functors

$$(\mathcal{E} \xrightarrow{f^*} \mathcal{E}, \ \mathcal{E}' \xrightarrow{f_*} \mathcal{E})$$

such that f* respects not only arbitrary colimits but also finite limits.

Remark: If X, X' = topological spaces and X is "sober", morphisms of toposes $\mathcal{E}_{X'} \to \mathcal{E}_X$ correspond to continuous maps $X' \to X$.

Consequence: For any geometric theory \mathbb{T} , morphisms of toposes $f : \mathcal{E}' \to \mathcal{E}$ induce functors of change of parameters of \mathbb{T} -models

$$f^*: \mathbb{T}\operatorname{-mod}(\mathcal{E}) \longrightarrow \mathbb{T}\operatorname{-mod}(\mathcal{E}')$$
.

The topological incarnation of the semantics of a formal language:

For a geometric theory \mathbb{T} , its semantics consists in the network of categories of models \mathbb{T} -mod(\mathcal{E}) parametrized by toposes \mathcal{E} and related by functors of change of parameters $f^* : \mathbb{T}\text{-mod}(\mathcal{E}) \to \mathbb{T}\text{-mod}(\mathcal{E}')$ defined by morphisms $f : \mathcal{E}' \to \mathcal{E}$. **Theorem**. – For a geometric theory \mathbb{T} , its semantics is incarnated in a topos $\mathcal{E}_{\mathbb{T}} =$ "classifying topos" of \mathbb{T} endowed with a \mathbb{T} -model in \mathbb{T} -mod($\mathcal{E}_{\mathbb{T}}$) $U_{\mathbb{T}} =$ "universal model" of \mathbb{T} . characterized by the property that, for any topos \mathcal{E} , changes of parameters by morphisms of toposes $f: \mathcal{E} \to \mathcal{E}_{\mathbb{T}}$ define an equivalence of categories $\begin{cases} \operatorname{Geom}(\mathcal{E}, \mathcal{E}_{\mathbb{T}}) & \xrightarrow{\sim} & \mathbb{T}\operatorname{-mod}(\mathcal{E}) , \\ (\mathcal{E} \xrightarrow{f} \mathcal{E}_{\mathbb{T}}) & \longmapsto & f^* U_{\mathbb{T}} . \end{cases}$

Remark :

For any toposes $\mathcal{E}, \mathcal{E}'$, morphisms $\mathcal{E}' \xrightarrow{f} \mathcal{E}$ make up a category $\text{Geom}(\mathcal{E}', \mathcal{E})$ whose morphisms $f_1 \to \overline{f_2}$ are by definition <u>natural transformations</u>

$$ho: f_1^* \longrightarrow f_2^*$$
 .

The topological interpretation of syntax:

Let \mathbb{T} be a geometric theory and Σ its vocabulary. Let $\mathcal{E}_{\mathbb{T}}$ be its "classifying topos" and $U_{\mathbb{T}}$ be its "<u>universal model</u>".

