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Lecture 1: Clifford algebras: basic notions

Consider now a system of n units ι1, ι2, . . . , ιn such that the
multiplication of any two of them is polar; that is, ιr ιs =
−ιs ιr .

— William Kingdon Clifford, 1878

In this lecture we define the Clifford algebra of a quadratic vector space and view it from three dif-
ferent points of view: the contemporary categorical formulation, Clifford’s original formulation and as
a quantisation of the exterior algebra.

1.1 Quadratic vector spaces

Throughout K = R or C. Let V be a finite-dimensional vector space over K, let B : V ×V →K be a (pos-
sibly degenerate) symmetric bilinear form and let Q : V →K denote the corresponding quadratic form,
defined by Q(x) = B(x, x). One can recover B from Q by polarisation, namely

(1) B(x, y) = 1
2

�
Q(x + y)−Q(x)−Q(y)

�
.

The pair (V,Q) is called a quadratic vector space (overK). They are the objects of a category QVec with
morphisms (V,QV) → (W,QW) given by linear maps f : V → W such that f ∗QW = QV, or explicitly that
QW( f (x)) = QV(x) for all x ∈ V. The zero vector space with the zero quadratic form is an initial object
in QVec. The absence of terminal objects and (co)products is due to the fact that projections do not
generally preserve norms.

We will see that the Clifford algebra C�(V,Q) of a quadratic vector space (V,Q) is an associative,
unitalK-algebra, with a natural filtration and a Z2-grading, and moreover that the assignment (V,Q) �→
C�(V,Q) is functorial.

There are several ways to understand C�(V,Q): from the very abstract to the very concrete. The
latter is good for computations, whereas the former is good to prove theorems which may free us from
computations. Therefore we will look at C�(V,Q) in several ways, starting with the categorical definition.

j All our associative algebras are unital, unless otherwise stated!

1.2 The Clifford algebra, categorically

Let (V,Q) be a quadratic vector space and let A be an associativeK-algebra. We say that aK-linear map
φ : V → A is Clifford if for all x ∈ V,

(2) φ(x)2 =−Q(x)1A ,

where 1A is the unit of A. Clifford maps from a fixed quadratic vector space (V,Q) are the objects of a
category Cliff(V,Q), where a morphism from V → A to V → A� is given by a commuting triangle

(3) V

����
��

��
�

���
��

��
��

A
f �� A�

with f : A → A� a homomorphism of associative algebras.
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1.2.1 Definition

Definition 1.1. The Clifford algebra — if it exists — is an initial object in Cliff(V,Q). In other words,
it is given by an associative algebra C�(V,Q) together with a Clifford map i : V → C�(V,Q) such that for
every Clifford map φ : V → A there is a unique algebra morphism Φ : C�(V,Q) → A making the following
triangle commute:

(4) V
i

����
��

��
��

�
φ

���
��

��
��

C�(V,Q)
Φ �� A

Remark 1.2. There are several paraphrases of the defining property of the Clifford algebra. One can say
that every Clifford map factors uniquely via the Clifford algebra, or that the Clifford algebra is universal
for Clifford maps, or that every Clifford maps extends uniquely to a morphism of associative algebras
from the Clifford algebra.

Remark 1.3. The mathematical literature is replete with such universal definitions. For example, if g is
a Lie algebra and A is an associative algebra (over the same ground field) then one can consider linear
maps φ : g→ A such that, for all X,Y ∈ g,

(5) φ(X)φ(Y)−φ(Y)φ(X) =φ([X,Y])

Although it is not standard terminology, let us call such maps Lie within the confines of this remark.
Then the universal enveloping algebra Ug of g is universal for Lie maps; in other words, Ug is an associ-
ative algebra with a Lie map i : g→ Ug extending any Lie map φ : g→ A uniquely; i.e., there is a unique
associative algebra morphism Φ : Ug→ A such that the following triangle commutes:

(6) g

i

����
��

��
�� φ

���
��

��
��

Ug Φ �� A

In other words, Ug is what allows us to “multiply” elements of g as if they were matrices. One constructs
the universal enveloping algebra as a quotient of the tensor algebra Tg of g by the 2-sided ideal gener-
ated by X⊗Y−Y⊗X− [X,Y] for all X,Y ∈ g. The construction of the Clifford algebra will proceed along
similar lines.

