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This talk deals with a new research area at the 
intersection between two major research areas in CS:

Cryptography

(essentially digital, 
mapping bit strings 
to bit strings)

Deep learning

(essentially analog, 
mapping real numbers 
to real numbers)



For 2000 years, we used analog computers

Antikythera mechanism Solving differential 
equations



About 70 years ago, we completely 
switched to digital computers

The Colossus code 
breaking computer

Microprocessors



They are back! The MAGA movement of 
the last 20 years (Make Analog Great Again)

Quantum computers

(with complex valued 
superpositions in qubits)

Deep Neural Networks 
(with real valued 
inputs and weights)



Even our digital computers have analog 
characteristics, used in side channel attacks

Various emanations 
from digital computers

Cryptanalysis of 
AES by analyzing 
power traces

Fault attacks 
with modified 
clock pulses



The landscape of analog/digital security

Users want to encrypt

digital data, 
leaky computer

digital data, 
digital computer

Analog data 
(problematic)

digital data, 
analog computer
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In this talk I will concentrate on the 
analog model of ReLU-based DNN’s

• Deep neural networks have multiple layers, where each layer 
typically consists of a linear mapping with real valued coefficients 
followed by the ReLU activation functions applied to all its outputs

ReLU(x)=MAX(x,0)



This model was considered by Goldwasser, 
Kim, Vaikuntanathan and Zamir (FOCS‘2022) 

• They considered the case in which the only allowed inputs to the 
DNN are zeroes and ones, and just used the universality of DNN’s

• While technically correct, they missed all the fun…



Perfect sanitization, 
can’t be implemented 
with ReLU’s 

Partial sanitization can be 
realized with a simple DNN:

STEP(x)=ReLU(x)-ReLU(x-1)

Attacker can only use input 
values in the range [0,1]

Perfect sanitization, 
can’t be implemented 
with ReLU’s 

Note that no continuous DNN function can 
completely sanitize all input values to just 0/1
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Can we implement digital cryptography 
on a purely analog computational model?
• The secret key can be provided as a collection of internal weights; 

we assume that the adversary cannot see or change these inputs

K E
K

P C



This is a totally new security playground 
with new rules and new techniques

• For example, the attacker can ask the DNN to encrypt the “plaintext” P 
whose “bits” are (0.3, -7, Π, …) and obtain the “ciphertext” (-2.7, √2,…)

• For example, the attacker can apply a jitter attack, in which he 
increases or decreases the value of one “bit” by ±ε, and observe 
whether the “ciphertext” changes or not. This is a stronger form of 
differential cryptanalysis, where the attacker can only flip 0/1 values



Why do we want to study this question?
• A theoretical reason: DNN’s form a major new computational model. 

In cryptography, we love studying model variants such as:
• Different cryptographic assumptions

• Polynomially bounded vs unbounded adversaries

• Standard vs quantum computers

• A new complexity landscape: For example, we can find a provably  
exponential gap between the complexity of solving certain tasks on a 
DNN when only 0/1 DNN queries are allowed and when real valued 
DNN queries are allowed:
• Even when the task itself involves only 0/1 values

• Even when we do not make use of high precision real values



Why do we want to study this question?
• A practical reason: Dedicated DNN chips (e.g., much faster photonic 

chips) may become widespread. We may want to use them to:
• Train models on encrypted data in federated learning

• Check whether a prompt comes from an authorized user

• Add a cryptographic watermark to the produced output

• Obtain some unexpected benefits: For example, our new techniques 
can protect DNN’s against the new class of weight extraction attacks:
• Note that in our model key bits are stored as some internal DNN weights

• However, general purpose weight extraction techniques cannot distinguish 
between weights used as secret key bits and other weights

• So when we develop later in this talk a provably secure way to protect key 
weights, we automatically protect all other weights in the network!



Our basic tool: corner functions
• Consider an n-dimensional Boolean cube with a single 1 at one of its 

corners, and 0’s at all the other corners. We can easily implement this 
function with a single ReLU applied to a linear combination of its inputs

• For example, consider a 3D cube with a single 1 output at corner 101. 
This discrete mapping can be implemented with the continuous corner 
function ReLU(x1-x2+x3-1) which is 0 at all corners except 101



A side note: How intelligent are current LLM’s?
• To get a professional looking drawing of a corner function, I asked 

several leading generative AI systems to help me. Here is Gemini:



A side note: How intelligent are current LLM’s?

• However, Google’s Nano 
Banana Pro (Gemini 3.0) 
finally got it right:



The difficulty of finding one special corner
• We now consider the following search problem: We are given a 

black box which implements some unknown corner function. How 
many queries are needed to find its special corner?

