
Deep Neural Cryptography

Adi Shamir
Computer Science Dept

Weizmann Institute of Science

Israel

Joint work with David Gerault (TII), Anna Hambitzer (TII),
and Eyal Ronen (Tel Aviv University)

This talk deals with a new research area at the
intersection between two major research areas in CS:

Cryptography

(essentially digital,
mapping bit strings
to bit strings)

Deep learning

(essentially analog,
mapping real numbers
to real numbers)

For 2000 years, we used analog computers

Antikythera mechanism Solving differential
equations

About 70 years ago, we completely
switched to digital computers

The Colossus code
breaking computer

Microprocessors

They are back! The MAGA movement of
the last 20 years (Make Analog Great Again)

Quantum computers

(with complex valued
superpositions in qubits)

Deep Neural Networks
(with real valued
inputs and weights)

Even our digital computers have analog
characteristics, used in side channel attacks

Various emanations
from digital computers

Cryptanalysis of
AES by analyzing
power traces

Fault attacks
with modified
clock pulses

The landscape of analog/digital security

Users want to encrypt

digital data,
leaky computer

digital data,
digital computer

Analog data
(problematic)

digital data,
analog computer

The landscape of analog/digital security

users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital

attack

analog

attack

digital data,
analog computer

The landscape of analog/digital security

users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital

attack

analog

attack

standard
cryptography

digital data,
analog computer

The landscape of analog/digital security

users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital

attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

The landscape of analog/digital security

users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital

attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

unreasonable
restriction

The landscape of analog/digital security

users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital

attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

unreasonable
restriction

meaningless

In this talk I will concentrate on the
analog model of ReLU-based DNN’s

• Deep neural networks have multiple layers, where each layer
typically consists of a linear mapping with real valued coefficients
followed by the ReLU activation functions applied to all its outputs

ReLU(x)=MAX(x,0)

This model was considered by Goldwasser,
Kim, Vaikuntanathan and Zamir (FOCS‘2022)

• They considered the case in which the only allowed inputs to the
DNN are zeroes and ones, and just used the universality of DNN’s

• While technically correct, they missed all the fun…

Perfect sanitization,
can’t be implemented
with ReLU’s

Partial sanitization can be
realized with a simple DNN:

STEP(x)=ReLU(x)-ReLU(x-1)

Attacker can only use input
values in the range [0,1]

Perfect sanitization,
can’t be implemented
with ReLU’s

Note that no continuous DNN function can
completely sanitize all input values to just 0/1

1/21

1 1 1

10

The landscape of analog/digital security

users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital

attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

Goldwasser+

FOCS 2022
unreasonable
restriction

meaningless

The landscape of analog/digital security

users

adversaries

digital data,
leaky computer

digital data,
digital computer

digital

attack

analog

attack

standard
cryptography

side channel
attacks

digital data,
analog computer

Goldwasser+

FOCS 2022
unreasonable
restriction

meaningless this
paper

Can we implement digital cryptography
on a purely analog computational model?
• The secret key can be provided as a collection of internal weights;

we assume that the adversary cannot see or change these inputs

K E
K

P C

This is a totally new security playground
with new rules and new techniques

• For example, the attacker can ask the DNN to encrypt the “plaintext” P
whose “bits” are (0.3, -7, Π, …) and obtain the “ciphertext” (-2.7, √2,…)

• For example, the attacker can apply a jitter attack, in which he
increases or decreases the value of one “bit” by ±ε, and observe
whether the “ciphertext” changes or not. This is a stronger form of
differential cryptanalysis, where the attacker can only flip 0/1 values

Why do we want to study this question?
• A theoretical reason: DNN’s form a major new computational model.

In cryptography, we love studying model variants such as:
• Different cryptographic assumptions

• Polynomially bounded vs unbounded adversaries

• Standard vs quantum computers

• A new complexity landscape: For example, we can find a provably
exponential gap between the complexity of solving certain tasks on a
DNN when only 0/1 DNN queries are allowed and when real valued
DNN queries are allowed:
• Even when the task itself involves only 0/1 values

• Even when we do not make use of high precision real values

Why do we want to study this question?
• A practical reason: Dedicated DNN chips (e.g., much faster photonic

chips) may become widespread. We may want to use them to:
• Train models on encrypted data in federated learning

• Check whether a prompt comes from an authorized user

• Add a cryptographic watermark to the produced output

• Obtain some unexpected benefits: For example, our new techniques
can protect DNN’s against the new class of weight extraction attacks:
• Note that in our model key bits are stored as some internal DNN weights

• However, general purpose weight extraction techniques cannot distinguish
between weights used as secret key bits and other weights

• So when we develop later in this talk a provably secure way to protect key
weights, we automatically protect all other weights in the network!

