

Deep Neural Cryptography

Adi Shamir

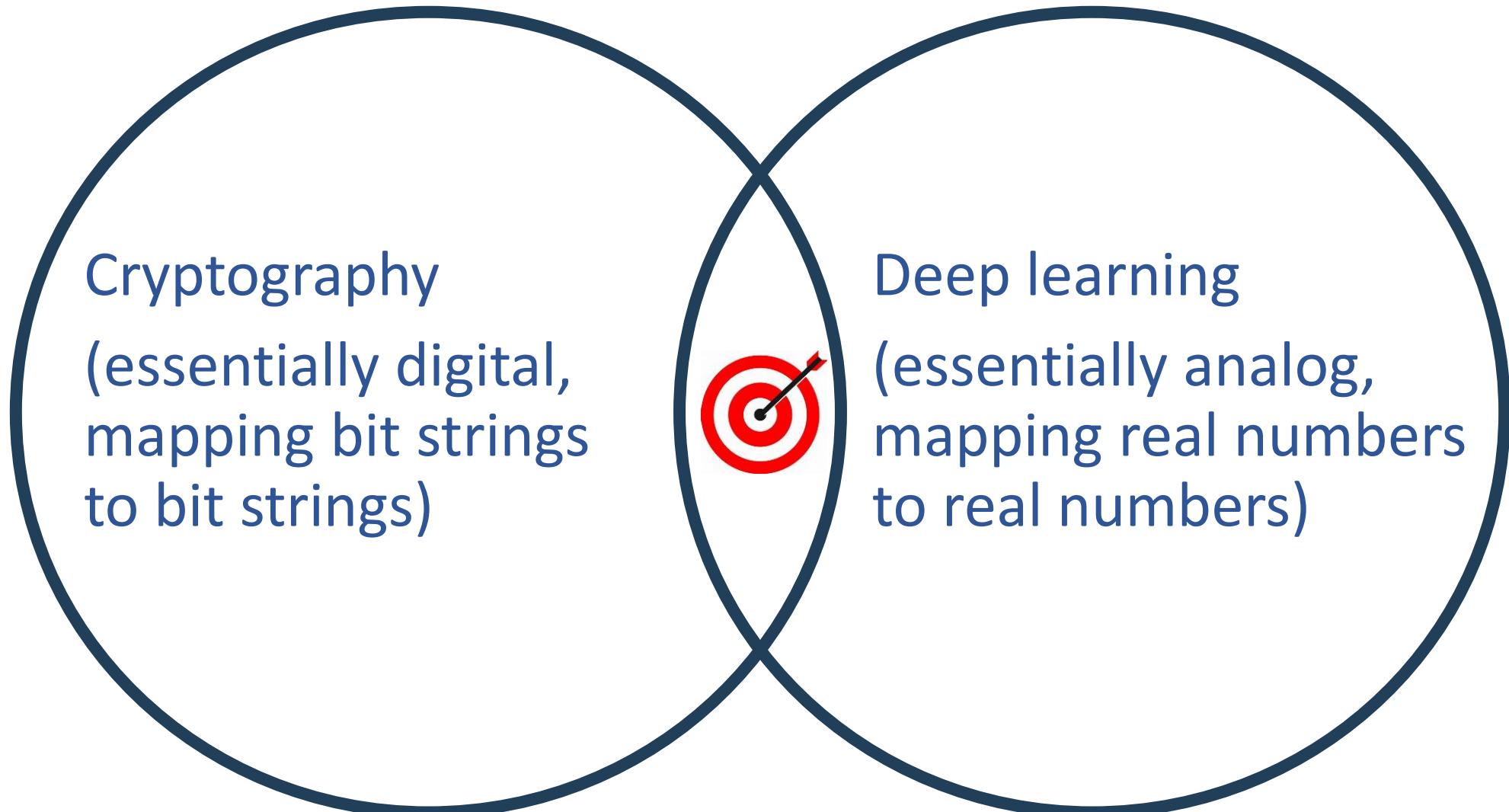
Computer Science Dept

Weizmann Institute of Science

Israel

Joint work with [David Gerault \(TII\)](#), [Anna Hambitzer \(TII\)](#),
and [Eyal Ronen \(Tel Aviv University\)](#)

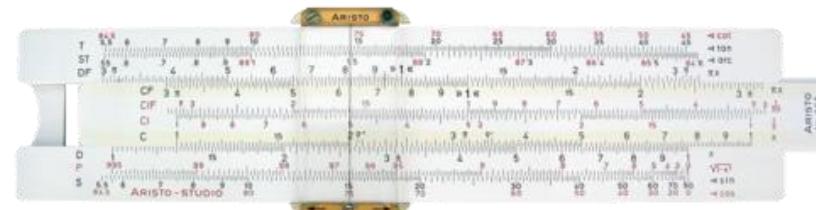
This talk deals with a new research area at the intersection between two major research areas in CS:



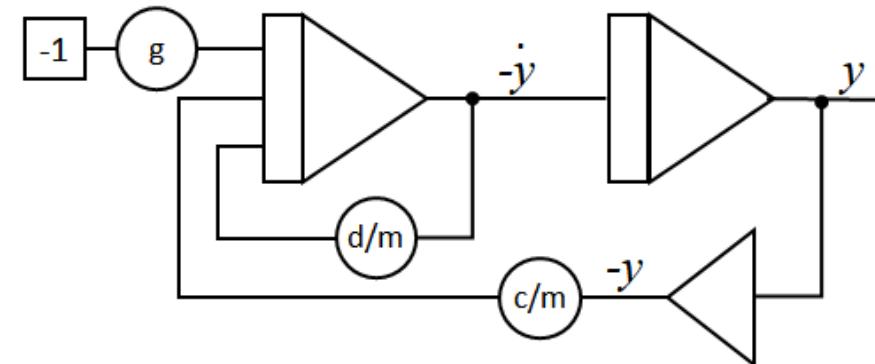
For 2000 years, we used analog computers

