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Text-to-Video Generative Model: Sora

Figure: The Sora video generation system from OpenAI emerged
unexpectedly, stunning the world.

1



Sora as the World Simulator

Figure: Sora claims to be able to apply and understand the basic
model of the world, generating content based on descriptions.
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The Debate About Sora

Common Opinions
▶ AGI Arrival Advocates

▶ Sora has understood the world model, with correct methodology;
▶ Continuing to develop along this direction, general artificial

intelligence is just around the corner;
▶ Brute Force Advocates

▶ Sora still has flaws at present;
▶ With increased computational power and data, intelligence will

naturally emerge;
▶ Dead End Advocates

▶ Simulating the world using pixel generation is both a waste of
computational power and a dead end;

▶ Text is discrete, symbols are finite, and relatively simple; it can
be handled by generative AI;

▶ Sensory inputs are continuous and complex, with much greater
uncertainty and difficulty in prediction; generative AI is
inadequate for handling them.
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The Debate About Sora

Our Opinion
▶ AGI Arrival Advocates

▶ Sora approaches the intellectual level of preschool children, with
the developed language and visual centers in the brain;

▶ Still unable to approach the level of adult intelligence, abstract
thinking (mathematical logic) has not yet been established.

▶ Brute Force Advocates
▶ Combining large language models with large visual models has

great potential;
▶ Unable to model abstract thinking;
▶ It is necessary to organically integrate connectionism with

symbolicism;
▶ Dead End Advocates

▶ Sora’s direction is correct: combining large language models with
large visual models

▶ Further development: large language models + large visual
models + large mathematical models (abstract thinking).
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Sora as the World Simulator

Figure: Sora generates videos based on text prompt.
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Sora’s physical paradox

Figure: The video generated by Sora depicts a person ‘running in
opposite directions’.
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Sora’s physical paradox

Figure: The video generated by Sora shows ‘breaking through the
glass with red wine’.
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Sora’s physical paradox

Figure: The video generated by Sora depicts ‘clones of the puppy’.
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Sora Framework

Figure: The basic framework of Sora
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Sora Framework
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Sora Physical Paradox

▶ Sora combines with the large language model ChatGPT,
greatly enhancing the system’s performance

▶ Mistakes made by Sora when simulating the physical
world:

▶ Correlation vs Causality (joint distribution and mapping);
▶ Local Rationality vs Global Absurdity (infinite correlation

length);
▶ Missing Critical States (regularity of transmission mapping,

boundaries of data manifolds).

The methodology needs further development, incorporating
abstract thinking and large mathematical models.
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Framework

Prime Space A Prime Space B

Dual Token Seq Space A Dual Token Seq Space B

Transformer

▶ Four primary spaces and four dual token sequence spaces;
▶ The classical mathematical description of transformations

between primary spaces;
▶ The transformation between dual spaces is implemented by

the transformers;
▶ Is the diagram commutative?

VAE, LDM, DDPM, CLIP, DiT, ViT, OT.
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Why Exploring Manifolds?
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Manifold, Geometry and Physics

Figure: A 2D slice of a 6D Calabi–Yau quintic manifold
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The Concept of Manifold in Data Science

Figure: The happy Buddha surface is a two dimensional manifold
embedding in the three dimensional Euclidean space.
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The Concept of Manifold in Data Science

(a) manifold (b) latent space (c) another encoding

▶ Encoding: from the manifold to the latent space;
▶ Decoding: from the latent space to the manifold.

There are infinite many encoding maps.

16



Distribution on Manifold

distributions on manifold latent distributions

Distributions on data manifolds can be mapped to latent space distributions.
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Generative Models

Generative models utilize specified conditions and draw samples from a simple
distribution, such as white noise, as inputs. They then produce new samples
that mimic a target distribution, including outputs like images, videos and more.
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Autoencoder

Autoencoder consists of two symmetric deep neural networks. The widths of
the input and output layers are equal to the dimension of the ambient space
Rn , and the width of the bottleneck layer is equal to the dimension of the
latent space Rd . The first half of the network computes an encoding mapping
φθ, and the second half of the network computes the decoding mapping ψη.
Densely sample on the data manifold Σ ⊂ Rn to obtain {x1, x2, . . . , xN},
optimize the loss function,

min
θ,η

L(θ, η) = min
θ,η

N∑
i=1

∥xi − ψη ◦ φθ(xi)∥2.

if the loss is near 0, then the restriction of ψη ◦ φθ on Σ is identity, φθ and ψη

are homeomorphisms.
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Generative Adversarial Networks (GANs)

Figure: GANs: more creative than Autoencoders.