Theorem. –

(i) Sorts E of Σ interpret as objects $U_{\mathbb{T}}E$ of $\mathcal{E}_{\mathbb{T}}$. Symbols of functions $E_1 \cdots E_n \xrightarrow{f} E$ interpret as morphisms $U_{\mathbb{T}} E_1 \times \cdots \times U_{\mathbb{T}} E_n \xrightarrow{U_{\mathbb{T}} f} U_{\mathbb{T}} E$. Symbols of relations $R \rightarrow E_1 \cdots E_n$ interpret as subobjects $U_{\mathbb{T}}R \rightarrow U_{\mathbb{T}}E_1 \times \cdots \times U_{\mathbb{T}}E_n$. (ii) Formulas $\varphi(x_1^{E_1} \cdots x_n^{E_n})$ interpret as subobjects $U_{\mathbb{T}} \varphi \hookrightarrow U_{\mathbb{T}} E_1 \times \cdots \times U_{\mathbb{T}} E_n$. Conversely, all subobjects of $U_{\mathbb{T}}E_1 \times \cdots \times U_{\mathbb{T}}E_n$ are interpretations of such formulas. (iii) An implication between two formulas $\varphi(x_1^{E_1}\cdots x_n^{E_n}) \vdash \psi(x_1^{E_1}\cdots x_n^{E_n})$ is \mathbb{T} -provable if and only if $U_{\mathbb{T}} \varphi \subset U_{\mathbb{T}} \psi$ as subobjects of $U_{\mathbb{T}} E_1 \times \cdots \times \overline{U_{\mathbb{T}} E_n}$. (iv) For any two formulas $\varphi(\vec{x})$ and $\psi(\vec{y})$, the graphs of the morphisms $U_{\mathbb{T}}\phi \rightarrow U_{\mathbb{T}}\psi$ in $\mathcal{E}_{\mathbb{T}}$ are the interpretations $U_{\mathbb{T}}\theta$ of formulas $\theta(\vec{x}, \vec{y})$ which are "provably functional" w.r.t. ϕ and ψ . (v) A family of morphisms $\varphi(\vec{x}_i) \xrightarrow{\theta_i(\vec{x}_i, \vec{y})} \psi(\vec{y}), i \in I$, is a covering if and only if $\psi(\vec{y}) \vdash \bigvee (\exists \vec{x}_i) \theta_i(\vec{x}_i, \vec{y})$ is \mathbb{T} -provable. (vi) This defines a site (C_T, J_T) (called the "syntactic site" of T) such that $\mathcal{E}_{\mathbb{T}} \cong (\widehat{\mathcal{C}}_{\mathbb{T}})_{\mathcal{F}}$.

L. Lafforgue

Topos-theoretic Al

Points of toposes and their linguistic descriptions:

Definition. –

(i) The category of points of a topos \mathcal{E} is defined as

 $pt(\mathcal{E}) = Geom(Set, \mathcal{E}) = \{category of topos morphisms Set \rightarrow \mathcal{E}\}.$

(ii) More generally, the category of \mathcal{E}' -parametrized points of \mathcal{E} is Geom($\mathcal{E}', \mathcal{E}$) = {category of topos morphisms $\mathcal{E}' \to \mathcal{E}$ }.

Theorem. –

Any presentation of a topos \mathcal{E} by a site

$$\mathcal{E} = \widehat{\mathcal{C}}$$

defines a geometric theory $\mathbb{T}_{\mathcal{C},J}$ such that:

- (1) $\begin{cases} \bullet & \text{the sorts of } \mathbb{T}_{\mathcal{C},J} \text{ are the objects } X \text{ of } \mathcal{C}, \\ \bullet & \text{the function symbols of } \overline{\mathbb{T}_{\mathcal{C},J} \text{ are the morphisms }} X' \to X \text{ of } \mathcal{C}, \\ \bullet & \mathbb{T}_{\mathcal{C},J} \text{ has no relation symbol,} \end{cases}$

(2) for any topos \mathcal{E}' , the category of \mathcal{E}' -parametrized points

identifies with the category of models $\mathbb{T}_{\mathcal{C},\mathcal{A}}(\mathcal{E}').$

 $\overline{\text{Geom}(\mathcal{E}',\mathcal{E})}$

Subtoposes, topologies and quotient theories:

Definition. – A <u>subtopos</u> of a topos \mathcal{E} is a <u>morphism of toposes</u> $\mathcal{E}' \stackrel{j}{\leftarrow} \stackrel{j}{\mathcal{E}}$

whose push-forward component $j_* : \mathcal{E}' \to \mathcal{E}$ is fully faithful.

Theorem (SGA 4). – If a topos \mathcal{E} is presented by a site as $\mathcal{E} \cong \widehat{\mathcal{C}}_J$, there is a one-to-one correspondence between

$${igsiries}$$
 • subtoposes ${\mathcal E}' \hookrightarrow {\mathcal E}$,

• topologies J' on C which are more refined than J.

In particular, if $J' \supseteq J$, $\widehat{\mathcal{C}}_{J'} \hookrightarrow \widehat{\mathcal{C}}_J$ is a subtopos.