Antikythera mechanism

Solving differential equations

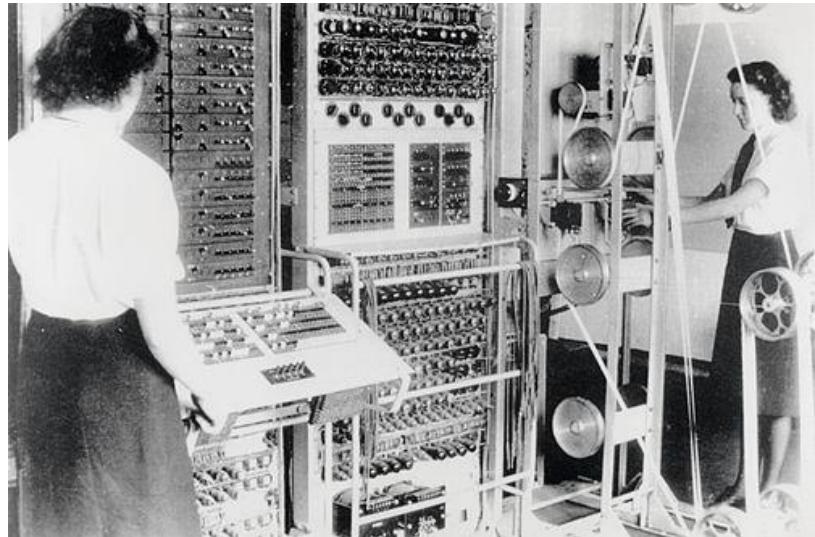


$$m\ddot{y} + d\dot{y} + cy = mg$$

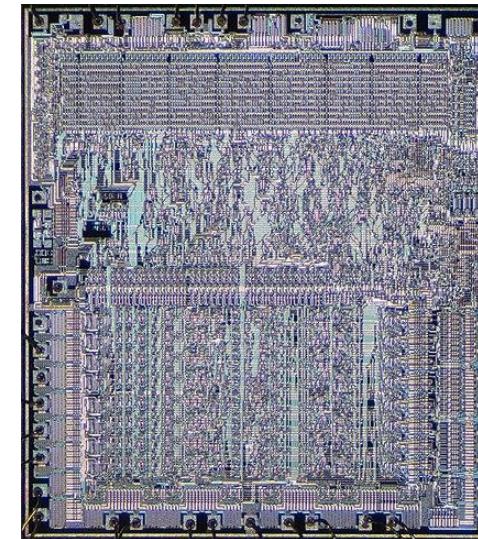


About 70 years ago, we completely switched to digital computers

The Colossus code
breaking computer

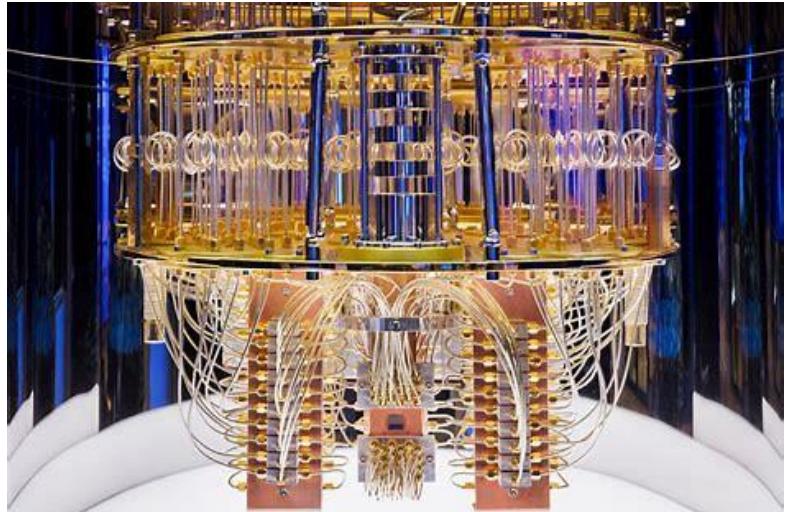


Microprocessors

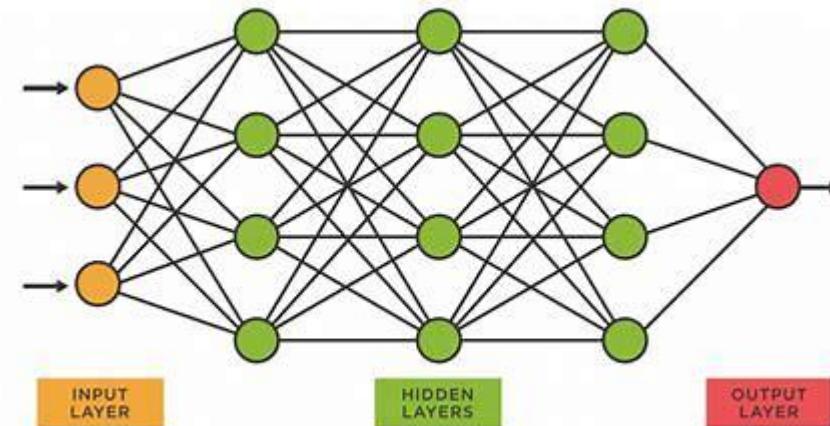


They are back! The MAGA movement of the last 20 years (Make Analog Great Again)

Quantum computers
(with complex valued superpositions in qubits)

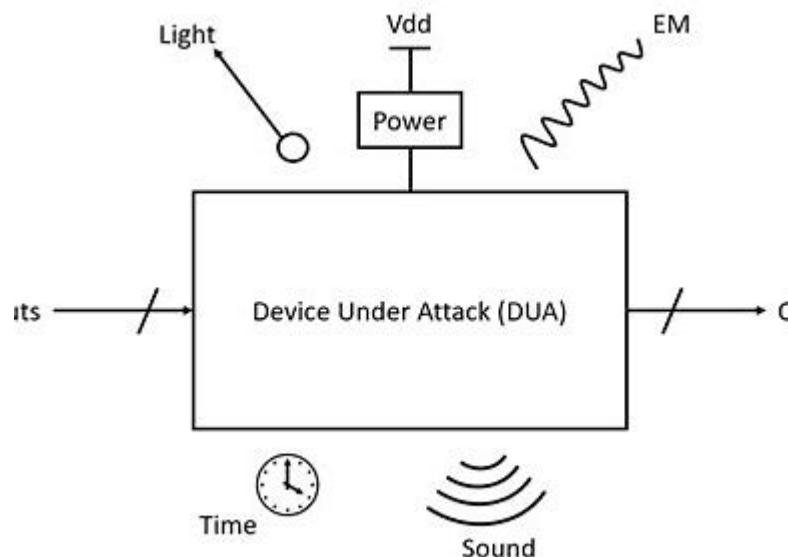


Deep Neural Networks
(with real valued inputs and weights)

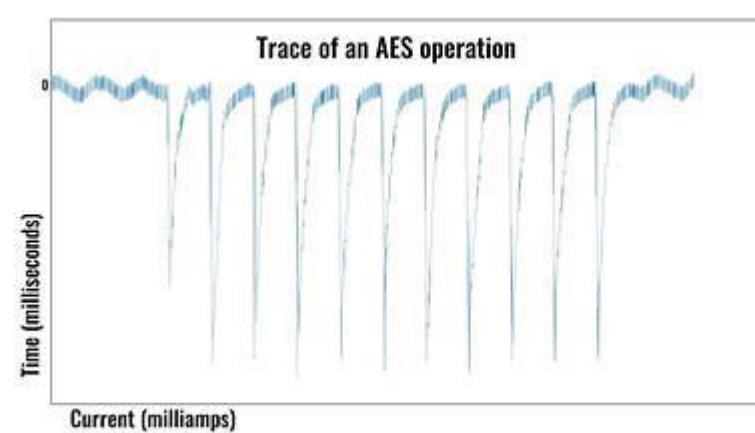


Even our digital computers have analog characteristics, used in side channel attacks

Various emanations from digital computers

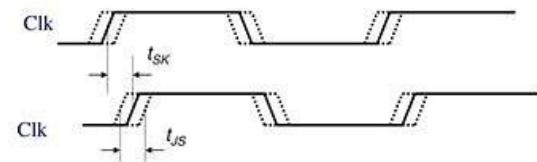


Cryptanalysis of AES by analyzing power traces



Fault attacks with modified clock pulses

Clock Skew and Jitter



- ❑ Both skew and jitter affect the effective cycle time
- ❑ Only skew affects the race margin

The landscape of analog/digital security

Users want to encrypt

Analog data (problematic)	digital data, digital computer	digital data, leaky computer	digital data, analog computer
------------------------------	-----------------------------------	---------------------------------	----------------------------------

The landscape of analog/digital security

		users		
		digital data, digital computer	digital data, leaky computer	digital data, analog computer
adversaries	digital attack			
	analog attack			

The landscape of analog/digital security

		users		
		digital data, digital computer	digital data, leaky computer	digital data, analog computer
adversaries	digital attack	standard cryptography		
	analog attack			

The landscape of analog/digital security

		users		
		digital data, digital computer	digital data, leaky computer	digital data, analog computer
adversaries	digital attack	standard cryptography		
	analog attack		side channel attacks	

The landscape of analog/digital security

		users		
		digital data, digital computer	digital data, leaky computer	digital data, analog computer
adversaries		digital attack	standard cryptography	unreasonable restriction
		analog attack	side channel attacks	

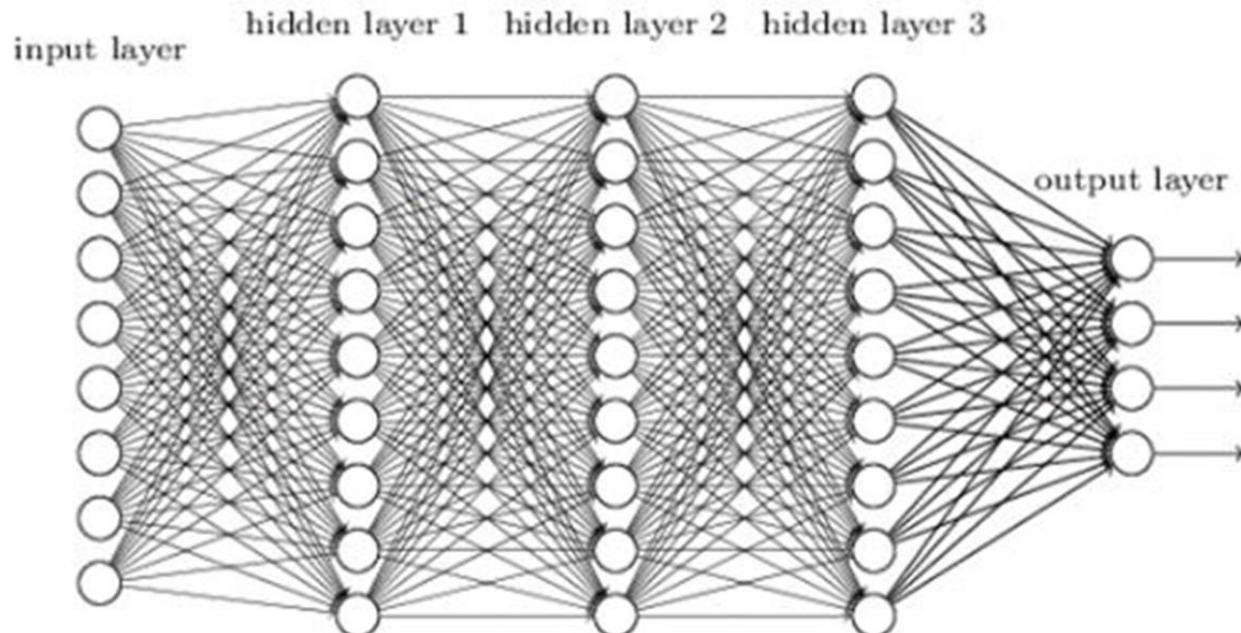
The landscape of analog/digital security