Initial objects in a category are unique up to unique isomorphism, hence the following should not
be too surprising.

Proposition 1.4. The Clifford algebra C�(V,Q), if it exists, is unique up to a unique isomorphism.

Proof. Let i : V → C and i � : V → C� be two Clifford algebras. Then since C is a Clifford algebra, there is a
unique morphism Φ : C → C� making the following triangle commute

(7) V
i

����
��

��
�

i �

���
��

��
��

C
Φ �� C�

whereas since C� is a Clifford algebra, there is a unique morphism Φ� : C� → C making the following
triangle commute

(8) V
i �

����
��

��
�

i

���
��

��
��

C� Φ�
�� C
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Now the composition Φ� ◦Φ : C → C makes the following triangle commute

(9) V
i

����
��

��
�

i

���
��

��
��

C
Φ�◦Φ �� C

and so does the identity 1C : C → C, whence Φ� ◦Φ = 1C. A similar argument shows that Φ ◦Φ� = 1C� ,
whence Φ : C → C� is an isomorphism.

Assuming for a moment that Clifford algebras exist, we have the following

Proposition 1.5. The Clifford algebra defines a functor C� from QVec to the category of associative al-
gebras.

Proof. Indeed, let (V,QV) and (W,QW) be quadratic vector spaces and iV : V → C�(V,QV) and iW : W →
C�(W,QW) the corresponding Clifford algebras. Now let f : V → W with f ∗QW = QV be a morphism in
QVec and consider iW ◦ f : V → C�(W,QW). We observe that it is a Clifford map:

(10) (iW ◦ f )(x)2 = f (x)2 =−QW( f (x))1W =−QV(x)1W ,

where 1W is the identity in C�(W,QW). Therefore by universality, there is a unique morphism C�( f ) :
C�(V,QV) → C�(W,QW). It is clear that if 1V : V → V is the identity transformation, then uniqueness
forces C�(1V) = 1C�(V,Q) : C�(V,Q) → C�(V,Q) to be the identity morphism (not to be confused with the
unit 1 in the Clifford algebra). Similarly, if (X,QX) is a third quadratic vector space and g : W → X with
g∗QX = QW, then universality gives a morphism C�(g ) : C�(W,QW) → C�(X,QX) and the composition
C�(g ) ◦C�( f ) has to agree (again by uniqueness) with C�(g ◦ f ) where g ◦ f : V → X is the composition
Clifford map.

Remark 1.6. The universal enveloping algebra also defines a functor from the category of Lie algebras
to the category of associative algebras which is left adjoint to the functor which sends an associative
algebra to the Lie algebra it becomes under the commutator. The functor defined by the Clifford algebra
does not seem to be an adjoint functor in any interesting way.

1.2.2 Construction

Let T•V = �
p≥0 V⊗p denote the tensor algebra of V, where V⊗0 = K, V⊗1 = V and V⊗p is spanned by

monomials x1 ⊗ x2 ⊗ · · ·⊗ xp with xi ∈ V. The multiplication V⊗p ×V⊗q → V⊗(p+q), given by extending
bilinearly the concatenation of monomials

(11) (x1 ⊗ · · ·⊗xp )(y1 ⊗ · · ·⊗ yq ) = x1 ⊗ · · ·⊗xp ⊗ y1 ⊗ · · ·⊗ yq ,

makes T•V a graded algebra. The identity is given by 1 ∈ V⊗0. The tensor algebra is universal for linear
mapsφ : V → A, where A is an associative algebra. Indeed, any such map extends uniquely to an algebra
morphism Φ : TV → A defined by Φ(λ) = λ1A for λ ∈K, Φ(x) =φ(x) for x ∈ V, and more generally

(12) Φ(x1 ⊗ · · ·⊗xp ) =φ(x1) · · ·φ(xp ).