Theorem (Caramello's PhD thesis). – If a topos \mathcal{E} is presented by a geometric theory \mathbb{T} as $\mathcal{E} \cong \mathcal{E}_{\mathbb{T}}$, there is a one-to-one correspondence between

- subtoposes $\mathcal{E}' \hookrightarrow \mathcal{E}$,
- "quotient" theories \mathbb{T}' of \mathbb{T} , up to syntactic equivalence.

Explanation :

- A "quotient" theory is a theory in the same vocabulary with more axioms.
- Two theories in the same vocabulary Σ are "syntactically equivalent"

if they yield the same collection of provable implications $\phi(\vec{x}) \vdash \psi(\vec{x})$.

Image subtoposes and theories of models:

 $\begin{array}{l} \textbf{Definition.} - \\ A \text{ topos morphism } f: \mathcal{E}' \to \mathcal{E} \text{ is called a "submersion"} \\ \text{if its pull-back component} \\ \hline f^*: \mathcal{E} \to \mathcal{E}' \quad \text{ is a <u>faithful</u> functor.} \end{array}$ $\begin{array}{l} \textbf{Proposition.} - \\ Any \text{ topos morphism } f: \mathcal{E}' \to \mathcal{E} \text{ uniquely factorises as} \\ \hline \mathcal{E}' \xrightarrow{\text{submersion}} \text{Im}(f) \xrightarrow{\text{inclusion}} \mathcal{E}. \end{array}$

Logical interpretation:

If $\mathcal{E} \cong \mathcal{E}_{\mathbb{T}}$ for some geometric theory \mathbb{T} and $f : \mathcal{E}' \to \mathcal{E} \cong \mathcal{E}_{\mathbb{T}}$ corresponds to a \mathbb{T} -model M in \mathcal{E}' , the quotient theory \mathbb{T}' of \mathbb{T} which corresponds to $\operatorname{Im}(f) \hookrightarrow \mathcal{E}$ is the "theory of M" in the sense that any implication

$$\varphi(\vec{x}) \vdash \psi(\vec{x}), \quad \vec{x} = (x_1^{E_1}, \cdots, x_n^{E_n})$$

is provable in \mathbb{T}'

if and only if it is verified by M, i.e.

 $M\overline{\phi} \subseteq M\psi$ as subobjects of $ME_1 \times \cdots \times ME_n$ in \mathcal{E}' .

Formation of particular descriptions from a general description theory:

- Suppose we consider "elements of reality" *E_i*, *i* ∈ *I*, on which we have partial knowledge incarnated by sites (*C_i*, *J_i*), *i* ∈ *I*, necessarily presented by finite data.
- The fact that all \mathcal{E}_i 's belong to a <u>natural family</u> should translate into the existence of a joint description geometric theory \mathbb{T} such that each (\mathcal{C}_i, J_i) is endowed with a morphism

$$f_i : (\mathcal{C}_i)_{J_i} \longrightarrow \mathcal{E}_{\mathbb{T}}$$

(corresponding to a model M_i of \mathbb{T} in the topos $\widehat{(\mathcal{C}_i)}_{J_i}$).

Definition. -

In this situation, the quotient theories \mathbb{T}_i 's of \mathbb{T} , which correspond to the subtoposes

$$\operatorname{Im}(f_i) \hookrightarrow \mathcal{E}_{\mathbb{T}}, \quad i \in I,$$

can be called the singular descriptions of the elements of reality \mathcal{E}_i 's in the joint description formal language \mathbb{T} .

Operations on subtoposes:

Theorem. -

- (i) The subtoposes $\mathcal{E}' \hookrightarrow \mathcal{E}$ of a topos \mathcal{E} form an ordered set.
- (ii) Any family of subtoposes $\mathcal{E}_i \hookrightarrow \mathcal{E}, i \in I$,

has a <u>union</u> $\bigcup_{i \in I} \mathcal{E}_i \hookrightarrow \mathcal{E}$ and an <u>intersection</u> $\bigcap_{i \in I} \mathcal{E}_i \hookrightarrow \mathcal{E}$.