		users		
		digital data, digital computer	digital data, leaky computer	digital data, analog computer
adversaries	digital attack	standard cryptography	unreasonable restriction	
	analog attack	meaningless	side channel attacks	

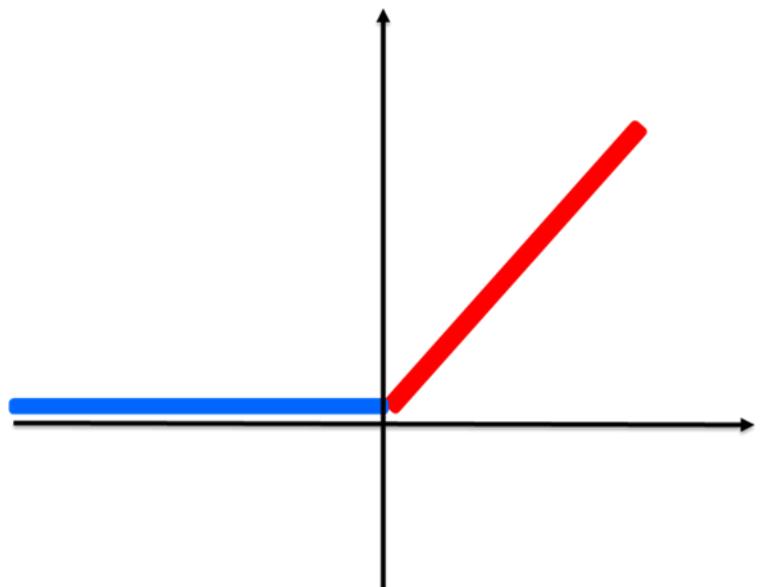
In this talk I will concentrate on the analog model of ReLU-based DNN's

- Deep neural networks have multiple layers, where each layer typically consists of a linear mapping with real valued coefficients followed by the ReLU activation functions applied to all its outputs

Deep neural network



$$\text{ReLU}(x) = \text{MAX}(x, 0)$$



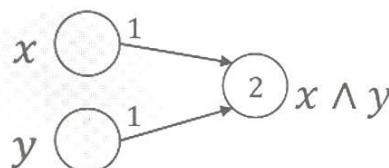
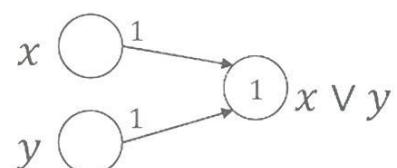
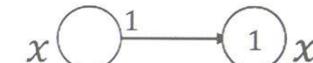
This model was considered by Goldwasser, Kim, Vaikuntanathan and Zamir (FOCS'2022)

- They considered the case in which the only allowed inputs to the DNN are zeroes and ones, and just used the universality of DNN's
- While technically correct, they missed all the fun...

B Universality of Neural Networks

A useful and seemingly essential property of good families of activation functions is their universality, i.e., the ability to represent every function using a neural network with activation functions from the family. For example, it is well-known that neural networks with perceptrons as their activation function (also called multi-layer perceptrons or MLPs) can realize any Boolean function.

Lemma B.1. *A single layer perceptron can realize boolean AND, OR, NOT, and Repeat gates.*



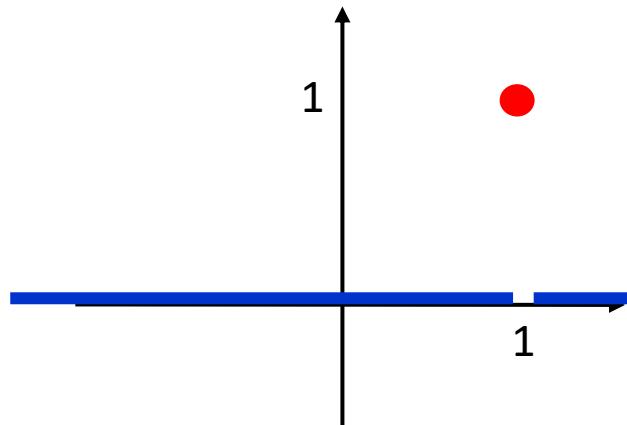
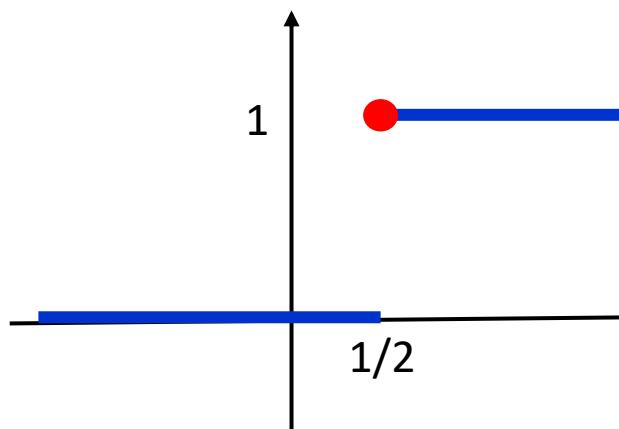
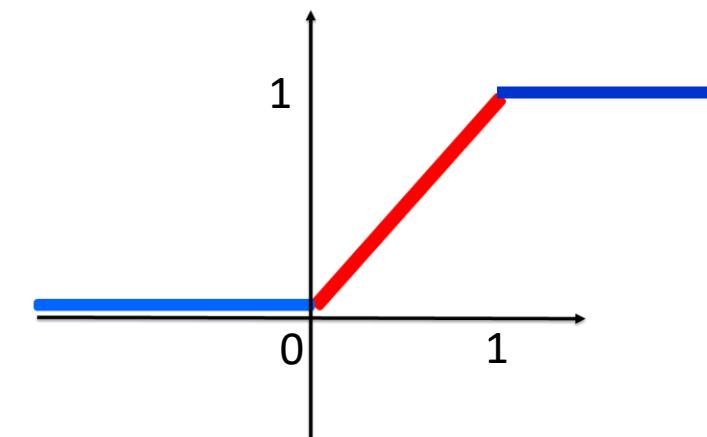
Note that no continuous DNN function can completely sanitize all input values to just 0/1

Perfect sanitization,
can't be implemented
with ReLU's

Perfect sanitization,
can't be implemented
with ReLU's

Partial sanitization can be
realized with a simple DNN:
 $STEP(x) = \text{ReLU}(x) - \text{ReLU}(x-1)$