GANs have two neural networks contesting with each other in a zero-sum game
framework. The generator tries to produce data resembling a certain training
dataset, and the discriminator tries to distinguish between genuine data fake
data produced by the generator. Through this competitive process, GANs learn
to generate new data similar to the training set.

Image source: https://developer.ibm.com/articles/generative-adversarial-networks-explained/
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Diffusion Model

Diffusion models add Gaussian noise to an input image over T steps (forward
process), distinct from neural network operations. They’re trained to reverse
this noise, enabling new data generation through the reverse diffusion process.

Image source: https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/DDPM%20(v7).pdf

21

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/DDPM%20(v7).pdf


Modern ‘Large’ Image Generators

Train three sub-modules (separately) on billions of text-image pairs:
1 Text embedding: LLMs (ChatGPT), BERT...
2 Generation in latent spaces: Diffusion Models, Variational Autoencoders...
3 Decode the intermediate: Autoencoder, Super-Resolution...

High Degree of Freedom – Is the ‘manifold’ still in charge?

Image source: speech.ee.ntu.edu.tw/~hylee/ml/ml2023-course-data/StableDiffusion%20(v2).pdf
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Part I: Manifold Fitting
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Manifold Distribution Principle

The fundamental principle of data science:
Each natural concept corresponds to a dataset, where each sample
is a point in the dataset. The dataset is distributed near a
low-dimensional manifold, which is called the data manifold Σ.
The data manifold Σ is embedded in a high-dimensional ambient
space Rn . The dataset can be abstracted as a probability
distribution µ on the data manifold Σ.

Namely, sample can be modeled∗ as
yi = xi + ξi for i = 1, 2, ...,N

▶ xi ∈ Σ ⊂ Rn : unobserved sample from µ(Σ);
▶ ξi ∈ Rn , ξi ∼ ϕ

(n)
σ : ambient space noise;

▶ yi ∈ Rn , yi ∼ µ ⋆ ϕ
(n)
σ : observation.

∗Yao Z., Su J., Li B., and Yau S.T., Manifold Fitting, arXiv:2304.07680, 2023.
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Manifold Distribution Principle
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The hand written digits image set can be explained well as from a
distribution on a 2D surface embedded in the space of gray images.
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Manifolds in Data Science Perspective

Sample lies on known manifolds:

▶ Asymptotics: Central limit theorem on manifolds...
▶ Regression: Regression on Lie group, Fréchet regression...
▶ Classification: Principal boundaries∗, classify CY manifolds∗...
▶ Extensions of PCA:

▶ Nonlinear generalization: principal flows∗, principal submanifolds∗...
▶ PCA on shape spaces: principal nested spheres, torus PCA...

∗Recent work by Yao, Z., Yau, S.T. and other collaborators
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Extensions of PCA

Subspace of Maximal Variation
Find a reasonably smooth d-dim subspace Γ of Σ such that
▶ for any point x ∈ Σ, the tangent space TxΓ ⊂ TxΣ;
▶ TxΓ is ‘approximately’ the span space of the leading d

eigenvectors of the local covariance matrix at x;
▶ Γ roughly passing the ‘center’ of the observations.

For a stripe dataset on a sphere, we can find a curve that captures its
most of the variation and, if necessary, find a proper encoding for it.
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Connection to SYZ conjecture

▶ The concept of finding a sub-manifold of data lying on
manifolds is naturally rooted in a seemingly unrelated
conjecture, namely, the SYZ conjecture†. Without diving into
too many mathematical statements, the conjecture offers a
geometrical way of breaking a complicated space (manifold)
into its constituent parts.

▶ The problem is related to principal sub-manifold, which is an
empirical calculation of such decomposition under some
scenarios from the noisy data‡.