Our basic tool: corner functions
• Consider an n-dimensional Boolean cube with a single 1 at one of its

corners, and 0’s at all the other corners. We can easily implement this
function with a single ReLU applied to a linear combination of its inputs

• For example, consider a 3D cube with a single 1 output at corner 101.
This discrete mapping can be implemented with the continuous corner
function ReLU(x1-x2+x3-1) which is 0 at all corners except 101

A side note: How intelligent are current LLM’s?
• To get a professional looking drawing of a corner function, I asked

several leading generative AI systems to help me. Here is Gemini:

A side note: How intelligent are current LLM’s?

• However, Google’s Nano
Banana Pro (Gemini 3.0)
finally got it right:

The difficulty of finding one special corner
• We now consider the following search problem: We are given a

black box which implements some unknown corner function. How
many queries are needed to find its special corner?

• If we are only allowed to query the black box with binary inputs, we
need Ω(2𝑛) queries since we learn nothing from all the 0 answers

• (A side remark: This is exactly the search problem for which Grover’s
algorithm can improve the search complexity to Ο(2𝑛/2) when we
allow superpositions of 0’s and 1’s on a quantum computer)

The difficulty of finding one special corner

• However, if we are allowed to query the black box with real valued
inputs, we can find the special corner with just n queries by starting
at the center of the cube (0.5, 0.5, …, 0.5), and move a distance n in
any one of n main directions (to (0.5+n, 0.5, …, 0.5), …, (0.5, 0.5, …,
0.5+n)). A positive output produced for the i-th such query proves
that this bit is 1 in the special corner, while a zero output proves that
this bit is 0 in the special corner.

• This demonstrates a provably exponential gap between the query
complexities of the search problem in the two computational models

How to implement Cryptography on DNN’s:
The concrete example of AES
• AES-128 maps 128 plaintext bits to 128 ciphertext bits using a 128

bit key

• Everything in AES can be implemented with just two types of
operations: Mapping 8-bit inputs to 8-bit outputs (Sbox,
multiplication of a byte by the constants 2 and 3 in the AES finite
field), and mapping 2-bit inputs to 1-bit outputs (XOR’s of subkeys,
and XOR’s in the linear mixing)

• We now show how to implement any Boolean function with a
small number of input bits by using as a simple ReLU-based DNN

Implementing Sbox using corner functions

• Consider the 8-dim Boolean cube which specifies one of the 8 output
bits of the Sbox. Since the Sbox is balanced, exactly 128 of its 256
corners are labeled with 1 and the other 128 corners are labeled with 0

• For each one of the 128 corners labeled with 1, prepare a single
neuron implementation of its corner function, and add them together

To implement each XOR, use 2 neurons

• The definition XOR(x1,x2) = ReLU(x1-x2) + ReLU(x2-x1) is a special case
of the general Boolean cube construction since XOR(x1,x2) is a 2-dim
cube with two corners outputing 0 and two corners outputing 1

• We can thus implement everything in AES as sums of corner functions

• We call this the natural implementation of AES in a DNN

• It is correct in the sense that it computes the correct 0/1 outputs for
any collection of 0/1 inputs; it computes something weird otherwise

Is this natural implementation secure when
the adversary can use real valued inputs?

• The answer is that these implementations can be easily broken

• Almost any secret key block cipher (including AES) starts by
XOR’ing each input bit xi with some key bit ki

• We will now show how to recover all the ki bits used in the first
round of the encryption via a simple jitter attack

The DNN implementation of bitwise XOR:

• The 3D representation of this 2-input 1-output function over the reals:

Attacking the back-to-back implementation
• Implementing XOR as the sum of two back-to-back corner functions:

 XOR(xi,ki) = ReLU(xi-ki) + ReLU(ki-xi)

• In case (c) we look for jitter symmetry; in the input-sanitized case (d)
we can’t jitter in both directions so we need a different kind of attack

Attacking the input-sanitized version of AES

• In AES, after XOR’ing a group of 8 input bits x1…x8 with 8 key bits
k1,…k8, we map the resultant 8 bits y1,…y8 to z1…z8 via an 8-bit
to 8-bit Sbox (i.e., z1…z8=Sbox(x1…x8 XOR k1…k8))

