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Text-to-Video Generative Model: Sora 1

Figure: The Sora video generation system from OpenAl emerged
unexpectedly, stunning the world.




Sora as the World Simulator 2

Figure: Sora claims to be able to apply and understand the basic
model of the world, generating content based on descriptions.




The Debate About Sora 3
—

Common Opinions
» AGI Arrival Advocates

» Sora has understood the world model, with correct methodology;
» Continuing to develop along this direction, general artificial
intelligence is just around the corner;

» Brute Force Advocates
P> Sora still has flaws at present;
> With increased computational power and data, intelligence will
naturally emerge;

» Dead End Advocates

» Simulating the world using pixel generation is both a waste of
computational power and a dead end;

> Text is discrete, symbols are finite, and relatively simple; it can
be handled by generative Al;

P> Sensory inputs are continuous and complex, with much greater
uncertainty and difficulty in prediction; generative Al is
inadequate for handling them.



The Debate About Sora 4
—

Our Opinion
» AGI Arrival Advocates

» Sora approaches the intellectual level of preschool children, with
the developed language and visual centers in the brain;

> Still unable to approach the level of adult intelligence, abstract
thinking (mathematical logic) has not yet been established.

» Brute Force Advocates
» Combining large language models with large visual models has
great potential;
» Unable to model abstract thinking;
> It is necessary to organically integrate connectionism with
symbolicism;
» Dead End Advocates
» Sora’s direction is correct: combining large language models with
large visual models
» Further development: large language models + large visual
models + large mathematical models (abstract thinking).



Sora as the World Simulator

—

Instuction 3:
Change the setting to be cyberpunk;
Input video:

Instuction 2:
A Shiba Inu dog wearing a
beret and black turtleneck.

Instuction 1:

A woman wearing blue
jeans and a white t-shirt
taking a pleasant stroll in
Antarctica during a
winter storm.

©O0penAl  Sora

Figure: Sora generates videos based on text prompt.




Sora’s physical paradox

Figure: The video generated by Sora depicts a person ‘running in
opposite directions’.




Sora’s physical paradox

Figure: The video generated by Sora shows ‘breaking through the
glass with red wine’.



Sora’s physical paradox
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Figure: The video generated by Sora depicts ‘clones of the puppy’.



Sora Framework

—
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Figure: The basic framework of Sora




Sora Framework 10

—

Large Vision Model (LVM) Large Language Model (LLM)

Whie Noise Space Text Space

TImage/Video Space Latent Feature Space

There are four

diffuser key prime spaces
oT and dual spaces
DiT

consists of tokens

Noisy Latent Token Space Text Token Seq. Space

A Sora CLIP 4 T

Image/video Token Seq. Space Latent Token Seq. Space

DALLE-3 CLIP

Vision Transformer (ViT)




Sora Physical Paradox 11
—

» Sora combines with the large language model ChatGPT,
greatly enhancing the system’s performance
> Mistakes made by Sora when simulating the physical
world:
» Correlation vs Causality (joint distribution and mapping);
> Local Rationality vs Global Absurdity (infinite correlation
length);
> Missing Critical States (regularity of transmission mapping,
boundaries of data manifolds).

The methodology needs further development, incorporating
abstract thinking and large mathematical models.



Framework 12

Prime Space A +—>{ Prime Space B

Dual Token Seq Space A H Dual Token Seq Space B ‘

Transformer

» Four primary spaces and four dual token sequence spaces;
» The classical mathematical description of transformations
between primary spaces;
» The transformation between dual spaces is implemented by
the transformers;
» Is the diagram commutative?
VAE, LDM, DDPM, CLIP, DiT, ViT, OT.



Why Exploring Manifolds?

13



Manifold, Geometry and Physics 14

Figure: A 2D slice of a 6D Calabi—Yau quintic manifold



The Concept of Manifold in Data Science 15

Figure: The happy Buddha surface is a two dimensional manifold
embedding in the three dimensional Euclidean space.




The Concept of Manifold in Data Science 16

(a) manifold (b) latent space (c) another encoding

» Encoding: from the manifold to the latent space;
» Decoding: from the latent space to the manifold.

There are infinite many encoding maps.



Distribution on Manifold
—

distributions on manifold latent distributions

Distributions on data manifolds can be mapped to latent space distributions.