†Strominger, A., Yau, S.T., & Zaslow, E. Mirror symmetry is T-duality. Nuclear Physics B, 1996.
‡Yao, Z., Li, B., Tran, V.D. & Zhang, Z. Principal Sub-manifolds: New Theory and Methods. Manuscript,

2023.
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Manifolds in Statistics Perspective

Data manifold is unknown:
▶ Manifold Learning (Dimension Reduction):

Find a low dimensional linear representation.
▶ Manifold Fitting: Fit manifolds in the same space.

Genovese et al (2012 a,b)，Fefferman et al (2016),
Mohammed/Narayanan (2017), Yao/Xia (2019), Fefferman et al (2021),
Yao/Su/Li/Yau (2023)§, Yao/Su/Yau (2024)¶, Yao/Li/Lu/Yau (2024)‖.

§Manifold fitting, arXiv:2304.07680.
¶Manifold fitting with CycleGAN, PNAS, 2024.
‖Single-Cell Analysis via Manifold Fitting: A New Framework for RNA Clustering and Beyond, revise at PNAS.
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Overall Idea of Manifold Fitting

▶ Find the dominant direction;
▶ ‘Push’ noisy points along the direction;
▶ Obtain a manifold estimator Σ̂ that

▶ is a smooth manifold;
▶ closely represents Σ;
▶ remains in the same ambient space.
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CycleGAN/Manifold Fitting Framework†

GANs can be modified to fit data manifolds:

Z
z

ẑ

GZ ỹ

ŷDZ

Y

FM DY

yGYz̃

⋆

▶ Z ⊂ Rd : latent space
▶ Y ⊂ Rn : ambient space
▶ GZ , GY : generators
▶ DZ , DY : discriminators
▶ FM: manifold fitting sub-module

Main objective∗: Let Z ∼ Unif(0, 1)d ,

min
GZ∈C(GZ)

Div(GZ(Z ) ⋆ ϕσ, ν),

and the data manifold can be estimated with the generators.

∗
ν: the distribution of yi ; ϕσ : the noise distribution; ⋆: convolution; Div: certain divergence.

†Yao, Z., Su, J., and Yau, S.T., Manifold fitting with CycleGAN, PNAS, Jan, 2024.
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Role of Generators

Solve (non-sample version):

G∗
Z ,G∗

Y = arg max
GZ ,GY

min
FM,DX ,DY

L(GZ ,GY ,FM,DX ,DY).

▶ Manifold estimators (sample-based):

M̃ = Ĝ∗
Z(Z) or M̂ = FM(M̃) estimates M.

▶ Noise canceling:

Ĝ∗
Z ◦ Ĝ∗

Y : yi 7→ ŷi ∈ M̃.

▶ Nonlinear interpolating:

Ĝ∗
Z

(
tĜ∗

Y(yi) + (1− t)Ĝ∗
Y(yj)

)
nonlinear interpolates

between ŷi and ŷj .
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A Toy Example – Fully Control on Data Manifold

(a) (b)

(c)

(a) Images of a rotating simple shape, with ambient space noise.
(b) Denoised version of (a) with CycleGAN/Manifold Fitting model.
(c) Nonlinear interpolation of two examples with red boxes in (a).
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Fitting in Biology Data – scRNA (single-cell) Example 

show transcriptional fluctuation of certain pluripotency factors

such as Nanog (Chambers et al., 2007; Kalmar et al., 2009),

Dppa3 (Hayashi et al., 2008), and Rex1 (Zfp42) (Toyooka et al.,

2008), unlike mESCs maintained in 2i conditions. These fluctua-

tions have been proposed to represent a dynamic equilibrium

between self-renewing and differentiation-poised states and

thus be instrumental in regulating exit from pluripotency (Chang

et al., 2008). However, others speculate that they arise through

the use of fluorescent reporter systems and therefore are of un-

clear biological relevance (Chang et al., 2008; Faddah et al.,

2013; Reynolds et al., 2012). The presence of transcriptionally

heterogeneous subpopulations, prevalent bivalent chromatin

domains, increased methylation content, and reduced RNA po-

lymerase pausing compared to 2i mESCs has led to the notion

that serum-maintained mESCs exist in a metastable pluripotent

state (Marks et al., 2012), implying higher transcriptional cell-to-

cell variation than the 2i state. Recently, a rare population of

mESCs expressing markers of the two-cell stage of embryonic

development was described (Macfarlan et al., 2012). These so-

called 2C-like cells express the MERVL endogenous retrovirus

and chimeric transcripts that arise via retroviral insertion in

different places in the genome, and they are uniquely capable

of differentiating into extraembryonic tissues. Our molecular un-

derstanding of the divergent pluripotent states, however, re-

mains quite limited.