In fact, the tensor algebra is the free associative algebra generated by V. The tensor algebra defines a
functor T from the category of vector spaces to the category of associative algebras, which is left adjoint
to the forgetful functor going in the opposite direction.

By definition, the Clifford algebra C�(V,Q) is universal for Clifford maps to associative algebras.
Since the tensor algebra is universal for linear maps to associative algebras, we expect C�(V,Q) to be
a quotient of TV by an ideal which imposes the condition that a linear map is Clifford. To this end, let us
consider the 2-sided ideal IQ of TV generated by elements of the form x⊗x+Q(x) ∈ V⊗2⊕V⊗0. Explicitly,
IQ is spanned (overK) by elements of the form

(13) x1 ⊗ · · ·⊗xp ⊗ (z ⊗ z +Q(z))⊗ y1 ⊗ · · ·⊗ yq
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for some p, q and xi , y j , z ∈ V.
If φ : V → A is a Clifford map and �Φ : TV → A the unique extension of φ to the tensor algebra, then it

is easy to see that �Φ annihilates IQ precisely because φ is Clifford:

(14) �Φ(Θ⊗ (z ⊗ z +Q(z))⊗Ξ) = �Φ(Θ)
�
φ(z)2 +Q(z)1A

� �Φ(Ξ) = 0,

for any Θ,Ξ ∈ TV. Hence �Φ factors through a unique map Φ : TV/IQ → A from the quotient. We define
C�(V,Q) = TV/IQ to be the quotient algebra, and the map i : V → C�(V,Q) is defined by the commutativ-
ity of the triangle

(15) V ��

i ����
��

��
��

� TV

��
C�(V,Q)

We remark that i is injective because the ideal only “kicks in” at V⊗≥2, whence in many cases we will not
write i explicitly and think of V as sitting inside C�(V,Q).

Since the ideal IQ is not homogeneous, C�(V,Q) does not inherit a grading from TV, but since the
ideal has even parity, C�(V,Q) does inherit a Z2-grading. We will see this later from a different point of
view, where we also show that it inherits a filtration from the canonical filtration of TV.

1.3 The Clifford algebra as Clifford would have written it

We now discuss C�(V,Q) in a way more suitable to computations. This is the way that Clifford introduced
the algebras and the way they are still taught in Physics courses, following Dirac.

1.3.1 Clifford algebra in terms of generators and relations

We start by choosing aK-basis (ei ) for V, where i = 1, . . . ,n = dimV, relative to which B(ei ,e j ) = Bi j = B j i .
Let Γi denote the image of ei under i : V → C�(V,Q). Then the Γi satisfy the relation

(16) ΓiΓ j +Γ jΓi =−2Bi j 1,

where 1 is the unit in the Clifford algebra. The Clifford algebra is thus the associative algebra generated
by the Γi subject to the above relation. This is enough to write down the product of any two generators:

(17) ΓiΓ j = 1
2 (ΓiΓ j −Γ jΓi )+ 1

2 (ΓiΓ j +Γ jΓi ) = Γi j −Bi j 1 ,

where we have introduced the notation Γi j = 1
2 (ΓiΓ j −Γ jΓi ). It seems to be a new object, since it cannot

be reduced further using the relations. With a little bit more energy, one can compute the product

(18) ΓiΓ j k = Γi j k −Bi jΓk +Bi kΓ j ,

where we have defined the alternating product of three generators

(19) Γi j k = 1
6

�
ΓiΓ jΓk −ΓiΓkΓ j +Γ jΓkΓi −Γ jΓiΓk +ΓkΓiΓ j −ΓkΓ jΓi

�
.