17



Generative Models 18

Other
Conditions

1

Generative

Model
"

Simple Low-dim Target High-dim
Distribution Distribution

Generative models utilize specified conditions and draw samples from a simple
distribution, such as white noise, as inputs. They then produce new samples

that mimic a target distribution, including outputs like images, videos and more.




Autoencoder 19
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Autoencoder consists of two symmetric deep neural networks. The widths of
the input and output layers are equal to the dimension of the ambient space
R", and the width of the bottleneck layer is equal to the dimension of the
latent space R?. The first half of the network computes an encoding mapping
o, and the second half of the network computes the decoding mapping ,.
Densely sample on the data manifold ¥ C R" to obtain {z1,22,..., 258},
optimize the loss function,

m1n£(9 n) manH% *wnOSDG(%)”

if the loss is near 0, then the restriction of 1y 0 g on X is identity, o and Yy,
are homeomorphisms.



Generative Adversarial Networks (GANs) 20

—

Real examples

Judges which
images are
real/fake

Discriminator

Fake images/noise

Fake generated
example

Figure: GANs: more creative than Autoencoders.

GANs have two neural networks contesting with each other in a zero-sum game
framework. The generator tries to produce data resembling a certain training
dataset, and the discriminator tries to distinguish between genuine data fake
data produced by the generator. Through this competitive process, GANs learn

to generate new data similar to the training set.

Image source: https://developer.ibm.com/articles/generative-adversarial-networks-explained/


https://developer.ibm.com/articles/generative-adversarial-networks-explained/

Diffusion Model 21
—

Forward Process

Add noise - Add noise
Reverse Process
PR,
Denoise Denoise
.

Diffusion models add Gaussian noise to an input image over T steps (forward
process), distinct from neural network operations. They're trained to reverse
this noise, enabling new data generation through the reverse diffusion process.

Image source: https://speech.ee.ntu.edu.tw/~hylee/m1/m12023-course-data/DDPM420(v7) .pdf


https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/DDPM%20(v7).pdf

Modern ‘Large’ Image Generators

Acatin Text-to-image
the snow Generator

Acatin
the snow

Generation
Model @§]
- 3

Intermediate product
Such as compressed images

Train three sub-modules (separately) on billions of text-image pairs:
1 Text embedding: LLMs (ChatGPT), BERT...

2 Generation in latent spaces: Diffusion Models, Variational Autoencoders...

3 Decode the intermediate: Autoencoder, Super-Resolution...

High Degree of Freedom — Is the ‘manifold’ still in charge?

Image source: speech.ee.ntu.edu.tw/~hylee/ml/m12023-course-data/StableDiffusion’20(v2).pdf
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speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/StableDiffusion%20(v2).pdf

Part I: Manifold Fitting
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Manifold Distribution Principle 24
—

The fundamental principle of data science:

Each natural concept corresponds to a dataset, where each sample
is a point in the dataset. The dataset is distributed near a
low-dimensional manifold, which is called the data manifold 3.
The data manifold X is embedded in a high-dimensional ambient
space R™. The dataset can be abstracted as a probability
distribution 1 on the data manifold 3.

Namely, sample can be modeled* as
yi=x;+& for i=1,2,.... N
» 1; € ¥ C R"™: unobserved sample from p(%);
> ¢ € R & ~ 6™ ambient space noise;
> y; € R”, g~k qb((,n): observation.

*Yao Z., Su J., Li B, and Yau S.T., Manifold Fitting, arXiv:2304.07680, 2023.



Manifold Distribution Principle 25
—
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LeCun's MNIST dataset Hinton's t-SNE embedding

The hand written digits image set can be explained well as from a
distribution on a 2D surface embedded in the space of gray images.



Manifolds in Data Science Perspective 26

Sample lies on known manifolds:

» Asymptotics: Central limit theorem on manifolds...

P Regression: Regression on Lie group, Fréchet regression...

» Classification: Principal boundaries*, classify CY manifolds*...
» Extensions of PCA:

> Nonlinear generalization: principal flows*, principal submanifolds™...
» PCA on shape spaces: principal nested spheres, torus PCA...