Single cell RNA-sequencing technology is increasingly used

to deconstruct heterogeneous populations, lineage trajectories,

and determinants of cell fate, questions that are central to the

stem cell field (Etzrodt et al., 2014). Recently, Kumar et al.

(2014) reported the single-cell transcriptome of serum/LIF-main-

tained mESCs and global transcriptome changes resulting from

a range of chemical and genetic perturbations. Here, we per-

formed single cell RNA-sequencing of mESCs cultured in

serum/LIF, 2i/LIF, and the alternative ground state, a2i/LIF.

This approach allowed us to compare the subpopulation struc-

tures and provide a deep characterization of cell-to-cell variation

in gene expression levels across these three pluripotent states.

2i alternative 2i (a2i)    lif

Pease et al., 1990
Xu et al., 2001

Ying et al., 2008
Li et al., 2008

Shimizu et al., 2012

chip 1 - 81 cells
chip 2 - 90 cells
chip 3 - 79 cells 

chip 1 - 82 cells
chip 2 - 59 cells
chip 3 - 72 cells
chip 4 - 82 cells

chip 1 - 93 cells
chip 2 - 66 cells

more differentiation permissive
more heterogeneous

N2B27 basal media
inhibitors of:

Mek1/2 (PD0325901)
+ LIF

DMEM
15% fetal bovine serum 
+ leukemia inhibitory factor (LIF)

ground pluripotent state
more homogeneous

not well characterized

N2B27 basal media
inhibitors of:

Src  (CGP77675)
+ LIF

mouse embryonic stem cells

culture condition

components 
of medium

cell characteristics

references

number of cells

Figure 1. Experimental Scheme of Hybrid

mESCs in Three Culture Conditions

Schematic of experimental setup and cell culture

conditions used in our study.

RESULTS

To examine features of gene expression

heterogeneity across pluripotent states,

we cultured an F1 hybrid (C57BL/6Ncr

male x 129S6/SvEvTac female) mESC

cell line (George et al., 2007) in three

different conditions: (1) three replicates

of serum + LIF, (2) four replicates of 2i +

LIF, and (3) two replicates of a2i + LIF,

which we will refer to as serum (serum1,

serum2, and serum3), 2i (2i1, 2i2, 2i3,

and 2i4) and a2i (a2i1 and a2i2) hence-

forth (Figure 1). In total, we collected

704 single-cell transcriptomes across

these three conditions by using the Fluidigm C1 system and

applying the SMARTer Kit to obtain cDNA and the Nextera XT

Kit for Illumina library preparation.

After quality control analysis on each individual cell (Figures

S1A–S1H), 250 serum cells, 295 2i cells, and 159 a2i cells re-

mained. On average, we sequenced over 9 million reads per

cell. Over 80% of reads mapped to the Mus musculus genome

(GRCm38) and over 60% to exons (mapping overview in Figures

S1G and S1H). We also performed standard bulk RNA-

sequencing for each condition. As in previous studies, when

we averaged gene expression levels across the single cells pro-

filed in each condition, we observed that the mean expression

levels recapitulated the bulk gene expression levels with a

Spearman rank correlation coefficient of around 0.9 (Figures

S1D and S1E).

Transcriptome-wide Cell-to-Cell Variation Is Similar
across the Three Culture Conditions
An advantage of the single-cell approach is that we can study the

distribution of expression levels across the population, thereby

capturing cell-to-cell variability in gene expression (Figure 2A).

To compare global levels of gene expression heterogeneity

between the three different culture conditions, we used the coef-

ficient of variation (CV) of normalized read counts (Figure S2).

However, the CV of a gene depends strongly on its mean expres-

sion level and length, making it difficult to interpret differences

between conditions. To account for the confounding factor of

expression level, we therefore developed a measure of cell-to-

cell variation by calculating the distance between the squared

CV of each gene and a running median (Figures S2E and S2F).