Attacker can only use input
values in the range $[0,1]$



The landscape of analog/digital security

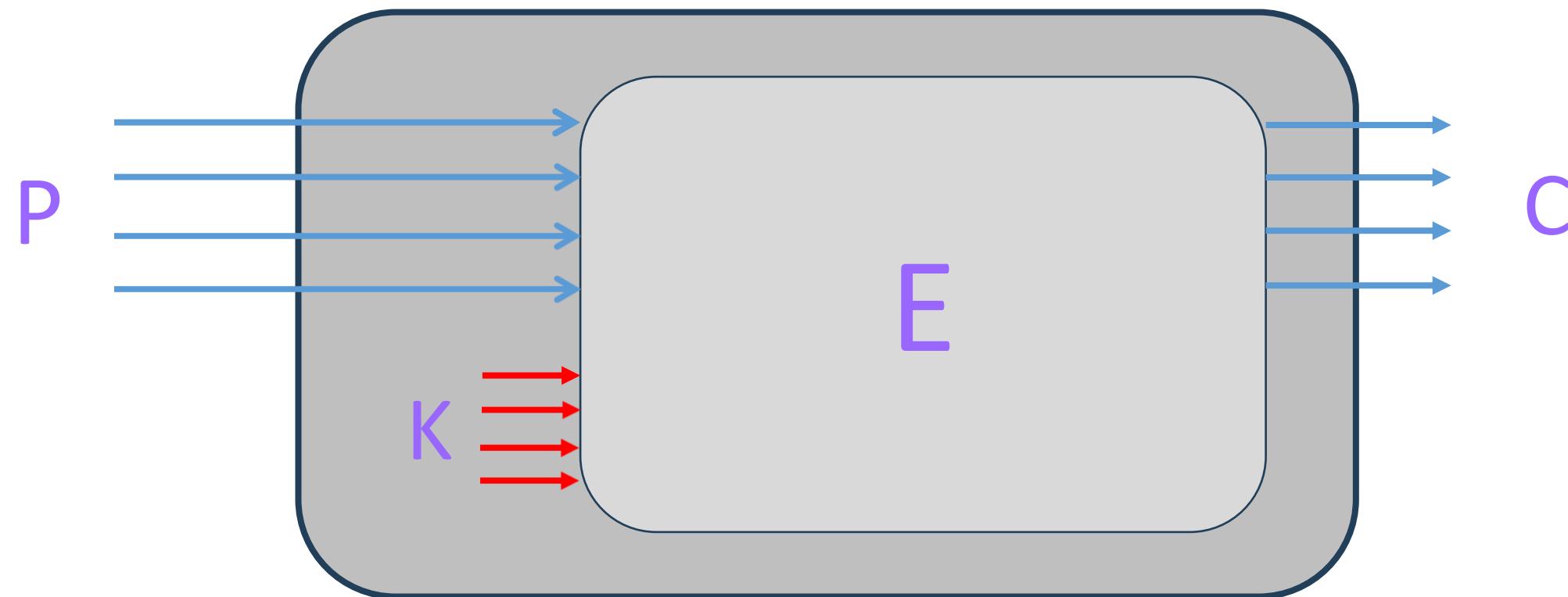
		users		
		digital data, digital computer	digital data, leaky computer	digital data, analog computer
		standard cryptography	unreasonable restriction	Goldwasser+ FOCS 2022
adversaries	digital attack	standard cryptography	unreasonable restriction	Goldwasser+ FOCS 2022
	analog attack	meaningless	side channel attacks	

The landscape of analog/digital security

		users		
		digital data, digital computer	digital data, leaky computer	digital data, analog computer
		standard cryptography	unreasonable restriction	Goldwasser+ FOCS 2022
adversaries	digital attack	standard cryptography	unreasonable restriction	Goldwasser+ FOCS 2022
	analog attack	meaningless	side channel attacks	this paper

Can we implement digital cryptography on a purely analog computational model?

- The secret key can be provided as a collection of internal weights; we assume that the adversary cannot see or change these inputs



This is a totally new security playground with new rules and new techniques

- For example, the attacker can ask the DNN to encrypt the “plaintext” P whose “bits” are $(0.3, -7, \Pi, \dots)$ and obtain the “ciphertext” $(-2.7, \sqrt{2}, \dots)$
- For example, the attacker can apply a **jitter attack**, in which he increases or decreases the value of one “bit” by $\pm\epsilon$, and observe whether the “ciphertext” changes or not. This is a stronger form of differential cryptanalysis, where the attacker can only flip 0/1 values

Why do we want to study this question?

- **A theoretical reason:** DNN's form a major new computational model. In cryptography, we love studying model variants such as:
 - Different cryptographic assumptions
 - Polynomially bounded vs unbounded adversaries
 - Standard vs quantum computers
- **A new complexity landscape:** For example, we can find a **provably exponential gap** between the complexity of solving certain tasks on a DNN when only 0/1 DNN queries are allowed and when real valued DNN queries are allowed:
 - Even when the task itself involves only 0/1 values
 - Even when we do not make use of high precision real values

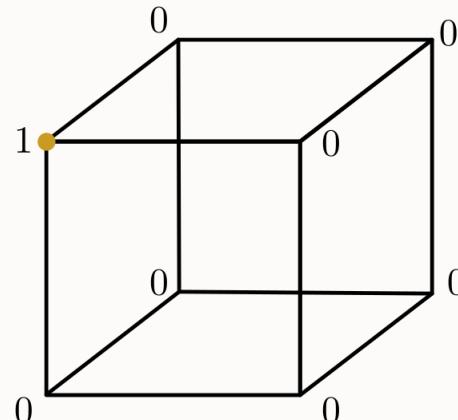
Why do we want to study this question?

- **A practical reason:** Dedicated DNN chips (e.g., much faster photonic chips) may become widespread. We may want to use them to:
 - Train models on encrypted data in federated learning
 - Check whether a prompt comes from an authorized user
 - Add a cryptographic watermark to the produced output
- **Obtain some unexpected benefits:** For example, our new techniques can protect DNN's against the new class of weight extraction attacks:
 - Note that in our model key bits are stored as some internal DNN weights
 - However, general purpose weight extraction techniques cannot distinguish between weights used as secret key bits and other weights
 - So when we develop later in this talk a provably secure way to protect key weights, we automatically protect all other weights in the network!

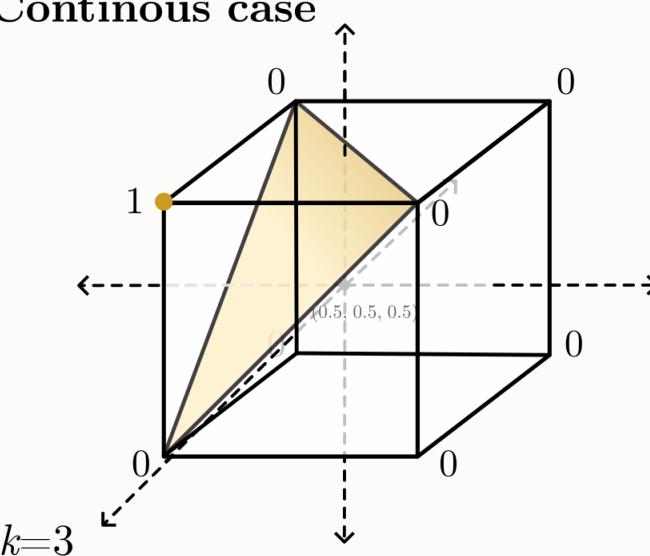
Our basic tool: corner functions

- Consider an **n**-dimensional Boolean cube with a single **1** at one of its corners, and **0**'s at all the other corners. We can easily implement this function with a single ReLU applied to a linear combination of its inputs
- For example, consider a 3D cube with a single **1** output at corner **101**. This discrete mapping can be implemented with the continuous corner function **ReLU($x_1-x_2+x_3-1$)** which is **0** at all corners except **101**

a Discrete case

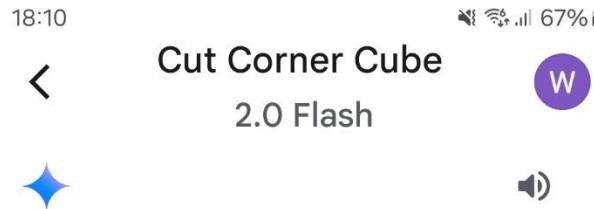


b Continuous case

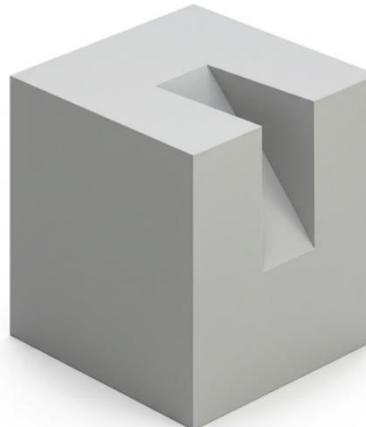


A side note: How intelligent are current LLM's?