(iii) For any subtopos $\mathcal{E}_1 \hookrightarrow \mathcal{E}$, the map

 $(\mathcal{E}' \hookrightarrow \mathcal{E}) \mapsto (\mathcal{E}_1 \cup \mathcal{E}' \hookrightarrow \mathcal{E}) \text{ respects arbitrary intersections}$

and, for any $\mathcal{E}_2 \hookrightarrow \mathcal{E}$, there exists a unique subtopos

 $\mathcal{E}_2 \setminus \mathcal{E}_1 \hookrightarrow \mathcal{E} \text{ such that } \mathcal{E}_2 \setminus \mathcal{E}_1 \subseteq \mathcal{E}' \Leftrightarrow \mathcal{E}_2 \subseteq \mathcal{E}_1 \cup \mathcal{E}'.$

Proposition. -

(i) Any topos morphism $f : \mathcal{E}' \to \mathcal{E}$ induces a push-forward map $f_* : (\mathcal{E}'_1 \hookrightarrow \mathcal{E}') \longmapsto \operatorname{Im}(\mathcal{E}'_1 \hookrightarrow \mathcal{E}' \to \mathcal{E}) = (f_*\mathcal{E}'_1 \hookrightarrow \mathcal{E})$ which respects arbitrary unions. (ii) It also induces a pull-back map $f^{-1} : (\mathcal{E}_1 \hookrightarrow \mathcal{E}) \longmapsto (f^{-1}\mathcal{E}_1 \hookrightarrow \mathcal{E}')$ characterized by $\mathcal{E}'_1 \subseteq f^{-1}\mathcal{E}_1 \Leftrightarrow f_*\mathcal{E}'_1 \subseteq \mathcal{E}_1$. (iii) The map f^{-1} respects arbitrary intersections and finite unions. (iv) If $f : \mathcal{E}' \to \mathcal{E}$ is "essential" (i.e. f^* respects arbitrary limits), the map f^{-1} respects arbitrary unions and there exists a map $f_1 : (\mathcal{E}'_1 \hookrightarrow \mathcal{E}') \longmapsto (f_1\mathcal{E}'_1 \hookrightarrow \mathcal{E})$ characterized by $\mathcal{E}_1 \subseteq f_1\mathcal{E}'_1 \Leftrightarrow f^{-1}\mathcal{E}_1 \subseteq \mathcal{E}'_1$. Lafforce Topos-theoretic Al Thursday Februal

Elaboration of a joint description language:

- Start with (mostly unknown) elements of reality *E_i*, *i* ∈ *I*.
 As each *E_i* is seen as a (mostly unknown) semantic content, it is supposed to have an (unknown) topos structure.
- Partial knowledge on each \mathcal{E}_i should take the form of a category \mathcal{C}_i (presented by finite data) endowed with a functor $\mathcal{C}_i \rightarrow \mathcal{E}_i$.
- The fact that all *E_i*'s belong to a <u>natural family</u> should translate into the existence of a joint "description vocabulary" Σ and "naming functors"

 $N_i: \overline{C_i} \to C_{\Sigma}$ (= syntactic category of the theory without axiom Σ).

 $\widehat{\mathcal{C}}_i \longrightarrow \widehat{\mathcal{C}}_{\Sigma}$

 \mathcal{E}_{-} $(\hat{\mathcal{C}}_{-})$

Each naming functor N_i defines a topos morphism

and any quotient theory $\mathbb T$ of Σ defines a subtopos

• The pull-backs of such a
$$\mathcal{E}_{\mathbb{T}} \hookrightarrow \widehat{\mathcal{C}}_{\Sigma}$$
 are subtoposes

$$(\mathcal{C}_i)_{J_i^{\mathbb{T}}} \hookrightarrow \widehat{\mathcal{C}}_i$$

where $J_i^{\mathbb{T}}$ = topology = "extrapolation principle" = "interpretation" on C_i derived from the language \mathbb{T} .

A principle for syntactic learning and formalized inductive reasoning:

 Suppose we consider a family of "elements of reality" incarnated by (mostly unknown) toposes $\mathcal{E}_i, i \in I$, endowed with "partial knowledge functors"

$$k_i: \mathcal{C}_i \longrightarrow \mathcal{E}_i$$

and "naming functors"

$$N_i: \mathcal{C}_i \longrightarrow \mathcal{C}_{\Sigma}$$

to the syntactic category C_{Σ}

of some formal vocabulary Σ (without axioms).