This is derived from the scatterplot of the mean normalized

read counts versus the squared CV values, as in (Newman

et al., 2006). We refer to this expression-level normalized mea-

sure of gene expression heterogeneity as distance to themedian

(DM) (refer toSupplemental Experimental Procedures for details).

Given the heterogeneous morphology of mESCs cultured in

serum (Marks et al., 2012; Toyooka et al., 2008), as well as the

472 Cell Stem Cell 17, 471–485, October 1, 2015 ª2015 The Authors

The Kolodziejczyk dataset‡ : 704 cells with 13,473 features in 3 classes

Focuses:
▶ Utilizing the potential molecular mechanisms governing cell differentiation

and maintenance.
▶ Keeping the three classes of Mouse embryo stem cells.
▶ Improving other unsupervised clustering methods with the help of fitting.

‡Kolodziejczyk A A, et al. Single cell RNA-sequencing of pluripotent states unlocks modular transcriptional
variation. Cell Stem Cell, 2015.
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Manifold Fitting in scRNA
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Manifold fitting methods improve the spatial distribution of the data and the
unsupervised clustering score for this data after fitting (right), significantly
higher than the other methods without using fitting (left).
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Manifold Fitting in scRNA

Accuracy (measured by ARI§) in clustering 25 scRNA datasets.
Dataset scDHA¶ Raw Manifold Fitting Dataset scDHA Raw Manifold Fitting

EMTAB2600 1.00 1.00 SRP041736 0.85 0.91
EMTAB3321 0.86 0.91 EGAD00001010074 0.46 0.55

GSE36552 0.78 0.86 GSE202352 0.42 0.73
GSE59739 0.64 0.88 16-WM8C 0.09 0.80
GSE60361 0.82 0.87 GSE132042 0.60 0.84
GSE67835 0.72 0.75 GSE132042-Liver 0.46 0.67
GSE81252 0.37 0.41 Midbrain 0.51 0.93
GSE81608 0.53 0.82 GSE81547 0.42 0.46
GSE83139 0.7 0.83 E-MTAB-11265 0.65 0.75

GSE84133-M 0.47 0.67 MAC-Bladder 0.51 0.57
GSE85241 0.92 0.87 Local11 0.47 0.82
GSE103322 0.59 0.59 MAC-Brain 0.13 0.83
GSE108097 0.26 0.39 Average 0.57 0.75

Manifold fitting can significantly improve the clustering result.

§Adjusted Rand Index: a measure of the similarity between clustering results and the ground truth.
¶A leading scRNA clustering method: Tran, Duc, et al. (2021). Fast and precise single-cell data analysis using

a hierarchical autoencoder. Nature communications.
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Single-Cell Analysis via Manifold Fitting (scAMF)‖

Raw Data

Cells

G
en

es

Calculating the
Shared Nearest Neighborhood

Transformation

Logarithmic

      Cosine

Value-to-rank Fitting the Points

Manifold Fitting

  Fitted Data
(Logarithmic)

  Fitted Data
     (Cosine)

   Fitted Data
(Value-to-rank)

   Validation ...

  Fitted Data
   (Selected)

      Candidate 
clustering results

Final Clustering
     (Selected)

+

Output

Multi-Model   
  Clustering

Unsupervised Clustering and Validation.

The scAMF pipeline processes raw data through transformations and denoising
via manifold fitting, followed by unsupervised clustering. It concludes with a
validation step, outputting the final clustering results.

‖Yao Z., Li B., Lu Y., and Yau S.T., Single-Cell Analysis via Manifold Fitting: A New Framework for RNA
Clustering and Beyond, revision at PNAS.
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Clustering with and without Manifold Fitting
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Without manifold fitting With manifold fittingDatasets:

Manifold fitting helps in data analysis!
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Outlook – Fields Without ‘Billion-scale’ Data

Data Manifolds + Data Sciences
▶ New Thinking:

▶ Metric learning on data manifolds;
▶ Generalized dimension reduction methods on manifolds;
▶ ETC. ...

▶ Application:
▶ CellScape: Enhanced cell atlas builder;
▶ Health: Enhanced precision medicine and sub-type analysis;
▶ ETC. ...