More generally define

(20) Γi1···ip = 1
p !

�

σ∈Sp

(−1)σΓiσ(1) · · ·Γiσ(p) ,

where (−1)σ is the sign of the permutation σ of {1,2, . . . , p}. Continuing in this way, and since C�(V,Q) is
generated by V and the identity, we see that C�(V,Q) is the linear span of 1, Γi , Γi j ,... In total there are
1+n +

�n
2

�
+ ·· · +

�n
n

�
= 2n such monomials, whence dimC�(V,Q) = 2dimV. This is the same dimension

of the exterior algebra ΛV and in fact we can establish a vector space isomorphism ΛV ∼= C�(V,Q) by
sending 1 �→ 1, ei �→ Γi and ei1 ∧ · · ·∧eip �→ Γi1···ip .

In the next section we will see this isomorphism from a different perspective. Namely we will show
that C�(V,Q) is a filtered algebra whose associated graded algebra is the exterior algebra. Of course, un-
less Q = 0, C�(V,Q) andΛV are not isomorphic as algebras; instead we will be able to interpret C�(V,Q) as
a quantisation of ΛV, much in the same way that the universal enveloping algebra Ug is a quantisation
of the symmetric algebra Symg. But before doing that let us consider some low-dimensional examples.
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1.3.2 Low-dimensional Clifford algebras

We now specialise to K= R. In a quadratic real vector space it is always possible to choose a basis (ei ),
for i = 1, . . . ,n for which the matrix of the bilinear form B has the form

(21) [Bi j ] =




0r

+1s
−1t





where n = r + s + t and 1k is the k ×k identity matrix and 0k is the k ×k zero matrix. Let us specialise to
the case r = 0, whence B is nondegenerate. Then it defines an inner product of signature (s, t ) and we
call the corresponding Clifford algebra C�(s, t ). We will now look at the first few cases.

The first “trivial” case (which is nondegenerate despite appearances!) is C�(0,0). This is an associat-
ive algebra without generators, so it is isomorphic to R, the isomorphism being given by x1 ←→ x.

C�(1,0) is generated by Γ obeying Γ2 = −1, whence it is isomorphic to C (as a real associative al-
gebra), with isomorphism x1+ yΓ←→ x + i y .

C�(2,0) is generated by Γ1,Γ2 obeying Γ2
1 = −1 = Γ2

2 and Γ1Γ2 = −Γ2Γ1. Hence C�(2,0) ∼= H, with
explicit isomorphism

(22) x01+x1Γ1 +x2Γ2 +x3Γ1Γ2 ←→ x0 +x1i +x2 j +x3k .

You might be forgiven for thinking that C�(3,0) is related to the octonions, but only if you immedi-
ately discard this after realising that the octonions are not associative. In fact, we will see in the next
lecture that C�(3,0) ∼=H⊕H.

C�(0,1) is generated by Γ with Γ2 = 1. We define complementary idempotents p± = 1
2 (1+Γ), which

obey p+ +p− = 1, p+p− = 0 and p2
± = p±. This decomposes the Clifford algebra and indeed C�(0,1) ∼=

R⊕R, with explicit isomorphism xp++ y p− ←→ (x, y).
C�(1,1) is generated by Γ1,Γ2 satisfying Γ2

1 =−1 and Γ2
2 = 1 with Γ1Γ2 =−Γ2Γ1. The resulting algebra

is isomorphic to the algebra of 2×2 real matrices, with the explicit isomorphism being given by

(23) x1+ yΓ1 + zΓ2 +wΓ1Γ2 ←→
�

x + z y +w
−y +w x − z

�
.

Finally, C�(0,2) is generated by Γ1,Γ2 satisfying Γ2
1 = 1 = Γ2

2 with Γ1Γ2 =−Γ2Γ1. The resulting algebra
is again isomorphic to the algebra of 2×2 real matrices, but with a different isomorphism:

(24) x1+ yΓ1 + zΓ2 +wΓ1Γ2 ←→
�

x + y z +w
z −w x − y

�
.