*Recent work by Yao, Z., Yau, S.T. and other collaborators



Extensions of PCA 27
—

Subspace of Maximal Variation
Find a reasonably smooth d-dim subspace I' of ¥ such that
» for any point x € X, the tangent space T,I' C 1,3;

> T,I" is ‘approximately’ the span space of the leading d
eigenvectors of the local covariance matrix at z;

» I roughly passing the ‘center’ of the observations.

00

For a stripe dataset on a sphere, we can find a curve that captures its
most of the variation and, if necessary, find a proper encoding for it.




Connection to SYZ conjecture

—

» The concept of finding a sub-manifold of data lying on
manifolds is naturally rooted in a seemingly unrelated
conjecture, namely, the SYZ conjecturef. Without diving into
too many mathematical statements, the conjecture offers a
geometrical way of breaking a complicated space (manifold)
into its constituent parts.

» The problem is related to principal sub-manifold, which is an
empirical calculation of such decomposition under some
scenarios from the noisy datat.

TStrominger, A., Yau, S.T., & Zaslow, E. Mirror symmetry is T-duality. Nuclear Physics B, 1996.

iYao, Z., Li, B., Tran, V.D. & Zhang, Z. Principal Sub-manifolds: New Theory and Methods. Manuscript,
2023.
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Manifolds in Statistics Perspective

—

Data manifold is unknown:

» Manifold Learning (Dimension Reduction):
Find a low dimensional linear representation.

» Manifold Fitting: Fit manifolds in the same space.

Genovese et al (2012 a,b), Fefferman et al (2016),
Mohammed/Narayanan (2017), Yao/Xia (2019), Fefferman et al (2021),
Yao/Su/Li/Yau (2023)8, Yao/Su/Yau (2024)%, Yao/Li/Lu/Yau (2024)\.

§/\/lanifold fitting, arXiv:2304.07680.
ﬂTManifo/d fitting with CycleGAN, PNAS, 2024.
I Single-Cell Analysis via Manifold Fitting: A New Framework for RNA Clustering and Beyond, revise at PNAS.



Overall Idea of Manifold Fitting 30
—

(b) (© (d

P
5
09 ® Fw

» Find the dominant direction;
» ‘Push’ noisy points along the direction;

» Obtain a manifold estimator 3 that

» is a smooth manifold,;
» closely represents 3;
P remains in the same ambient space.




CycleGAN /Manifold Fitting Framework! 31

GANSs can be modified to fit data manifolds:

Z C R%: latent space
Y C R™: ambient space
Gz, Gy: generators

Dz, Dy: discriminators

vVvYyyVvyy

Faq: manifold fitting sub-module
Main objective*: Let Z ~ Unif(0,1)¢,

in  Div(Gz(Z) * ¢o,v),
g iv(Gz(Z) * ¢o,v)

and the data manifold can be estimated with the generators.

* U+ the distribution of Yi; o the noise distribution; x: convolution; Div: certain divergence.
TYaO, Z., Su, J., and Yau, S.T., Manifold fitting with CycleGAN, PNAS, Jan, 2024.



Role of Generators

—

Solve (non-sample version):

G},G‘;} = argmax min ﬁ(Gg,Gy,FM,Dx,Dy).
Gz,Gy Fm,Dx,Dy

» Manifold estimators (sample-based):

M = @(Z) or M = Fai(M) estimates M.
» Noise canceling:

C/J\go@: ylH/g]lEM
» Nonlinear interpolating:

C/% (té\iﬁ(yl) +(1- t)é%(yﬂ) nonlinear interpolates
between y; and ;.

32



A Toy Example — Fully Control on Data Manifold 33
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(a) Images of a rotating simple shape, with ambient space noise.
(b) Denoised version of (a) with CycleGAN/Manifold Fitting model.
(c) Nonlinear interpolation of two examples with red boxes in (a).



Fitting in Biology Data — scRNA (single-cell) Example 34

mouse embryonic stem cells

culture condition lif 2i alternative 2i (a2i)

The Kolodziejezyk dataset’ : 704 cells with 13,473 features in 3 classes

Focuses:

» Utilizing the potential molecular mechanisms governing cell differentiation
and maintenance.

» Keeping the three classes of Mouse embryo stem cells.

» Improving other unsupervised clustering methods with the help of fitting.

iKoIodziejczyk A A, et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional
variation. Cell Stem Cell, 2015.