• If we are only allowed to query the black box with binary inputs, we 
need Ω(2𝑛) queries since we learn nothing from all the 0 answers

• (A side remark: This is exactly the search problem for which Grover’s 
algorithm can improve the search complexity to Ο(2𝑛/2) when we 
allow superpositions of 0’s and 1’s on a quantum computer)



The difficulty of finding one special corner

• However, if we are allowed to query the black box with real valued 
inputs, we can find the special corner with just n queries by starting 
at the center of the cube (0.5, 0.5, …, 0.5), and move a distance n in 
any one of n main directions (to (0.5+n, 0.5, …, 0.5), …, (0.5, 0.5, …, 
0.5+n)). A positive output produced for the i-th such query proves 
that this bit is 1 in the special corner, while a zero output proves that 
this bit is 0 in the special corner.

• This demonstrates a provably exponential gap between the query 
complexities of the search problem in the two computational models



How to implement Cryptography on DNN’s:
The concrete example of AES
• AES-128 maps 128 plaintext bits to 128 ciphertext bits using a 128 

bit key

• Everything in AES can be implemented with just two types of 
operations: Mapping 8-bit inputs to 8-bit outputs (Sbox, 
multiplication of a byte by the constants 2 and 3 in the AES finite 
field), and mapping 2-bit inputs to 1-bit outputs (XOR’s of subkeys, 
and XOR’s in the linear mixing)

• We now show how to implement any Boolean function with a 
small number of input bits by using as a simple ReLU-based DNN 



Implementing Sbox using corner functions

• Consider the 8-dim Boolean cube which specifies one of the 8 output 
bits of the Sbox. Since the Sbox is balanced, exactly 128 of its 256 
corners are labeled with 1 and the other 128 corners are labeled with 0

• For each one of the 128 corners labeled with 1, prepare a single 
neuron implementation of its corner function, and add them together



To implement each XOR, use 2 neurons

• The definition XOR(x1,x2) = ReLU(x1-x2) + ReLU(x2-x1) is a special case 
of the general Boolean cube construction since XOR(x1,x2) is a 2-dim 
cube with two corners outputing 0 and two corners outputing 1

• We can thus implement everything in AES as sums of corner functions

• We call this the natural implementation of AES in a DNN

• It is correct in the sense that it computes the correct 0/1 outputs for 
any collection of 0/1 inputs; it computes something weird otherwise



Is this natural implementation secure when 
the adversary can use real valued inputs?

• The answer is that these implementations can be easily broken

• Almost any secret key block cipher (including AES) starts by 
XOR’ing each input bit xi with some key bit ki

• We will now show how to recover all the ki bits used in the first 
round of the encryption via a simple jitter attack



The DNN implementation of bitwise XOR:

• The 3D representation of this 2-input 1-output function over the reals:



Attacking the back-to-back implementation
• Implementing XOR as the sum of two back-to-back corner functions: 

  XOR(xi,ki) = ReLU(xi-ki) + ReLU(ki-xi)

• In case (c) we look for jitter symmetry; in the input-sanitized case (d) 
we can’t jitter in both directions so we need a different kind of attack



Attacking the input-sanitized version of AES

• In AES, after XOR’ing a group of 8 input bits x1…x8 with 8 key bits 
k1,…k8, we map the resultant 8 bits y1,…y8 to z1…z8 via an 8-bit 
to  8-bit Sbox (i.e.,  z1…z8=Sbox( x1…x8 XOR k1…k8 ) )

• Assume that each output bit zi of the Sbox is naturally 
implemented as a sum of 128 corner functions over the 8-
dimensional cube of yi values



Attacking the input-sanitized version of AES

• When we jitter the input y1,…,y8 around any combination of 0/1 
values, an output bit zi remains stable if and only if zi=0 for that input

• When we concatenate the 8 output bits z1,…z8, all of them remain 
stable simultaneously if and only if the 0/1 output of the Sbox is 0…0

• If at least one of the eight 0/1 outputs of the Sbox is not 0, the 8 
output values of the Sbox will jitter, and this jitter is likely to 
avalanche all the way to the ciphertext values, which will also jitter



Attacking the input-sanitized version of AES
• We now have a way to test if the output of any particular Sbox in the 

first round of AES is z1,…,z8=00000000 ; this happens if and only if the 
input to this Sbox is y1,…,y8=01010010 . Since we know the plaintext 
bits x1…x8, we can now recover the 8 corresponding key bits as     
k1…k8 = x1…x8 XOR 01010010

• Repeating for all the 16 Sboxes in the first round of AES recovers the  
full 128 bit key

• This attack was experimentally verified using negligible time with   
100% success rate



Can we find a different implementation of 
AES which is secure against any such attack?