▶ Collaborator’s Group: Zhigang Yao, National U of Singapore
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Part II: Geometric View of Optimal
Transport
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Major Tasks of Deep Learning

Major Tasks of DL
According to manifold distribution principle, the major tasks of
deep learning are to learn

1. Data manifold structure by manifold fitting;
2. Data distribution by transportation maps or plans;

Transport Maps
The data distribution (Ω, µ) is transported to the Gaussian or
uniform distributions (Ω∗, ν) via various algorithms, mostly
diffusion maps or optimal transport maps.
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Generative Model

Generator

Noise ∼ N(0, 1)

Figure: Generative Model: the input is a Gaussian noise image, the
output is a realistic photo (or video), such as Sora.
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Generative Adversarial Networks (GAN)

Encoder Decoder

Generator

Training Data Set

Latent Distribution

White Noise

Discriminator

Transport

Generated Data

Figure: Generative Adversarial Networks. The uniform distribution
(white noise) is transported to the latent distribution.
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Transport Map

source data distribution µ target uniform distribution ν

Figure: Transport map T : D2 → D2 is an automorphism,
µ 7→ ν = T#µ�maps the data distribution µ (red dots)to the uniform
distribution.
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Optimal Transport Map

Problem (Monge)
Given compact metric spaces Ω and Ω with measures
dµ(x) = f(x)dx and dν(y) = g(y)dy, where µ(Ω) = ν(Ω), and
given a transport map T : Ω → Ω∗, satisfying∫

T−1(E)
dµ =

∫
E

dν, ∀ Borel E ⊂ Ω∗,

Then T is measure-preserving, denoted as Tµ=ν . Given a
transport cost c : Ω× Ω∗ → R, we seek the optimal transport
map.

min
T#µ=ν

∫
Ω

c(x,T(x))dµ(x).
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Optimal Transport map
Theorem (Brenier)
If the cost function is the square of the Euclidean distance, then
the optimal transport map T is the gradient map of the Brenier
potential function u : Ω → Ω∗, T = ∇u, where u satisfies the
Monge-Ampère equation:

det
(

∂2u
∂xi∂xj

)
=

f(x)
g ◦ ∇u(x) .

The Monge-Ampère equation is a strongly nonlinear elliptic
equation.

S.-Y. Cheng, S.-T. Yau, On the regularity of the monge-ampère equation
det(∂2u/∂xi∂xj) = f(x, u), Communications on Pure and Applied
Mathematics, 1977.
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Minkowski Theorem
Theorem (Minkowsi)
Given {(Ai, ni)}k

i=1, such that
ni’s can not be contained in any
hemi-sphere and

k∑
i=1

Aini = 0, Ai > 0,

then the convex polytope P with
face normals ni’s and face areas
Ai’s exists and is unique upto a
translation.

ni

FiAi

Figure: Minkowski Theorem.

S.-Y. Cheng, S.-T. Yau, On the regularity of the Solution of the
n-Dimensional Minkowski Problem, Communications on Pure and Applied
Mathematics, 1976.
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Alexandrov Theorem

Theorem (Alexadnrov 1950)
Ω is a compact convex domain
in Rn, for each face Fi, the
normal ni and the projected
area Ai is given,∑

i
Ai = vol(Ω),

then the convex polytope exists
and is unique upto a vertical
translation.

Ω
Wi

Fi

πj

uh(x)

Figure: Alexandrov theorem.
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Alexandrov Theorem
▶ By taking to the limits, the Minkowski theorem and the

Alexandrov theorem determine the shape of a convex
surface by prescribing the Gaussian curvatures.

▶ Both Brenier theorem and the Alexandrov theorem are
reduced to the Monge-Ampère equation, therefore
equivalent.

▶ Alexandrov’s original proof is based on algebraic topology,
not constructive.

▶ My students and I developed a convex variational approach
to solve the Alexandrov problem.