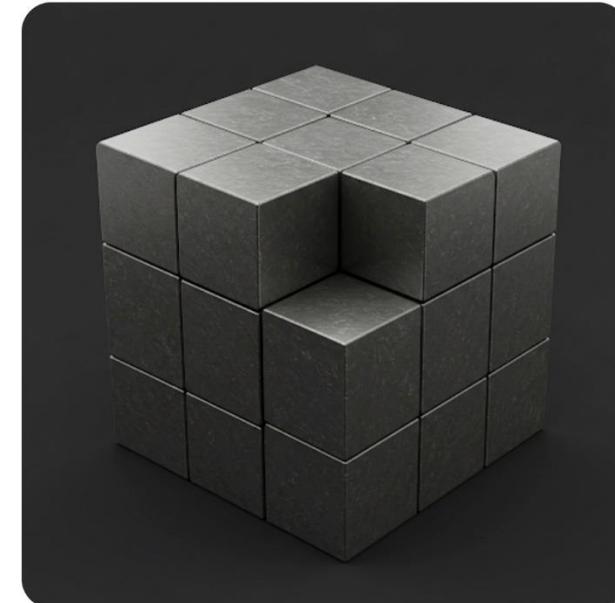
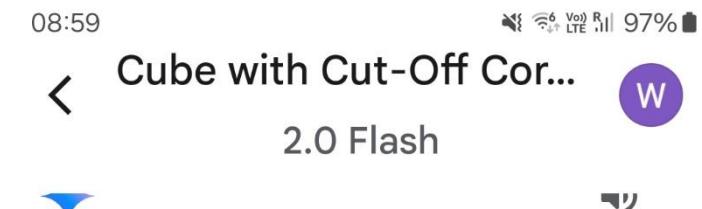
- To get a professional looking drawing of a corner function, I asked several leading generative AI systems to help me. Here is Gemini:



Sure, here is a three-dimensional cube with one of its corners cut diagonally:



Here it is!



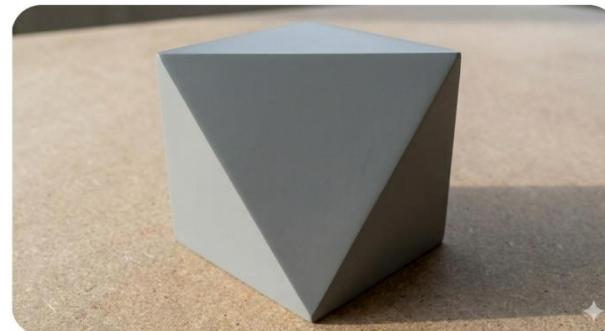
Sure, here is a 3d cube with one of its eight corners cut off diagonally:

A side note: How intelligent are current LLM's?

- However, Google's Nano Banana Pro (Gemini 3.0) finally got it right:

◆ Show Thinking ▾ 🔍

Sure, here is the image:



Gemini can make mistakes, so double-check it

Ask Gemini

The difficulty of finding one special corner

- We now consider the following search problem: We are given a black box which implements some unknown corner function. How many queries are needed to find its special corner?
- If we are only allowed to query the black box with binary inputs, we need $\Omega(2^n)$ queries since we learn nothing from all the 0 answers
- (A side remark: This is exactly the search problem for which Grover's algorithm can improve the search complexity to $O(2^{n/2})$ when we allow superpositions of 0's and 1's on a quantum computer)

The difficulty of finding one special corner

- However, if we are allowed to query the black box with real valued inputs, we can find the special corner with just n queries by starting at the center of the cube $(0.5, 0.5, \dots, 0.5)$, and move a distance n in any one of n main directions (to $(0.5+n, 0.5, \dots, 0.5)$, \dots , $(0.5, 0.5, \dots, 0.5+n)$). A positive output produced for the i -th such query proves that this bit is 1 in the special corner, while a zero output proves that this bit is 0 in the special corner.
- This demonstrates a **provably exponential gap** between the query complexities of the search problem in the two computational models

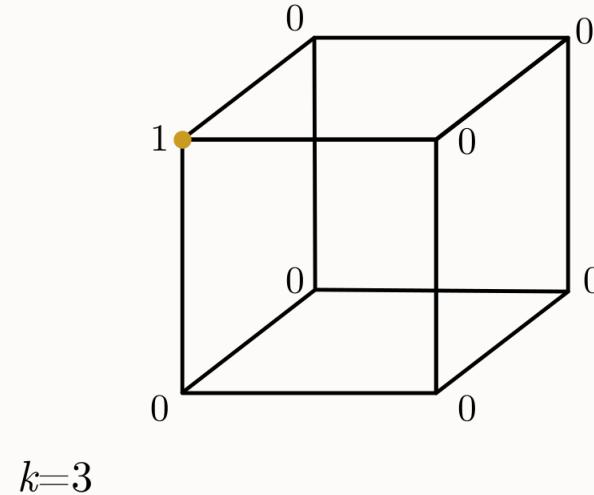
How to implement Cryptography on DNN's: The concrete example of AES

- AES-128 maps 128 plaintext bits to 128 ciphertext bits using a 128 bit key
- Everything in AES can be implemented with just two types of operations: **Mapping 8-bit inputs to 8-bit outputs** (Sbox, multiplication of a byte by the constants 2 and 3 in the AES finite field), and **mapping 2-bit inputs to 1-bit outputs** (XOR's of subkeys, and XOR's in the linear mixing)
- We now show how to implement any Boolean function with a small number of input bits by using as a simple ReLU-based DNN

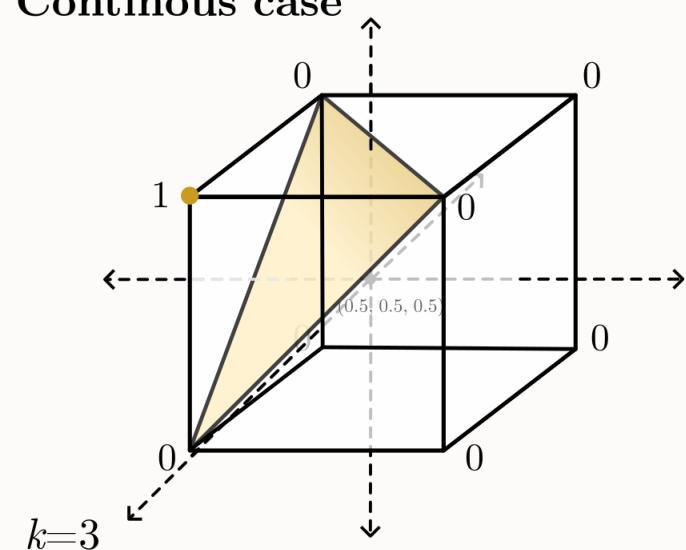
Implementing Sbox using corner functions

- Consider the **8-dim Boolean cube** which specifies one of the **8** output bits of the Sbox. Since the Sbox is balanced, exactly **128** of its **256** corners are labeled with **1** and the other **128** corners are labeled with **0**
- For each one of the **128** corners labeled with **1**, prepare a single neuron implementation of its corner function, and add them together

a Discrete case



b Continuous case



To implement each XOR, use 2 neurons

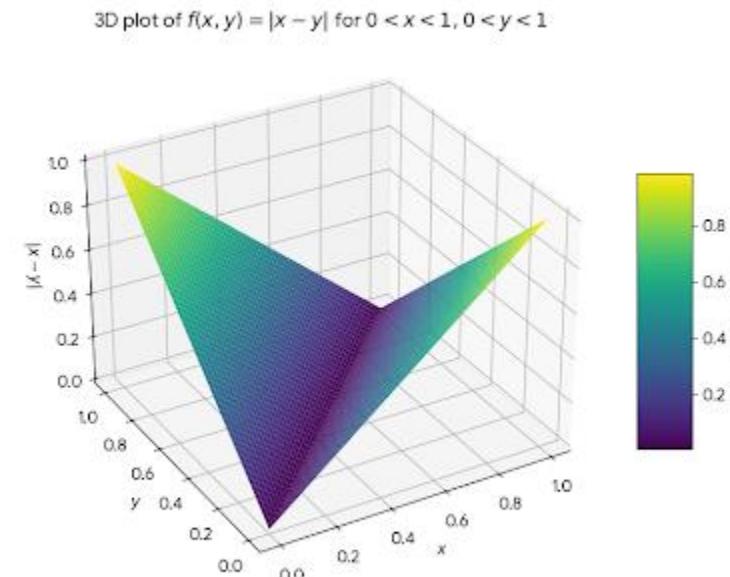
- The definition $\text{XOR}(x_1, x_2) = \text{ReLU}(x_1 - x_2) + \text{ReLU}(x_2 - x_1)$ is a special case of the general Boolean cube construction since $\text{XOR}(x_1, x_2)$ is a 2-dim cube with two corners outputing 0 and two corners outputing 1
- We can thus implement everything in AES as sums of corner functions
- We call this the natural implementation of AES in a DNN
- It is correct in the sense that it computes the correct 0/1 outputs for any collection of 0/1 inputs; it computes something weird otherwise

Is this natural implementation secure when the adversary can use real valued inputs?