• Assume that each output bit zi of the Sbox is naturally
implemented as a sum of 128 corner functions over the 8-
dimensional cube of yi values

Attacking the input-sanitized version of AES

• When we jitter the input y1,…,y8 around any combination of 0/1
values, an output bit zi remains stable if and only if zi=0 for that input

• When we concatenate the 8 output bits z1,…z8, all of them remain
stable simultaneously if and only if the 0/1 output of the Sbox is 0…0

• If at least one of the eight 0/1 outputs of the Sbox is not 0, the 8
output values of the Sbox will jitter, and this jitter is likely to
avalanche all the way to the ciphertext values, which will also jitter

Attacking the input-sanitized version of AES
• We now have a way to test if the output of any particular Sbox in the

first round of AES is z1,…,z8=00000000 ; this happens if and only if the
input to this Sbox is y1,…,y8=01010010 . Since we know the plaintext
bits x1…x8, we can now recover the 8 corresponding key bits as
k1…k8 = x1…x8 XOR 01010010

• Repeating for all the 16 Sboxes in the first round of AES recovers the
full 128 bit key

• This attack was experimentally verified using negligible time with
100% success rate

Can we find a different implementation of
AES which is secure against any such attack?

• At first we were skeptical, since attackers have so much additional
power in this analog model of computation (as in the case of side
channel attacks, where no perfectly secure solutions are known)

• However, after thinking hard, we found a provably secure way to
implement any cryptographic functionality in a ReLU-based DNN

The mental image: Switching scenes in a theater
• Problem: You don’t want the theater audience to watch a furniture

change from a living room scene to the bedroom scene by stage hands

• Solution: Fade-out to black, change furniture, then fade-in to new scene

First step: sanitize the inputs more tightly

• Apply a tighter step function to each input separately:

0

1

10.33 0.66

STEP(x)=3*(ReLU(x-0.33)-ReLU(x-0.66))OLD-STEP(x)=ReLU(x)-ReLU(x-1)

1

10

Second step: Identify the “danger zone”

• Consider the multiwall in the input space, which is the high dimensional
cross where at least one input coordinate lies between 0.33 to 0.66

• This is the “danger zone” where the sanitized inputs may not be 0 or 1

• In each orthant (separated from all other orthants by the multiwall),
the sanitized inputs are a constant binary strings of just 0’s and 1’s

Third step: force all outputs for inputs in
the “danger zone” to be identically zero

• Problem: we have to continuously connect these zero values on the
multiwall with the correct non-zero values required at the unique
binary point in each orthant, using only ReLU’s and linear functions

• This smooth interpolation should not leak any information on the key

Third step: force all outputs for inputs in
the “danger zone” to be identically zero
• In addition to the tighter STEP function, we introduce a new function

RECT(x)=ReLU(x)-ReLU(x-0.33)-ReLU(x-0.66)+ReLU(x-1)

• We then define MASK(x1,…,xn) = ∑RECT(xi) for i=1,…,n

The final DNN implementation
• Combines all the previously defined filter functions, where

each one of them is crucial

Third step: force all outputs for inputs in
the “danger zone” to be identically zero

• MASK(x1,…,xn) is a smoothed continuous version of the multiwall

• It has a value of at least 1 at any point in the multiwall

• It has a value of 0 at any binary point in the input space (with just 0/1)

Why this DNN implementation is correct

• For any binary vector of 0/1 values, the initial input sanitization
leaves the inputs unchanged

• The (potentially insecure) AES implementation then provides the
correct 0/1 output values

• These outputs are again left unchanged by the final STEP sanitizations

• The sanitized outputs are not affected by the zero-valued MASK

Why this implementation is provably secure
• We want to show that real valued queries do not leak any

information about the secret key that is not already leaked via
binary valued queries to the primitive.

• Intuition: Any input within the danger zone yields only zero outputs

• For any input in a particular orthant which is not in the danger zone,
the output is completely determined by the output of AES at the
unique binary input contained in that orthant, interpolated
smoothly by the MASK of the known values of the plaintext “bits”.
This can be computed without any knowledge of the secret key bits!