X.Gu,F.Luo, J.Sun and S.-T. Yau, “Variational Princples for Minkowski
type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere
Equations”, AJM 20(2), 383–398, April 2016.
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Geometric Variational Method for OT Map
u u∗

∇u

Wi
pi

πi
π∗i

Ω, T
Ω∗, T ∗

proj proj∗

Figure: Discrete OT map (left to right): maps Wi to pi; Discrete
Monge-Ampère equation (right to left): µ(Wi) is the Hessian at pi.
The method can be implemented using the power diagram and the
weighted Delaunay algorithms with Newton’s optimization method.
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Optimal Transport map

(S, g) area element dAg (D2, µ) (D2,L)

Figure: The Riemann mapping φ : (S, g) → (D2, µ) pushes forward the
surface element dSg to the measure µ on the planar disk, such that
φ#dSg = µ; the optimal transport map T : D2 → D2 pushes forward µ
to the Lebesgue measure L.
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Optimal Transport map

Figure: The optimal transport map T : (D2, µ) → (D2,L) is equal to
the gradient of the Brenier potential function.
X.Gu,F.Luo, J.Sun and S.-T. Yau, “Variational Princples for Minkowski
type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere
Equations”, AJM 20(2), 383–398, April 2016.
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Singularity Set of OT Maps

x0

x1

γ0

γ1
γ2

γ3

Ω

∂u

Λ

Figure: Figalli’s example: Singularity structure of an optimal
transportation map.

A.Figalli, Regularity properties of optimal maps between nonconvex domains
in the plane, Comm. Partial Differential Eequations, 35(3):465-479, 2010.
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Singularity Set of OT Map

Brenier potential singularity domain range

Figure: The singularity sets of the optimal transport maps.
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Transport Map - Heat Diffusion

The entropy of a distribution (Ω, ρdx) is H(ρ) =
∫
Ω ρ log ρdx.

The entropy flow (v(x, t), ρ(x, t)) maximizes the entropy

∂tρ(x, t) = −∆xρ(x, t). v(x, t) = ∇ log ρ(x, t) .

From the Langevin dynamics, the equivalent stochastic
differential equation (SDE) can be defined as:

dx = f(x, t)dt + g(t)dw,

Here, f(·, t), g(t) are the drift and the diffusion coefficients, and
w the standard Brownian motion. The discrete approximation
is:

xt+∆t = xt + f(xt, t)∆t + g(t)
√
∆tε, ε ∼ N (0, I)

The SDE has a corresponding backward SDE.
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Heat Diffusion

Intuitively, the stochastic differential equation method is equivalent to
adding white noise to an image multiple times until the image becomes
white noise; the reverse process is equivalent to reducing white noise from
an image until the original image is restored.
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OT Map vs. Heat Diffusion

▶ Optimal transport map can transport any source measure
to the target measure; Heat diffusion maps source measure
to Gaussian distribution only.

▶ Geometric optimal transport map can discovers the
singularity set, which gives the support boundaries of the
target measure precisely; Heat diffusion obscures the
support boundaries of of the target measure;

▶ The support boundaries of the data distribution have
special physical/logical importance, ignoring or crossing
them will cause physical mistakes for generative models.
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Singularity Set Experiment
Generative Model for human facial images
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Figure: The blue line in Ω crosses the singularity set of the OT map,
the blue curve on Σ crosses the boundary of the manifold.

Yau et al. “A geometric view of optimal transportation and generative
model”, arXiv:1710.05488.
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The boundary of the data manifold

(a) generated samples (b) curve crossing singularity
Figure: The heterochromia faces are on the boundary of the human
face image manifold, which are detected by the singularity set of the
geometric OT map.
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Text-to-Video Generative Model: Sora

Figure: The Sora video generation system from OpenAI emerged
unexpectedly, stunning the world.
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Fundamental Framework

DALLE-3 CLIP
Vision Transformer (ViT)

Text Token Seq. Space

Text Space

GPT-4

There are four

key prime spaces

and dual spaces

consists of tokens
.........

Image/Video Space Latent Feature Space Whie Noise Space

diffuserVAE

Image/video Token Seq. Space Latent Token Seq. Space

OT

Noisy Latent Token Space

Sora CLIP

Large Vision Model (LVM) Large Language Model (LLM)

DiT

DiT

The top left 3 frames show a generative model in Sora, the diffuser ignores
the support boundaries of the latent distribution, thus induces mistakes.
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Absence of Critical States

Figure: The video ”Red Wine Breaking the Glass” generated by Sora.
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Absence of Critical States

▶ The vast majority of physical processes in nature involve
an alternation between steady states and critical states;

▶ In steady states, system parameters change slowly, making
observational data easy to obtain. In critical states, the
system undergoes abrupt changes, catching observers off
guard, making it difficult to capture observational data.