- The answer is that these implementations can be easily broken
- Almost any secret key block cipher (including AES) starts by XOR'ing each input bit xi with some key bit ki
- We will now show how to recover all the ki bits used in the first round of the encryption via a simple jitter attack

The DNN implementation of bitwise XOR:

- The 3D representation of this 2-input 1-output function over the reals:



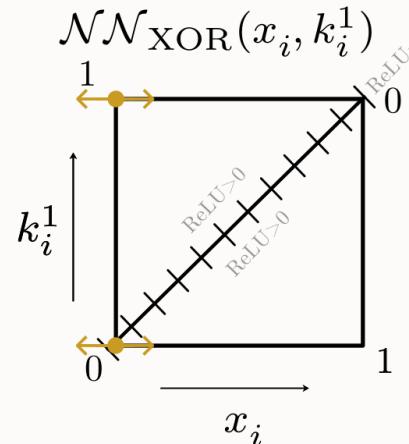
Attacking the back-to-back implementation

- Implementing XOR as the sum of two back-to-back corner functions:

$$\text{XOR}(x_i, k_i) = \text{ReLU}(x_i - k_i) + \text{ReLU}(k_i - x_i)$$

- In case (c) we look for jitter symmetry; in the input-sanitized case (d) we can't jitter in both directions so we need a different kind of attack

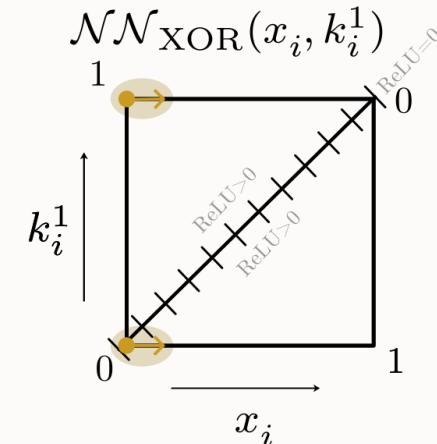
c Continuous implementation ($c=1$)



back-to-back ReLUs

↔ apply variation $\pm \epsilon$ to x_i

d Sanitized continuous implementation



Attacking the input-sanitized version of AES

- In AES, after XOR'ing a group of 8 input bits $x_1 \dots x_8$ with 8 key bits $k_1 \dots k_8$, we map the resultant 8 bits $y_1 \dots y_8$ to $z_1 \dots z_8$ via an 8-bit to 8-bit Sbox (i.e., $z_1 \dots z_8 = \text{Sbox}(x_1 \dots x_8 \text{ XOR } k_1 \dots k_8)$)
- Assume that each output bit z_i of the Sbox is naturally implemented as a sum of 128 corner functions over the 8-dimensional cube of y_i values

Attacking the input-sanitized version of AES

- When we jitter the input y_1, \dots, y_8 around any combination of 0/1 values, an output bit z_i remains stable if and only if $z_i=0$ for that input
- When we concatenate the 8 output bits z_1, \dots, z_8 , all of them remain stable simultaneously if and only if the 0/1 output of the Sbox is 0...0
- If at least one of the eight 0/1 outputs of the Sbox is not 0, the 8 output values of the Sbox will jitter, and this jitter is likely to avalanche all the way to the ciphertext values, which will also jitter

Attacking the input-sanitized version of AES

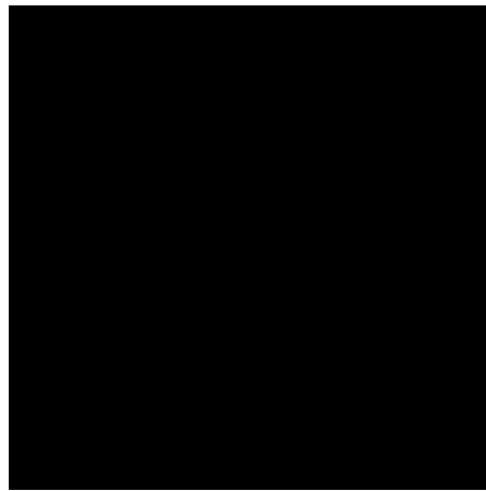
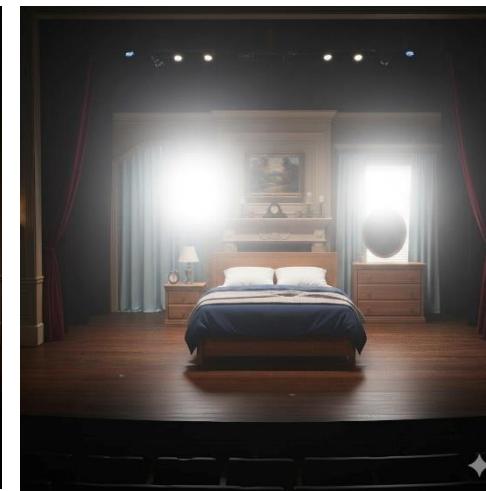
- We now have a way to test if the output of any particular Sbox in the first round of AES is $z_1, \dots, z_8 = 00000000$; this happens if and only if the input to this Sbox is $y_1, \dots, y_8 = 01010010$. Since we know the plaintext bits $x_1 \dots x_8$, we can now recover the 8 corresponding key bits as $k_1 \dots k_8 = x_1 \dots x_8 \text{ XOR } 01010010$
- Repeating for all the 16 Sboxes in the first round of AES recovers the full 128 bit key
- This attack was experimentally verified using negligible time with 100% success rate

Can we find a different implementation of AES which is secure against any such attack?

- At first **we were skeptical**, since attackers have so much additional power in this analog model of computation (as in the case of side channel attacks, where no perfectly secure solutions are known)
- However, after thinking hard, we found a **provably secure way to implement any cryptographic functionality** in a ReLU-based DNN

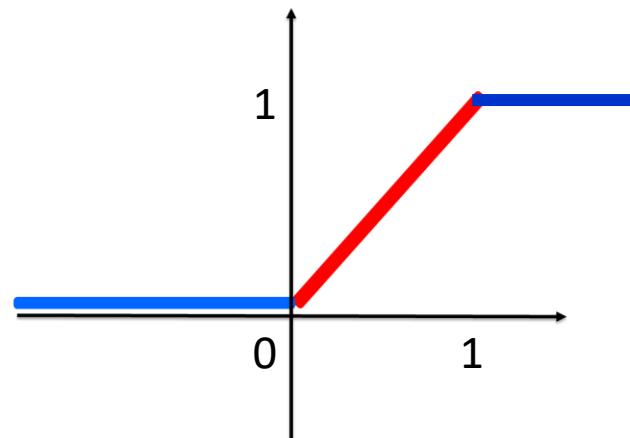
The mental image: Switching scenes in a theater

- **Problem:** You don't want the theater audience to watch a furniture change from a living room scene to the bedroom scene by stage hands
- **Solution:** Fade-out to black, change furniture, then fade-in to new scene

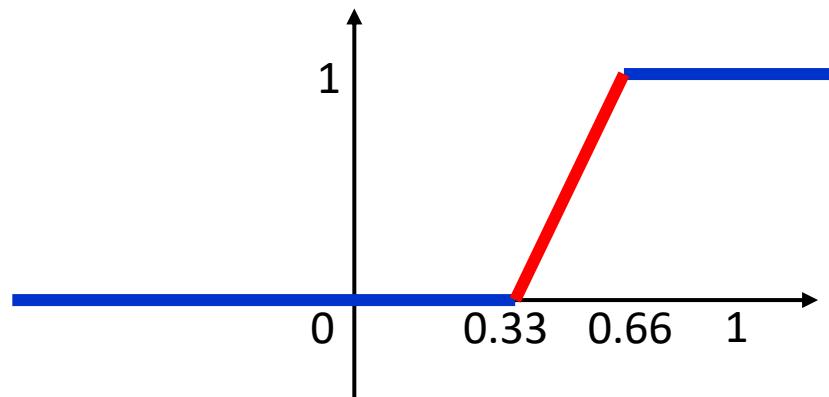


First step: sanitize the inputs more tightly

- Apply a tighter step function to each input separately:



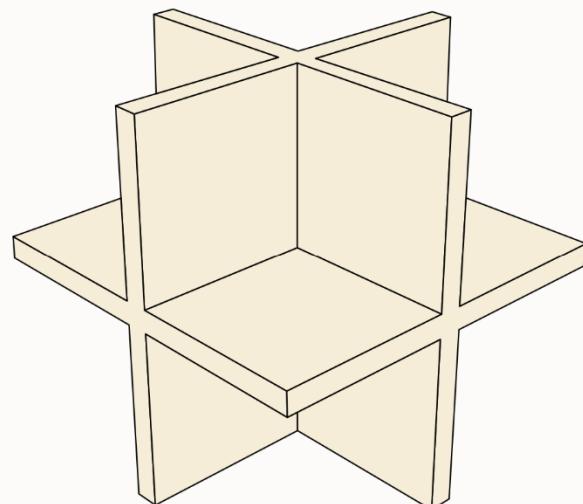
$$\text{OLD-STEP}(x) = \text{ReLU}(x) - \text{ReLU}(x-1)$$



$$\text{STEP}(x) = 3 * (\text{ReLU}(x-0.33) - \text{ReLU}(x-0.66))$$

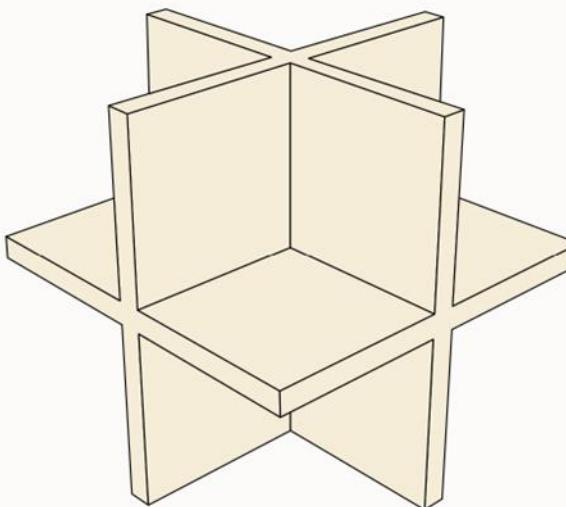
Second step: Identify the “danger zone”

- Consider the multiwall in the input space, which is the high dimensional cross where at least one input coordinate lies between 0.33 to 0.66
- This is the “danger zone” where the sanitized inputs may not be 0 or 1
- In each orthant (separated from all other orthants by the multiwall), the sanitized inputs are a constant binary strings of just 0's and 1's



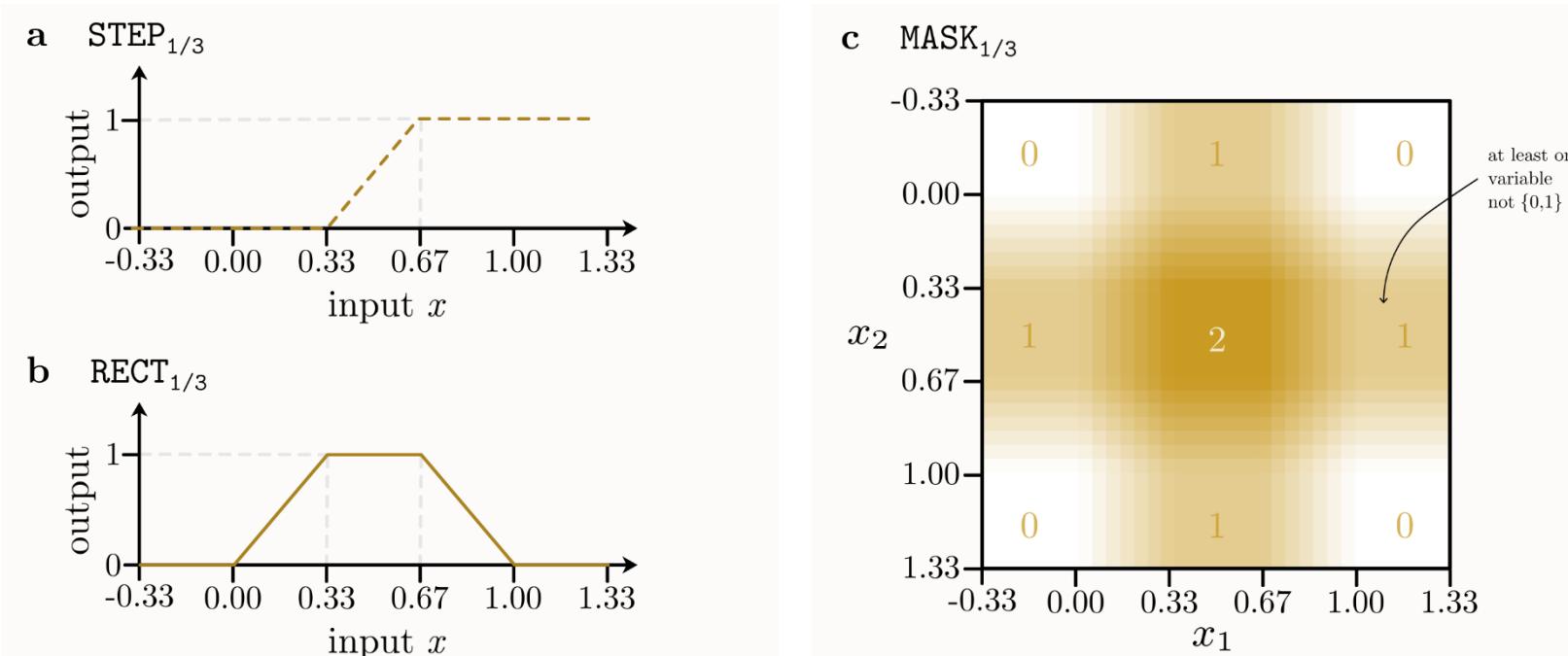
Third step: force all outputs for inputs in the “danger zone” to be identically zero

- Problem: we have to continuously connect these zero values on the multiwall with the correct non-zero values required at the unique binary point in each orthant, using only ReLU's and linear functions
- This smooth interpolation should not leak any information on the key