Manifold Fitting in scRNA
—

Mouse Embryonic, Raw Data
Clustering Accuracy = 57%

T-SNE 2

T-SNE 2

10

-10

Mouse Embryonic, Manifold Fitting

Clustering Accuracy = 100%

2i
azi
lif

-20

-15

-10

T-SNE 1

20

Manifold fitting methods improve the spatial distribution of the data and the

unsupervised clustering score for this data after fitting (right), significantly
higher than the other methods without using fitting (left).
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Manifold Fitting in scRNA
—

Accuracy (measured by ARIS) in clustering 25 scRNA datasets.

Dataset scDHAY Raw Manifold Fitting Dataset scDHA Raw Manifold Fitting
EMTAB2600 1.00 1.00 SRP041736 0.85 0.91
EMTAB3321 0.86 0.91 EGADO00001010074 0.46 0.55

GSE36552 0.78 0.86 GSE202352 0.42 0.73
GSE59739 0.64 0.88 16-WM8C 0.09 0.80
GSE60361 0.82 0.87 GSE132042 0.60 0.84
GSE67835 0.72 0.75 GSE132042-Liver 0.46 0.67
GSE81252 0.37 0.41 Midbrain 0.51 0.93
GSE81608 0.53 0.82 GSE81547 0.42 0.46
GSE83139 0.7 0.83 E-MTAB-11265 0.65 0.75
GSE84133-M 0.47 0.67 MAC-Bladder 0.51 0.57
GSE85241 0.92 0.87 Localll 0.47 0.82
GSE103322 0.59 0.59 MAC-Brain 0.13 0.83
GSE108097 0.26 0.39 Average 0.57 0.75

Manifold fitting can significantly improve the clustering result.

§Adjusted Rand Index: a measure of the similarity between clustering results and the ground truth.

A leading scRNA clustering method: Tran, Duc, et al. (2021). Fast and precise single-cell data analysis using
a hierarchical autoencoder. Nature communications.
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Single-Cell Analysis via Manifold Fitting (scAMF)! 37

Transformation Manifold Fitting

Raw Data Calculating the

Shared Nearest Neighborhood

............................. r .l
____Unsupervised Clustering and Validation. __ | |
Candidate 1

clustering results I | |
* I I I
[ T !

" " ot Fitted Data Fitted Data Fitted Data
e saered lL“°°""“1“’_ Lo ‘2_—“’J|

Output

The scAMF pipeline processes raw data through transformations and denoising
via manifold fitting, followed by unsupervised clustering. It concludes with a

validation step, outputting the final clustering results.

I Yao Z., Li B., Lu Y., and Yau S.T., Single-Cell Analysis via Manifold Fitting: A New Framework for RNA
Clustering and Beyond, revision at PNAS.



Clustering with and without Manifold Fitting 38
—

®  Without manifold fitting ®  With manifold fitting

Datasets:

Han3 ®
Puram

Siletti

Han2
Nowicki
Zeisel
Tabula3
Hant

Enge
Wiedemann
Muraro
Tabula2
Baron
Joseph

Xin

Tabulat
Kolodziejczyk
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Usoskin
Darmanis
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Wang
Pollen
Goolam
Yan

o
o
o
IS
o
w

0.4 0.5 0.6 0.7 0.8 0.9 1
Accuracy (ARI)

Manifold fitting helps in data analysis!
.



Outlook — Fields Without ‘Billion-scale’ Data 39
—

Data Manifolds + Data Sciences
» New Thinking:
» Metric learning on data manifolds;

» Generalized dimension reduction methods on manifolds;
> ETC. ...

» Application:
» CellScape: Enhanced cell atlas builder;

» Health: Enhanced precision medicine and sub-type analysis;
> ETC. ...

» Collaborator's Group: Zhigang Yao, National U of Singapore
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Part II: Geometric View of Optimal
Transport



Major Tasks of Deep Learning 41
—

Major Tasks of DL

According to manifold distribution principle, the major tasks of
deep learning are to learn

1. Data manifold structure by manifold fitting,

2. Data distribution by transportation maps or plans;

Transport Maps

The data distribution (€2, u) is transported to the Gaussian or
uniform distributions (2%, v) via various algorithms, mostly
diffusion maps or optimal transport maps.