• At first we were skeptical, since attackers have so much additional 
power in this analog model of computation (as in the case of side 
channel attacks, where no perfectly secure solutions are known)

• However, after thinking hard, we found a provably secure way to  
implement any cryptographic functionality in a ReLU-based DNN



The mental image: Switching scenes in a theater
• Problem: You don’t want the theater audience to watch a furniture 

change from a living room scene to the bedroom scene by stage hands

• Solution: Fade-out to black, change furniture, then fade-in to new scene



First step: sanitize the inputs more tightly

• Apply a tighter step function to each input separately:

0

1

10.33 0.66

STEP(x)=3*(ReLU(x-0.33)-ReLU(x-0.66))OLD-STEP(x)=ReLU(x)-ReLU(x-1)

1

10



Second step: Identify the “danger zone”

• Consider the multiwall in the input space, which is the high dimensional 
cross where at least one input coordinate lies between 0.33 to 0.66 

• This is the “danger zone” where the sanitized inputs may not be 0 or 1

• In each orthant (separated from all other orthants by the multiwall), 
the sanitized inputs are a constant binary strings of just 0’s and 1’s



Third step: force all outputs for inputs in 
the “danger zone” to be identically zero

• Problem: we have to continuously connect these zero values on the 
multiwall with the correct non-zero values required at the unique 
binary point in each orthant, using only ReLU’s and linear functions

• This smooth interpolation should not leak any information on the key



Third step: force all outputs for inputs in 
the “danger zone” to be identically zero
• In addition to the tighter STEP function, we introduce a new function 

RECT(x)=ReLU(x)-ReLU(x-0.33)-ReLU(x-0.66)+ReLU(x-1)

• We then define MASK(x1,…,xn) = ∑RECT(xi) for i=1,…,n



The final DNN implementation
• Combines all the previously defined filter functions, where 

each one of them is crucial



Third step: force all outputs for inputs in 
the “danger zone” to be identically zero

• MASK(x1,…,xn) is a smoothed continuous version of the multiwall

• It has a value of at least 1 at any point in the multiwall

• It has a value of 0 at any binary point in the input space (with just 0/1)



Why this DNN implementation is correct

• For any binary vector of 0/1 values, the initial input sanitization   
leaves the inputs unchanged

• The (potentially insecure) AES implementation then provides the 
correct 0/1 output values

• These outputs are again left unchanged by the final STEP sanitizations

• The sanitized outputs are not affected by the zero-valued MASK



Why this implementation is provably secure
• We want to show that real valued queries do not leak any 

information about the secret key that is not already leaked via 
binary valued queries to the primitive.

• Intuition: Any input within the danger zone yields only zero outputs

• For any input in a particular orthant which is not in the danger zone, 
the output is completely determined by the output of AES at the 
unique binary input contained in that orthant, interpolated 
smoothly by the MASK of the known values of the plaintext “bits”. 
This can be computed without any knowledge of the secret key bits!



The extra cost of securing a DNN implementation
• To obtain our secure DNN implementation of a cryptographic 

functionality,  we can start with any (potentially insecure) DNN 
implementation such as the easily breakable natural 
implementation described above

• We can then make it secure by adding a constant number of 
additional layers and a linear number of additional ReLU-based 
neurons (as a function of the number of input and output values)

• This is a negligible cost for any nontrivial DNN, and thus our 
construction is very easy and completely practical



How to secure other cryptographic functionalities
• Consider, for example, the case of public key signature verification

• This functionality has no secret key, so our security guarantee (of 
not leaking any information about it) is meaningless

• The functionality should accept a message M and a signature S, 
and compute a function VERIFY(M,S) which should output 1 when 
the signature is valid and 0 when the signature is not valid.

• Given a DNN implementation of VERIFY, the attacker wins if he can 
produce some real-valued S’ which makes Verify(M,S’)=1



How to secure other cryptographic functionalities
• The security of the signature scheme in the binary case does not 

imply that its DNN implementation is also secure for real valued 
signatures

• We can use our sanitization techniques to force the output of 
VERIFY to be 0 for any real valued signature in the danger zone

• This makes our DNN implementation provably secure in the sense 
that any attacker which can find a real valued S’ satisfying the DNN 
version of VERIFY can also find a binary S satisfying the original 
(binary) version of  VERIFY



Conclusions

• In this talk I defined the new research area of how to 
implement digital cryptography in an analog computer

• I defined the notion of natural implementation of schemes

• I demonstrated the insecurity of such natural implementations

• I described a different implementation which is provably secure
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