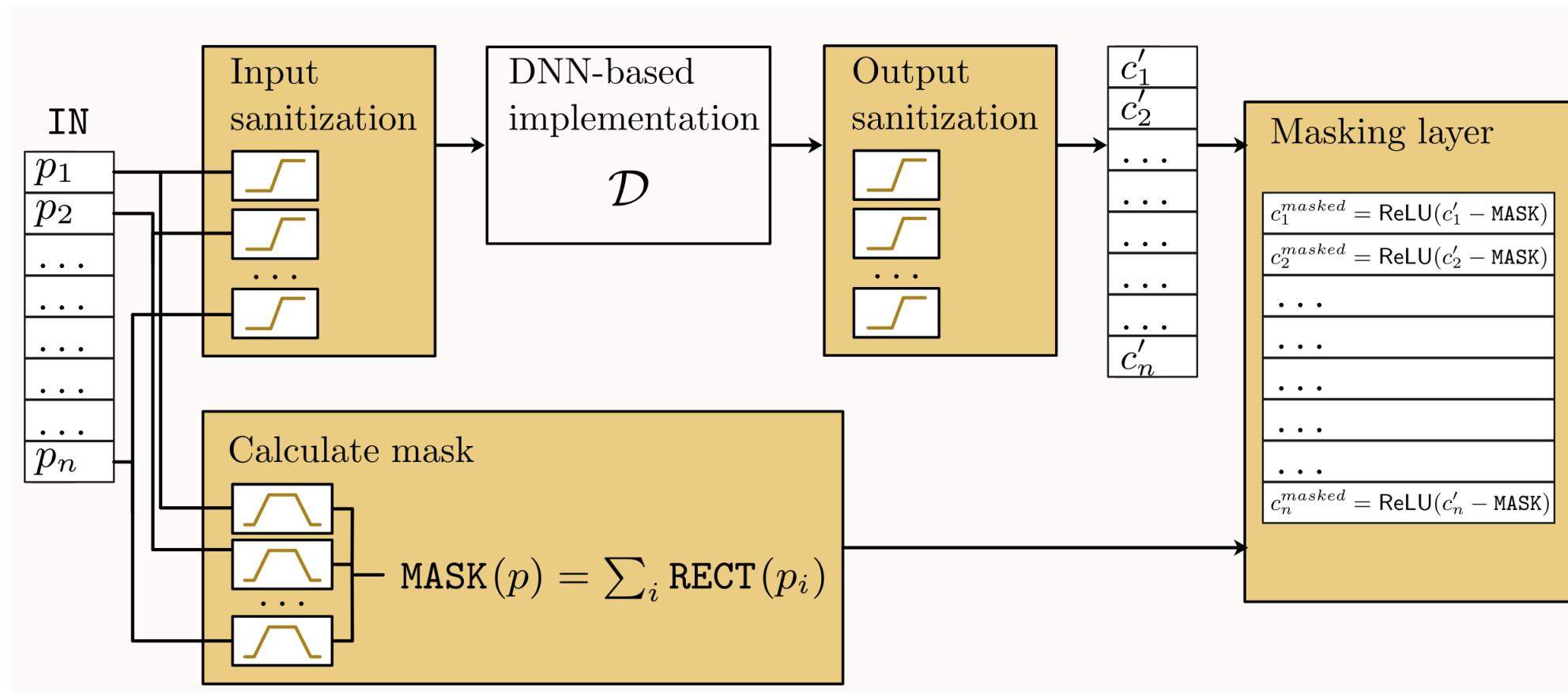
Third step: force all outputs for inputs in the “danger zone” to be identically zero

- In addition to the tighter STEP function, we introduce a new function $\text{RECT}(x) = \text{ReLU}(x) - \text{ReLU}(x-0.33) - \text{ReLU}(x-0.66) + \text{ReLU}(x-1)$
- We then define $\text{MASK}(x_1, \dots, x_n) = \sum \text{RECT}(x_i)$ for $i=1, \dots, n$



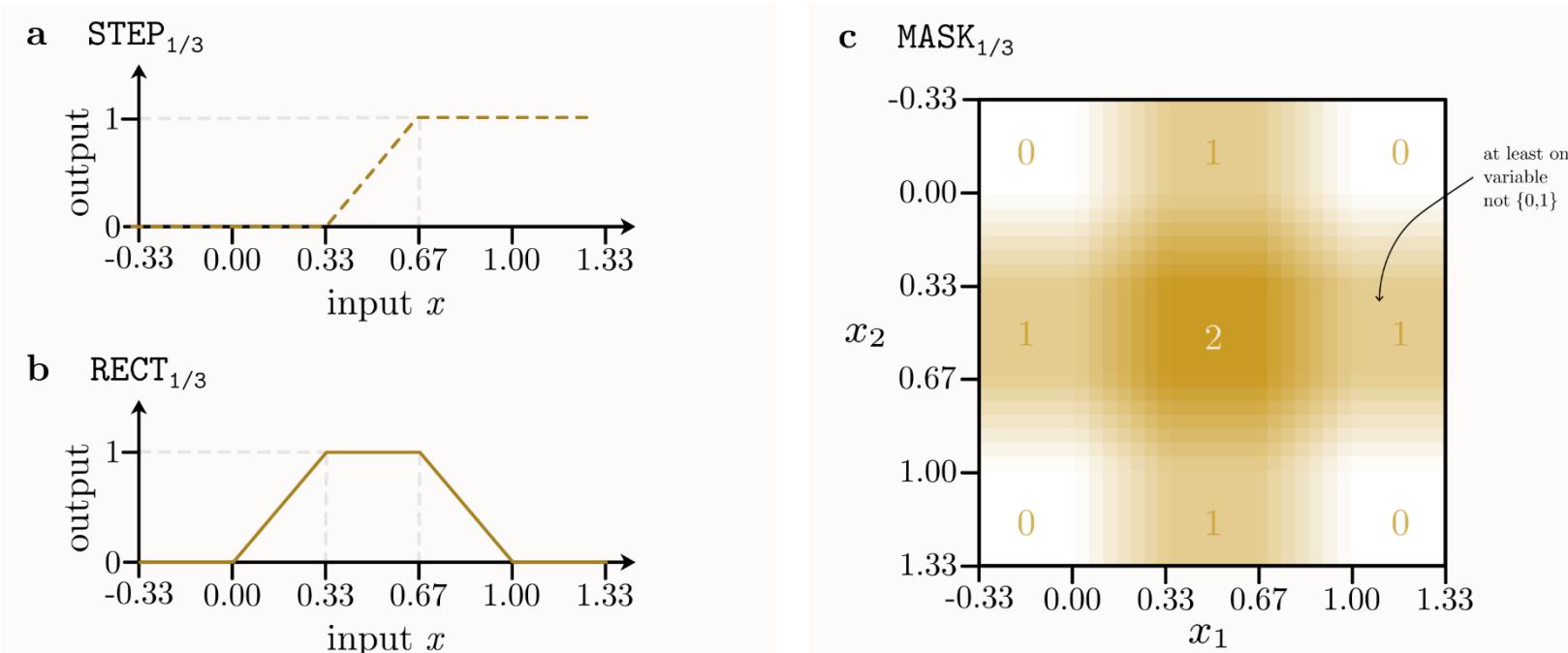
The final DNN implementation

- Combines all the previously defined filter functions, where each one of them is crucial



Third step: force all outputs for inputs in the “danger zone” to be identically zero

- $\text{MASK}(x_1, \dots, x_n)$ is a smoothed continuous version of the multiwall
- It has a value of **at least 1** at any point in the multiwall
- It has a value of **0** at any binary point in the input space (with just 0/1)



Why this DNN implementation is correct

- For any **binary vector of 0/1 values**, the initial input sanitization leaves the inputs unchanged
- The (potentially insecure) AES implementation then provides the correct 0/1 output values
- These outputs are again **left unchanged** by the final STEP sanitizations
- The sanitized outputs **are not affected** by the zero-valued MASK

Why this implementation is provably secure

- We want to show that real valued queries do not leak any information about the secret key that is not already leaked via binary valued queries to the primitive.
- Intuition: Any input **within the danger zone** yields only **zero outputs**
- For any input in a particular orthant which is **not in the danger zone**, the output is completely determined by the output of AES at the unique binary input contained in that orthant, interpolated smoothly by the MASK of the known values of the plaintext “bits”. This can be computed without any knowledge of the secret key bits!

The extra cost of securing a DNN implementation

- To obtain our secure DNN implementation of a cryptographic functionality, we can start with any (potentially insecure) DNN implementation such as the easily breakable natural implementation described above
- We can then make it secure by adding a **constant number of additional layers** and a **linear number of additional ReLU-based neurons** (as a function of the number of input and output values)
- This is a negligible cost for any nontrivial DNN, and thus our construction is **very easy and completely practical**

How to secure other cryptographic functionalities

- Consider, for example, the case of public key signature verification
- This functionality has no secret key, so our security guarantee (of not leaking any information about it) is meaningless
- The functionality should accept a message M and a signature S , and compute a function $\text{VERIFY}(M,S)$ which should output 1 when the signature is valid and 0 when the signature is not valid.
- Given a DNN implementation of VERIFY , the attacker wins if he can produce some real-valued S' which makes $\text{Verify}(M,S')=1$

How to secure other cryptographic functionalities

- The security of the signature scheme in the binary case does not imply that its DNN implementation is also secure for real valued signatures
- We can use our sanitization techniques to force the output of VERIFY to be **0** for any real valued signature in the danger zone
- This makes our DNN implementation provably secure in the sense that any attacker which can find a real valued S' satisfying the DNN version of VERIFY can also find a binary S satisfying the original (binary) version of VERIFY

Conclusions

- In this talk I defined the **new research area** of how to implement digital cryptography in an analog computer
- I defined the notion of **natural implementation of schemes**
- I demonstrated the **insecurity** of such natural implementations
- I described a different implementation which is **provably secure**