These results fill in a little corner of the tableau of Clifford algebras C�(s, t ):

R(2)

R⊕R R(2)

R C H

Clifford’s purpose in introducing the eponymous algebras in 1878 [Cli78] was the extension of the first
row of the above tableau beyond the quaternions. In the next lecture, we will fill in the rest of the tableau!

1.4 The Clifford algebra and the exterior algebra

1.4.1 Filtered and associated graded algebras

Every graded algebra has a canonical filtration, which in the case of TV is given by Fp TV =�
�≤p V⊗�, so

that F0TV =K, F1TV =K⊕V, F2TV =K⊕V ⊕V⊗2,... It is convenient to introduce F−1TV = 0 and in this
way arrive at a semi-infinite filtration

(25) 0 = F−1TV ⊂ F0TV ⊂ F1TV ⊂ F2TV ⊂ · · ·
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The multiplication respects the filtration in that Fp TV ×Fq TV → Fp+q TV, making it into a filtered al-
gebra.

Every filtered algebra has an associated graded algebra. For the tensor algebra with the canonical
filtration, the associated graded algebra Gr• FTV =�

p≥0 Grp FTV is defined by

(26) Grp FTV = Fp TV/Fp−1TV.

It follows that Gr• FTV is indeed a graded algebra in that the product defines a bilinear map

(27) Grp FTV ×Grq FTV → Grp+q FTV.

Of course, in this case Grp FTV = V⊗p and Gr• FTV ∼= T•V as graded algebras. This only recapitulates the
fact that TV is a graded algebra and FTV is the canonical filtration associated to that grading. In general,
filtered algebras need not be graded and hence will not be isomorphic (as algebras) to their associated
graded algebra; although they will be isomorphic as vector spaces.

For example, the universal enveloping algebra Ug inherits a filtration from the tensor algebra Tg,
whose associated graded algebra is the symmetric algebra Sym•g. Filtered algebras whose associated
graded algebras are commutative (or supercommutative) can be interpreted as quantisations of their
associated graded algebra, which inherits a Poisson bracket from the (super)commutator in the filtered
algebra. This is precisely what happens for the Clifford algebra as we will now see.

1.4.2 TheZ2-grading revisited

The orthogonal group of a quadratic vector space acts on the Clifford algebra via automorphisms. In-
deed, if f : V → V is an orthogonal transformation of V, so that f ∗Q = Q, functoriality gives C�( f ) :
C�(V,Q) → C�(V,Q), which is an automorphism. In particular we can consider the simple orthogonal
transformation f (x) =−x for all x ∈ V. Since f ◦ f = 1V, it follows that C�( f )◦C�( f ) = 1C�(V,Q), and thus
we can decompose C�(V,Q) = C0 ⊕C1 into eigenspaces of C�( f ):

(28) C0 =
�
α ∈ C�(V,Q)

��C�( f )α= α
�

and C1 =
�
α ∈ C�(V,Q)

��C�( f )α=−α
�

.

Since C�( f ) is an automorphism, this makes C�(V,Q) into aZ2-graded algebra, so that under the Clifford
algebra multiplication

(29) Ci ×C j → Ci+ j ,

where we add the subscripts modulo 2. The same is true for the tensor algebra TV and we have TV =
TV0 ⊕TV1 where

(30) TV0 =
�

k≥0
V⊗2k and TV1 =

�

k≥0
V⊗(2k+1).

In this case, the Z2-grading is the reduction mod 2 of the Z-grading. Since the ideal IQ is homogeneous,
the projection TV → C�(V,Q) restricts to projections TVi → Ci for i = 0,1. (Of course, for i = 1 this is
only a projection of vector spaces, since neither TV1 nor C1 are algebras.)