Principle. – We look for a quotient theory \mathbb{T} of Σ such that, if $\left(\widehat{(\mathcal{C}_i)}_{J_i^{\mathbb{T}}} \longleftrightarrow \widehat{\mathcal{C}}_i\right) = N_i^{-1}\left(\mathcal{E}_{\mathbb{T}} \longleftrightarrow \widehat{\mathcal{C}}_{\Sigma}\right),$ $(\mathcal{C}_i)_{\mathcal{I}^{\mathbb{T}}} \longrightarrow \mathcal{E}_i.$

each $k_i : C_i \to \mathcal{E}_i$ induces a topos morphism

Application:

- For each $k_i : C_i \to \mathcal{E}_i$, there is a biggest subtopos
 - $(\mathcal{C}_i)_{i} \longrightarrow \widehat{\mathcal{C}}_i$ such that k_i defines $(\mathcal{C}_i)_{i} \longrightarrow \mathcal{E}_i$.
- If $N_i : C_i \to C_{\Sigma}$ is "essential", our principle becomes

$$\mathcal{E}_{\mathbb{T}} \subseteq (N_i)_! \left(\widehat{(\mathcal{C}_i)}_{J_i} \hookrightarrow \widehat{\mathcal{C}}_i \right).$$

Morphisms for information extraction:

 Suppose we are considering "elements of reality" *E_i*, *i* ∈ *I*, and partial knowledge on them incarnated by topos morphisms

and

$$k_{i}: \widehat{(\mathcal{C}_{i})}_{J_{i}} \longrightarrow \mathcal{E}_{i}$$
$$N_{i}: \widehat{(\mathcal{C}_{i})}_{J} \longrightarrow \mathcal{E}_{\mathbb{T}}$$

for a joint description formal language \mathbb{T} .

- For any *i*, Im(*N_i*) → *E*_T corresponds to a quotient theory T_i of T which can be called a description of *E_i* in the language T.
- Suppose we would want to <u>extract</u> from the family

$$\operatorname{Im}(N_i) = \mathcal{E}_{\mathbb{T}_i} \hookrightarrow \mathcal{E}_{\mathbb{T}}, \quad i \in I,$$

some type of information phrased in a language $\mathbb{T}'.$

Proposed geometric form of information extraction:

Information extraction could take the form of a topos morphism

Indeed, it would <u>transform</u> any

$$f: \mathcal{E}_{\mathbb{T}} \longrightarrow \mathcal{E}_{\mathbb{T}'}.$$

Im $(N_i) = \mathcal{E}_{\mathbb{T}_i} \longrightarrow \mathcal{E}_{\mathbb{T}}$

into a subtopos

$$f_*\mathrm{Im}(N_i) = f_*\mathcal{E}_{\mathbb{T}_i} = \mathcal{E}_{\mathbb{T}'_i} \hookrightarrow \mathcal{E}_{\mathbb{T}'}.$$

Correspondences of information extraction:

Definition. -

- (i) Any pair of toposes $\mathcal{E}_1, \mathcal{E}_2$ defines a product topos $\mathcal{E}_1 \times \mathcal{E}_2$ characterized by $\operatorname{Geom}(\mathcal{E}', \mathcal{E}_1 \times \mathcal{E}_2) = \operatorname{Geom}(\mathcal{E}', \mathcal{E}_1) \times \operatorname{Geom}(\mathcal{E}', \mathcal{E}_2), \forall \mathcal{E}'.$
- (ii) A correspondence between \mathcal{E}_1 and \mathcal{E}_2 is a subtopos

 $\mathcal{E}_{\Gamma} \hookrightarrow \mathcal{E}_1 \times \mathcal{E}_2.$

Remarks:

- (i) If $\mathcal{E}_1 = \mathcal{E}_{\mathbb{T}_1}$ and $\mathcal{E}_2 = \mathcal{E}_{\mathbb{T}_2}$, $\mathcal{E}_1 \times \mathcal{E}_2$ is the "classifying topos" of the theory $\mathbb{T}_1 \coprod \mathbb{T}_2$ and correspondences $\mathcal{E}_{\Gamma} \hookrightarrow \mathcal{E}_1 \times \mathcal{E}_2$ correspond to quotient theories Γ of $\mathbb{T}_1 \coprod \mathbb{T}_2$.
- (ii) Any such correspondence $\mathcal{E}_{\Gamma} \hookrightarrow \mathcal{E}_1 \times \mathcal{E}_2$ transforms subtoposes $(\mathcal{E}'_1 \hookrightarrow \mathcal{E}_1)$ into subtoposes $(\mathcal{E}'_2 \hookrightarrow \mathcal{E}_2)$ by $(\mathcal{E}'_2 \hookrightarrow \mathcal{E}_2) = (\mathrm{pr}_2)_* (\mathcal{E}_{\Gamma} \cap \mathrm{pr}_1^* (\mathcal{E}'_1 \hookrightarrow \mathcal{E}_1)).$

Application to information extraction: We are looking for <u>quotient theories</u> Γ of $\mathbb{T} \coprod \mathbb{T}'$ which <u>transform subtoposes</u> $\mathcal{E}_{\mathbb{T}_i} \hookrightarrow \mathcal{E}_{\mathbb{T}}$, $i \in I$, into <u>subtoposes</u> $\Gamma_* \mathcal{E}_{\mathbb{T}_i} \hookrightarrow \mathcal{E}_{\mathbb{T}'}$. **Remark:** Conditions $\Gamma_* \mathcal{E}_{\mathbb{T}_i} \subseteq \mathcal{E}_{\mathbb{T}'_i}$, $i \in I$, would mean $\mathcal{E}_{\Gamma} \cap \operatorname{pr}_1^* \mathcal{E}_{\mathbb{T}_i} \subseteq \operatorname{pr}_2^* \mathcal{E}_{\mathbb{T}'}$, $\forall i \in I$.

Constructing morphisms or correspondences by composition:

A morphism of information extraction

$$\begin{array}{c} f: \mathcal{E}_{\mathbb{T}} \longrightarrow \mathcal{E}_{\mathbb{T}'} \\ \text{could be constructed by composing simpler morphisms} \\ \mathcal{E}_{\mathbb{T}_0} \xrightarrow{f_1} \mathcal{E}_{\mathbb{T}_1} \xrightarrow{f_2} \cdots \xrightarrow{f_r} \mathcal{E}_{\mathbb{T}_r} \\ \text{with } \mathbb{T}_0 = \mathbb{T}, \mathbb{T}_r = \mathbb{T}' \text{ and intermediate theories } \mathbb{T}_{\alpha}, 1 \leq \alpha < r \\ \text{Each } f_\alpha: \mathcal{E}_{\mathbb{T}_{\alpha-1}} \rightarrow \mathcal{E}_{\mathbb{T}_{\alpha}} \\ \text{could be induced by a "syntactic functor"} \\ \hline f_\alpha^*: \mathcal{C}_{\mathbb{T}_\alpha} \longrightarrow \mathcal{C}_{\mathbb{T}_{\alpha-1}} \\ \text{which would express the vocabulary of } \mathbb{T}_{\alpha} \\ \text{in terms of formulas of } \mathbb{T}_{\alpha-1}. \\ \text{In other words, it would introduce new concepts} \\ \text{in terms of the language available at the previous step.} \\ \text{In the same way, a correspondence of information extraction} \end{array}$$

In the same way, a correspondence of information extraction

$$\mathcal{E}_{\Gamma} \hookrightarrow \mathcal{E}_{\mathbb{T}} \times \mathcal{E}_{\mathbb{T}'}$$

could be constructed as a composite of correspondences

$$\mathcal{E}_{\Gamma_1} \hookrightarrow \mathcal{E}_{\mathbb{T}} imes \mathcal{E}_{\mathbb{T}_1}, \mathcal{E}_{\Gamma_2} \hookrightarrow \mathcal{E}_{\mathbb{T}_1} imes \mathcal{E}_{\mathbb{T}_2}, \cdots, \mathcal{E}_{\Gamma_r} \hookrightarrow \mathcal{E}_{\mathbb{T}_{r-1}} imes \mathcal{E}_{\mathbb{T}'}.$$