▶ Critical state samples in physical processes are often
distributed at the boundary of the data manifold, and
during the generation process, Sora tends to skip over
critical states.

▶ Indeed, in human cognition, the most crucial observations
often pertain to the critical states with nearly zero
probability.
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Across Critical States

Figure: Sora generated the video ”Clone of puppies”
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Across Critical States

▶ Sora generates a video of a group of puppies playing and
frolicking, sometimes hiding behind each other, sometimes
dispersing. In one moment of the video, the three puppies
on the screen suddenly become four.

▶ The images of the 4 (or 3) puppies form a connected
component on the manifold. At the boundary of the 4
puppy branch, there is a critical event: the 4 puppies are
partially occluded by each other, and only 3 puppies are
visible.

▶ Sora crosses the boundary of the two branches, 4 puppies
suddenly become 3.

▶ Geometric OT is able to detect the branch boundary and
reduce the physical mistakes.
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Conclusion

▶ By manifold distribution principle, the fundamental tasks
for generative models are to learn the manifold structure
and learn the distribution;

▶ The manifold fitting method learns the manifold structure;
and the transport maps learn the distribution;

▶ Due the regularity theory of Monge-Ampère equation, the
transport maps may have singularity set;

▶ Some of the physical mistakes made by Sora are due to the
absence of critical states, because diffusion model obscures
the boundaries of the branches;

▶ Geometric variational method for optimal transport can
detect the boundaries precisely and has the potential to
correct mistakes of current generative models.
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Part III: Dynamic Systems Modeling of
Artificial Intelligence via GLMY Theory
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Nature is a complex system

▶ Complex systems are “complex” in
terms of the number of
components and interactions.

▶ A tumor contains many distinct
cell types that interact with each
other in a complicated way to
determine tumor behavior.

▶ Even for a cell, there are thousands
of genes, reactions and metabolites
inside, which function as a whole.

▶ In nature, complex systems occur
everywhere.

Single-cell analysis (Komarova 2016: Nature)
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Dynamic Systems and Its Role in AI
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Network Modeling of Complex Systems

▶ Networks are fundamental to
complex systems.

▶ Networks can capture how
each component interacts with
every other component to
shape systems dynamics.

▶ Microbial interactions in the
gut microbiota affect human
health and diseases.

▶ Some microbes, such as #59,
directly affect BMI, whereas
many others, like #4 and #63,
are linked with BMI through
complex indirect pathways.

The Gut Microbiota

Reanalysis of Davenport et al.’s (PLoS ONE, 2015) data.
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Framework for Network Reconstruction

A Unified Statistical Mechanics Framework for Network Reconstruction
We integrate evolutionary game theory, allometric scaling law, graph theory, and
topology theory to build a unified framework for reconstructing informative,
dynamic, omnidirectional, and personalized networks.
This framework can address the following issues:

▶ Nonlinear interdependence among components constituting complex systems

▶ Causal relationships of variables inside and outside complex systems

▶ Information manifolds from one variable to the next

▶ Coalescing of all components into a multilayer and multiplex network

PCA is one commonly used approach for high-dimensional data analysis via
linear combination and reduction of variables into orthogonal PC units.
The new framework is more advantages over PCA by capturing all possible
causal interrelationships among all variables without information loss.
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Dynamic Systems and Dynamic Models of Networks in AI 72



Application

Reconstructing Tri-dimensional Geometry Networks of
Biological Processes

Networks across different spaces from genes to transcripts to proteins to
metabolites to microbiomes to phenotypes
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Application

Reconstructing High-order Interaction Networks for
the gut microbiota
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Integrating GLMY Homology Theory∗

GLMY theory can better reveal how healthy subjects (Non-COPD) differ from
diseased groups (COPD).
They differ in the pattern of interdependence among lung function traits.

∗Grigor’yan A, Lin Y, Muranov Y, Yau S-T (2020) Path complexes and their homologies. J Math Sci 248:
564-599.
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Concluding Remarks

▶ Dynamic systems modeling is important for AI.
▶ Network modeling is a key approach for characterizing

complex systems.
▶ An integrative approach shows its power to reconstruct

informative, dynamic, omnidirectional, and personalized
networks from any data domains.

▶ The integration of GLMY theory can leverage network models
to reveal hidden patterns of complex systems from big data.
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