Generative Model 42

Generator

Figure: Generative Model: the input is a Gaussian noise image, the
output is a realistic photo (or video), such as Sora.



Generative Adversarial Networks (GAN) 43

—

Training Data Set

Discriminator

Decoder
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Generator

White Noise

Figure: Generative Adversarial Networks. The uniform distribution
(white noise) is transported to the latent distribution.




Transport Map 44

source data distribution g target uniform distribution v

Figure: Transport map T:D? — D? is an automorphism,
p— v = Typ maps the data distribution g (red dots)to the uniform
distribution.



Optimal Transport Map 45

Problem (Monge)

Given compact metric spaces 0 and  with measures
du(z) = f(z)dz and dv(y) = g(y)dy, where p(Q) = v(Q), and
given a transport map T : Q — QF, satisfying

/ dy = / dv, N Borel EC QF,
T-1(E) E

Then T is measure-preserving, denoted as Tj,—,. Given a
transport cost ¢ : Q) x Q* — R, we seek the optimal transport
map.

min / o(, T(2)) du().
Q

Typ=v



Optimal Transport map 46

Theorem (Brenier)

If the cost function is the square of the Euclidean distance, then
the optimal transport map T is the gradient map of the Brenier
potential function u: Q — Q*, T = Vu, where u satisfies the
Monge-Ampére equation:

Fu\  flw)
det <axiaxj> = govu(a)

The Monge-Ampeére equation is a strongly nonlinear elliptic
equation.

S.-Y. Cheng, S.-T. Yau, On the regularity of the monge-ampére equation
det(0*u/dx:01;) = f(z, w), Communications on Pure and Applied
Mathematics, 1977.



Minkowski Theorem 47

Theorem (Minkowsi) .
Given {(Ay,n;)}E_ |, such that
n;’s can not be contained in any
hemi-sphere and
k
Z Aini = 0, AZ > 0, )
=1

then the convex polytope P with
face normals n;’s and face areas
A;’s exists and is unique upto a
translation.

S.-Y. Cheng, S.-T. Yau, On the regularity of the Solution of the

n-Dimensional Minkowski Problem, Communications on Pure and Applied
Mathematics, 1976.

Figure: Minkowski Theorem.



Alexandrov Theorem 48

—

Theorem (Alexadnrov 1950)

Q is a compact convex domain \f#\#l e
in R™, for each face F;, the
normal n; and the projected
area A; is given,

Z A; = vol(2),

then the convex polytope exists
and is unique upto a vertical
translation.

Figure: Alexandrov theorem.



Alexandrov Theorem 49

> By taking to the limits, the Minkowski theorem and the
Alexandrov theorem determine the shape of a convex
surface by prescribing the Gaussian curvatures.

» Both Brenier theorem and the Alexandrov theorem are
reduced to the Monge-Ampére equation, therefore
equivalent.

» Alexandrov’s original proof is based on algebraic topology,
not constructive.

» My students and I developed a convex variational approach
to solve the Alexandrov problem.

X.Gu,F.Luo, J.Sun and S.-T. Yau, “Variational Princples for Minkowski
type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere
Equations”, AJM 20(2), 385-398, April 2016.



Geometric Variational Method for OT Map 50

9*7 7'*
Figure: Discrete OT map (left to right): maps W; to p;; Discrete
Monge-Ampére equation (right to left): p(W;) is the Hessian at p;.

The method can be implemented using the power diagram and the
weighted Delaunay algorithms with Newton’s optimization method.



Optimal Transport map 51

(S,8) area element dA, (D2, )

Figure: The Riemann mapping ¢ : (S,g) — (D?, 1) pushes forward the
surface element dS; to the measure u on the planar disk, such that
¢4 dS; = p; the optimal transport map 7': D? — D? pushes forward u
to the Lebesgue measure L.



Optimal Transport map 52

Figure: The optimal transport map 7': (D?, u) — (D?, £) is equal to
the gradient of the Brenier potential function.

X.Gu,F.Luo, J.Sun and S.-T. Yau, “Variational Princples for Minkowski
type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere

Equations”, AJM 20(2), 383-398, April 2016.