The extra cost of securing a DNN implementation
• To obtain our secure DNN implementation of a cryptographic

functionality, we can start with any (potentially insecure) DNN
implementation such as the easily breakable natural
implementation described above

• We can then make it secure by adding a constant number of
additional layers and a linear number of additional ReLU-based
neurons (as a function of the number of input and output values)

• This is a negligible cost for any nontrivial DNN, and thus our
construction is very easy and completely practical

How to secure other cryptographic functionalities
• Consider, for example, the case of public key signature verification

• This functionality has no secret key, so our security guarantee (of
not leaking any information about it) is meaningless

• The functionality should accept a message M and a signature S,
and compute a function VERIFY(M,S) which should output 1 when
the signature is valid and 0 when the signature is not valid.

• Given a DNN implementation of VERIFY, the attacker wins if he can
produce some real-valued S’ which makes Verify(M,S’)=1

How to secure other cryptographic functionalities
• The security of the signature scheme in the binary case does not

imply that its DNN implementation is also secure for real valued
signatures

• We can use our sanitization techniques to force the output of
VERIFY to be 0 for any real valued signature in the danger zone

• This makes our DNN implementation provably secure in the sense
that any attacker which can find a real valued S’ satisfying the DNN
version of VERIFY can also find a binary S satisfying the original
(binary) version of VERIFY

Conclusions

• In this talk I defined the new research area of how to
implement digital cryptography in an analog computer

• I defined the notion of natural implementation of schemes

• I demonstrated the insecurity of such natural implementations

• I described a different implementation which is provably secure

	Slide 1: Deep Neural Cryptography
	Slide 2: This talk deals with a new research area at the intersection between two major research areas in CS:
	Slide 3: For 2000 years, we used analog computers
	Slide 4: About 70 years ago, we completely switched to digital computers
	Slide 5: They are back! The MAGA movement of the last 20 years (Make Analog Great Again)
	Slide 6: Even our digital computers have analog characteristics, used in side channel attacks
	Slide 7: The landscape of analog/digital security
	Slide 8: The landscape of analog/digital security
	Slide 9: The landscape of analog/digital security
	Slide 10: The landscape of analog/digital security
	Slide 11: The landscape of analog/digital security
	Slide 12: The landscape of analog/digital security
	Slide 13: In this talk I will concentrate on the analog model of ReLU-based DNN’s
	Slide 14: This model was considered by Goldwasser, Kim, Vaikuntanathan and Zamir (FOCS‘2022)
	Slide 15: Note that no continuous DNN function can completely sanitize all input values to just 0/1
	Slide 16: The landscape of analog/digital security
	Slide 17: The landscape of analog/digital security
	Slide 18: Can we implement digital cryptography on a purely analog computational model?
	Slide 19: This is a totally new security playground with new rules and new techniques
	Slide 20: Why do we want to study this question?
	Slide 21: Why do we want to study this question?
	Slide 22: Our basic tool: corner functions
	Slide 23: A side note: How intelligent are current LLM’s?
	Slide 24: A side note: How intelligent are current LLM’s?
	Slide 25: The difficulty of finding one special corner
	Slide 26: The difficulty of finding one special corner
	Slide 27: How to implement Cryptography on DNN’s: The concrete example of AES
	Slide 28: Implementing Sbox using corner functions
	Slide 29: To implement each XOR, use 2 neurons
	Slide 30: Is this natural implementation secure when the adversary can use real valued inputs?
	Slide 31: The DNN implementation of bitwise XOR:
	Slide 32: Attacking the back-to-back implementation
	Slide 33: Attacking the input-sanitized version of AES
	Slide 34: Attacking the input-sanitized version of AES
	Slide 35: Attacking the input-sanitized version of AES
	Slide 36: Can we find a different implementation of AES which is secure against any such attack?
	Slide 37: The mental image: Switching scenes in a theater
	Slide 38: First step: sanitize the inputs more tightly
	Slide 39: Second step: Identify the “danger zone”
	Slide 40: Third step: force all outputs for inputs in the “danger zone” to be identically zero
	Slide 41: Third step: force all outputs for inputs in the “danger zone” to be identically zero
	Slide 42: The final DNN implementation
	Slide 43: Third step: force all outputs for inputs in the “danger zone” to be identically zero
	Slide 44: Why this DNN implementation is correct
	Slide 45: Why this implementation is provably secure
	Slide 46: The extra cost of securing a DNN implementation
	Slide 47: How to secure other cryptographic functionalities
	Slide 48: How to secure other cryptographic functionalities
	Slide 49: Conclusions