1.4.3 The filtration of the Clifford algebra

The canonical filtration of TV defines a filtration on C�(V,Q) as follows. First of all notice that we can
filter TV0 and TV1 separately. We let

(31) F2k TV0 =
�

�≤k
V⊗2� and F2k+1TV1 =

�

�≤k
V⊗(2�+1),

so that

(32)
0 = F−2TV0 ⊂ F0TV0 ⊂ F2TV0 ⊂ · · ·
0 = F−1TV1 ⊂ F1TV1 ⊂ F3TV1 ⊂ · · ·
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are filtrations of TV0 and TV1 respectively. We now define F2k C0 to be the image of F2k TV0 under the
projection TV0 → C0 and similarly F2k+1C1 to be the image of F2k+1TV1 under the projection TV1 → C1.
It follows that

(33)
0 = F−2C0 ⊂ F0C0 ⊂ F2C0 ⊂ · · ·
0 = F−1C1 ⊂ F1C1 ⊂ F3C1 ⊂ · · ·

are filtrations of the Clifford algebra. We will use the shorthand

(34) Fp C =
�

Fp C0 if p is even, and

Fp C1 if p is odd.

Since TV → C�(V,Q) is an algebra homomorphism, it follows that Clifford multiplication respects the
filtration: Fp C ×Fq C → Fp+q C. Notice now that Fp C/Fp+2C ∼= Λp V, since the corrections involved in
replacing, for x, y ∈ V, x y by −y x in the Clifford algebra involves terms of degree 2 less. Of course, if
Q = 0 then there are no corrections and C�(V,0) ∼=ΛV as graded associative algebras.

Since ΛV is supercommutative, the supercommutator of two elements α ∈ Fp C and β ∈ Fq C belongs
to Fp+q−2C. If we let α ∈Λp V and β ∈Λq V be such that α= α mod Fp−2C and β= β mod Fq−2C, then
we define a bracket [−,−] :Λp V ×Λq V →Λp+q−2V by

(35) [α,β] := αβ− (−1)|α||β|βα mod Fp+q−4C.

It is an exercise to show that this is a Poisson bracket makingΛV into a Poisson superalgebra. It is in this
sense that C�(V,Q) is a quantisation ofΛV. We can think ofΛV as the functions on the “phase space” for
a finite number of fermionic degrees of freedom and C�(V,Q) as the corresponding quantum operator
algebra. The Hilbert space of the quantum theory is then an irreducible representation of C�(V,Q). We
will see later than for V finite-dimensional and Q nondegenerate there are (up to equivalence) either
one or two irreducible representations of C�(V,Q). For V infinite-dimensional the situation is drastically
different. A reasonable account of this can be found in [KS87].

1.4.4 The action of C�(V,Q) on ΛV

We can understand the relation between the Clifford and the exterior algebras in a different way which
does not involve filtrations. The bilinear form B defines a linear map � : V → V∗ where V∗ is the dual
vector space by x �→ x�, where x�(y) = B(x, y). If (and only if) B is nondegenerate, is � an isomorphism. In
that case its inverse is denoted � : V∗ → V and they are referred to together as the musical isomorphisms
induced from the inner product B. We define a linear map φ : V → EndΛV by

(36) φ(x)α= x ∧α− ıx�α ,

where ıx� is the unique odd derivation defined by ıx�1 = 0 and ıx� y = B(x, y) for y ∈ V. In other words,
on a monomial it acts like

(37) ıx� (y1 ∧ y2 ∧ · · ·∧ yp ) =
p�

i=1
(−1)i−1B(x, yi )y1 ∧ · · ·∧ �yi ∧ · · · yp ,

where the hat denotes omission, and we extend linearly to all of ΛV.

Lemma 1.7. The map φ : V → EndΛV defined in (36) is Clifford.