Singularity Set of OT Maps 53

Figure: Figalli’s example: Singularity structure of an optimal
transportation map.

A.Figalli, Regularity properties of optimal maps between nonconver domains
in the plane, Comm. Partial Differential Fequations, 35(3):465-479, 2010.




Singularity Set of OT Map 54

Brenier potential singularity domain

Figure: The singularity sets of the optimal transport maps.



Transport Map - Heat Diffusion 55

The entropy of a distribution (£, pdz) is H(p) = [, plog pdz.
The entropy flow (v(z, t), p(z, t)) maximizes the entropy

Owp(x, t) = —Agp(, t). ‘v(:fc, t) = Vlogp(z, t) ‘

From the Langevin dynamics, the equivalent stochastic
differential equation (SDE) can be defined as:

dx = f(x, t)dt + g(t)dw,

Here, f(-, t), g(t) are the drift and the diffusion coefficients, and
w the standard Brownian motion. The discrete approximation
is:

Xprar = X¢ + £(xq, ) At + g(t)V Ale, e ~ N(0,1)
The SDE has a corresponding backward SDE.



Heat Diffusion 56
Forward SDE (data — noise)
dx_f(xtdt+g —)@

o 7 scoreunctlon
dx = [£(x,t) — g*(t)Vx logp (x)] dt + g(t) @

Reverse SDE (noise — data)

Intuitively, the stochastic differential equation method is equivalent to
adding white noise to an image multiple times until the image becomes
white noise; the reverse process is equivalent to reducing white noise from

an image until the original image is restored.



OT Map vs. Heat Diffusion 57
—

» Optimal transport map can transport any source measure
to the target measure; Heat diffusion maps source measure
to Gaussian distribution only.

» Geometric optimal transport map can discovers the
singularity set, which gives the support boundaries of the
target measure precisely; Heat diffusion obscures the
support boundaries of of the target measure;

» The support boundaries of the data distribution have
special physical/logical importance, ignoring or crossing
them will cause physical mistakes for generative models.



Singularity Set Experiment 58

Generative Model for human facial images

Data Manifold

Q LatentSpace QF

Figure: The blue line in €2 crosses the singularity set of the OT map,
the blue curve on ¥ crosses the boundary of the manifold.

Yau et al. “A geometric view of optimal transportation and generative
model”, arXiv:1710.05488.



The boundary of the data manifold
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(a) generated samples (b) curve crossing singularity

Figure: The heterochromia faces are on the boundary of the human

face image manifold, which are detected by the singularity set of the
geometric OT map.
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Text-to-Video Generative Model: Sora 60

Figure: The Sora video generation system from OpenAl emerged
unexpectedly, stunning the world.




Fundamental Framework 61
—

Large Vision Model (LVM) Large Language Model (LLM)

Image/Video Space Latent Feature Space Text Space

‘Whie Noise Space

= There are four
diffuser key prime spaces
oT and dual spaces
DiT ts of tokens
t GPT-4 1
Image/video Token Seq. Space Latent Token Seq. Space Noisy Latent Token Space

Text Token Seq. Space

4 Sora CLIP 4 T

DALLE-3 CLIP

Vision Transformer (ViT)

The top left 3 frames show a generative model in Sora, the diffuser ignores
the support boundaries of the latent distribution, thus induces mistakes.




Absence of Critical States 62

Figure: The video "Red Wine Breaking the Glass” generated by Sora.



Absence of Critical States 63
—

>

>

The vast majority of physical processes in nature involve
an alternation between steady states and critical states;

In steady states, system parameters change slowly, making
observational data easy to obtain. In critical states, the
system undergoes abrupt changes, catching observers off
guard, making it difficult to capture observational data.

Critical state samples in physical processes are often
distributed at the boundary of the data manifold, and
during the generation process, Sora tends to skip over
critical states.

Indeed, in human cognition, the most crucial observations
often pertain to the critical states with nearly zero
probability.



Across Critical States

Figure: Sora generated the video ”"Clone of puppies”




Across Critical States 65
—

» Sora generates a video of a group of puppies playing and
frolicking, sometimes hiding behind each other, sometimes
dispersing. In one moment of the video, the three puppies
on the screen suddenly become four.