Proof. For every x ∈ V and α ∈ΛV, we have

φ(x)2α=φ(x)
�
x ∧α− ıx�α

�

= x ∧ (x ∧α− ıx�α)− ıx� (x ∧α− ıx�α)

= x ∧w ∧α−x ∧ ıx�α−Q(x)α+x ∧ ıx� + ıx� ıx�α

=−Q(x)α ,

where we have used that x ∧x = 0, ıx� ıx� = 0 and that ıx� (x ∧α) = Q(x)α−x ∧ ıx�α.
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By universality of the Clifford algebra this extends to a unique algebra homomorphism

Φ : C�(V,Q) → EndΛV ,

which composing with evaluation at 1 ∈ ΛV gives a linear map Φ1 : C�(V,Q) → ΛV. This maps obeys
Φ1(1) = 1, and if x ∈ V, then Φ1(i (x)) = x, where i : V → C�(V,Q). Notice that this shows that Φ1 ◦ i is
injective, whence it follows that i is injective without appealing to the construction of C�(V,Q) from the
tensor algebra. We can similarly calculate

(38) Φ1(x y) =Φ(x y)1 =Φ(x)Φ(y)1 =φ(x)φ(y)1 =φ(x)y = x ∧ y −B(x, y)

and

(39) Φ1(x y z) = x ∧ y ∧ z −B(x, y)z +B(x, z)y −B(y, z)x ,

et cetera. It is clear that Φ1 surjects onto ΛV and counting dimensions we see that it is a vector space
isomorphism, with inverse the map ΛV → C�(V,Q) defined by the complete skew-symmetrisation:

(40) y1 ∧ · · ·∧ yp �→ 1
p !

�

σ∈Sp

(−1)σyiσ(1) · · · yiσ(p) .

This map is an explicit quantisation of the exterior algebra.

1.4.5 The Clifford inner product

The exterior algebra ΛV inherits an inner product from V. Explicitly it is defined as follows: if Ξ :=
x1 ∧ · · ·∧xp ,Υ := y1 ∧ · · ·∧ yp ∈Λp V, then

(41) 〈Ξ,Υ〉= detB(xi , y j ) ,

and we extend it bilinearly to all of Λp V, while declaring Λp V and Λq V perpendicular for p �= q . The
Clifford inner product is the unique inner product on C�(V,Q) making the isomorphism C�(V,Q) →ΛV
into an isometry.

Proposition 1.8. Let α,β ∈ C�(V,Q). Then their Clifford inner product is given in terms of Clifford multi-
plication by

〈α,β〉= 〈1, α̂β〉

where α̂ is the image of α under the involutive antiautomorphism induced by multiplication by −1 on V.
In other words, if α= x1 · · ·xp , with xi ∈ V, then α̂= (−xp ) · · · (−x1) = (−1)p xp · · ·x1.

Proof. Let (ei ) be an orthonormal basis for V; that is, Q(ei ) = ±1 and B(ei ,e j ) = 0 for i �= j . If I =
(i1, . . . , ip ) is an increasing sequence, then let eI = ei1 ∧ · · ·∧eip ∈Λp V. It is clear that if I and J are distinct
increasing sequences, then 〈eI,eJ〉= 0, and otherwise

〈eI,eI〉= Q(ei1 ) · · ·Q(eip ) .

On the other hand, the element in C�(V,Q) corresponding to eI ∈Λp V is ei1 · · ·eip and

〈ei1 · · ·eip ,ei1 · · ·eip 〉= 〈1, (−eip ) · · · (−ei1 )ei1 · · ·eip 〉= Q(ei1 ) · · ·Q(eip )〈1,1〉= Q(ei1 ) · · ·Q(eip ) ,

where we have used that −ei ei = Q(ei ). Finally, if I �= J are increasing sequences,

〈ei1 · · ·eip ,e j1 · · ·e jp 〉= 〈1, (−1)p eip · · ·ei1 e j1 · · ·e jp 〉= 0 ,

since eip · · ·ei1 e j1 · · ·e jp will not be proportional to 1.
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Lecture 2: Clifford algebras: the classification

The small part of ignorance that we arrange and classify
we give the name of knowledge.