» The images of the 4 (or 3) puppies form a connected
component on the manifold. At the boundary of the 4
puppy branch, there is a critical event: the 4 puppies are
partially occluded by each other, and only 3 puppies are
visible.

» Sora crosses the boundary of the two branches, 4 puppies
suddenly become 3.

» Geometric OT is able to detect the branch boundary and
reduce the physical mistakes.



Conclusion 66

—

» By manifold distribution principle, the fundamental tasks
for generative models are to learn the manifold structure
and learn the distribution;

» The manifold fitting method learns the manifold structure;
and the transport maps learn the distribution;

» Due the regularity theory of Monge-Ampere equation, the
transport maps may have singularity set;

» Some of the physical mistakes made by Sora are due to the

absence of critical states, because diffusion model obscures
the boundaries of the branches;

» Geometric variational method for optimal transport can
detect the boundaries precisely and has the potential to
correct mistakes of current generative models.



Part Ill: Dynamic Systems Modeling of
Artificial Intelligence via GLMY Theory

67



Nature is a complex system 68

—

» Complex systems are “complex” in
terms of the number of
components and interactions.

» A tumor contains many distinct
cell types that interact with each
other in a complicated way to
determine tumor behavior.

Metabolites

» Even for a cell, there are thousands
of genes, reactions and metabolites
inside, which function as a whole.

» In nature, complex systems occur
everywhere.

Single-cell analysis (Komarova 2016: Nature)



Dynamic Systems and Its Role in Al
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Network Modeling of Complex Systems

—

The Gut Microbiota

» Networks are fundamental to Winter
complex systems. Tier 3 ® PY Summer
» Networks can capture how e .

each component interacts with
every other component to

. Tier2 .o b4 0| Genus
shape systems dynamics. SO © —E = ; A
RIERN) 30 |Empedobacter " ®eesse
» Microbial interactions in the E 24;{;%;3
gut microbiota affect human o] Tt

health and diseases. Tert B g ‘/. ,.;g{‘:
» Some microbes, such as #59,
directly affect BMI, whereas
many others, like #4 and #63,

are linked with BMI through

COmpleX indirect pathWayS. Reanalysis of Davenport et al.” s (PLoS ONE, 2015) data.
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A Unified Statistical Mechanics Framework for Network Reconstruction

We integrate evolutionary game theory, allometric scaling law, graph theory, and
topology theory to build a unified framework for reconstructing informative,
dynamic, omnidirectional, and personalized networks.

This framework can address the following issues:
» Nonlinear interdependence among components constituting complex systems
» Causal relationships of variables inside and outside complex systems
» Information manifolds from one variable to the next
» Coalescing of all components into a multilayer and multiplex network

PCA is one commonly used approach for high-dimensional data analysis via
linear combination and reduction of variables into orthogonal PC units.

The new framework is more advantages over PCA by capturing all possible
causal interrelationships among all variables without information loss.
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« Differential equations: Q
» Ordinary differential equations (ODE)-simplest %
» Delay differential equations (DDE) é
» Hybrid differential equations (HDE) )5
» Partial differential equations (PDE) GO
» Stochastic differential equations (SDE) a
« Difference equations and state-space models
« Stochastic processes models: branching process etc.
» Agent-based models and cellular automata
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Informative, dynamic, omnidirectional, and

personalized networks




Application 73

Reconstructing Tri-dimensional Geometry Networks of
Biological Processes
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Networks across different spaces from genes to transcripts to proteins to
metabolites to microbiomes to phenotypes
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Reconstructing High-order Interaction Networks for
the gut microbiota

Davenport et al.’s (2015) data including 184
Amish samples from a founder, the
Hutterites
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Integrating GLMY Homology Theory*
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GLMY theory can better reveal how healthy subjects (Non-COPD) differ from
diseased groups (COPD).
They differ in the pattern of interdependence among lung function traits.

*Grigor'yan A, Lin Y, Muranov Y, Yau S-T (2020) Path complexes and their homologies. J Math Sci 248:
564-599.
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» Dynamic systems modeling is important for Al

» Network modeling is a key approach for characterizing
complex systems.

P> An integrative approach shows its power to reconstruct
informative, dynamic, omnidirectional, and personalized
networks from any data domains.

» The integration of GLMY theory can leverage network models
to reveal hidden patterns of complex systems from big data.
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