— Ambrose Bierce

In this section we will classify finite-dimensional real and complex Clifford algebras. Useful ref-
erences are [ABS64] (which treats only the positive- and negative-definite cases, albeit lucidly) and
[LM89, Har90].

2.1 A less-than-useful classification

We start with a result which is interesting in its own right, but perhaps not as useful as it may appear at
first.

Given two quadratic vector spaces (V,QV) and (W,QW), we can form their orthogonal direct sum
(V⊕W,QV ⊕QW). (Notice that although the direct sum is the coproduct in the category of vector spaces,
it is not the coproduct in QVec.) One natural question is whether the Clifford algebra C�(V⊕W,QV⊕QW)
of the orthogonal direct sum is related to the Clifford algebras C�(V,QV) and C�(W,QW) of its summands.
The answer is very simple, which shows why one should take theZ2-grading of the Clifford algebra very
seriously!

Proposition 2.1. Let (V,QV) and (W,QW) be quadratic vector spaces and let (V ⊕W,QV ⊕QW) be their
orthogonal direct sum. Then there is an isomorphism of Z2-graded associative algebras:

C�(V ⊕W,QV ⊕QW) ∼= C�(V,QV)⊗̂C�(W,QW) ,

where ⊗̂ denotes the Z2-graded tensor product.

Tensor product of algebras

If A and B are associative algebras over the same ground field, their vector space tensor
product A⊗B becomes an algebra by

(a1 ⊗b1)(a2 ⊗b2) = a1a2 ⊗b1b2

and extending bilinearly. However when A = A0 ⊕ A1 and B = B0 ⊕ B1 are themselves Z2-
graded, we can define on theZ2-graded tensor product A⊗̂B, with (A⊗̂B)0 = (A0⊗B0)⊕(A1⊗B1)
and (A⊗̂B)1 = (A0 ⊗B1)⊕ (A1 ⊗B0), the following associative multiplication

(42) (a1 ⊗b1)(a2 ⊗b2) = (−1)|a2||b1|a1a2 ⊗b1b2 ,

where ai and bi are homogeneous elements of parity |ai |, |bi |, respectively, and extending it
bilinearly to all of A⊗̂B.

Proof. Define a linear map

(43) φ : V ⊕W −→ C�(V,QV)⊗̂C�(W,QW)

by φ(v +w) = v ⊗1+1⊗w , where v ∈ V and w ∈ W and we are identifying V with its image in C�(V,QV)
and similarly for W. One checks that this map is Clifford precisely because of the sign in the definition
(42) of the multiplication in the Z2-graded tensor product. Indeed,

φ(v +w)2 = (v ⊗1+1⊗w)2

= v2 ⊗1+ v ⊗w + (−1)|v ||w |v ⊗w +1⊗w2

=− (Q(v)+Q(w))1⊗1 .
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By universality it extends to a homomorphism of Z2-graded associative algebras

Φ : C�(V ⊕W,QV ⊕QW) −→ C�(V,QV)⊗̂C�(W,QW) ,

which is surjective because the image contains C�(V,QV)⊗̂1 and 1⊗̂C�(W,QW), which together generate
C�(V,QV)⊗̂C�(W,QW) and hence, counting dimension, an isomorphism.

Now every (finite-dimensional) real quadratic vector space (V,Q) is isomorphic to an orthogonal
direct sum

(44) R(0)⊕ · · ·⊕R(0)� �� �
r

⊕R(+)⊕ · · ·⊕R(+)� �� �
s

⊕R(−)⊕ · · ·⊕R(−)� �� �
t

where R(0) is the one-dimensional vector space with zero quadratic form, whereas R(±) is the one di-
mensional vector space with quadratic form Q(1) =±1. It then follows from the above proposition that

(45) C�(V,Q) ∼=ΛRr ⊗̂C�(1,0)⊗̂ · · ·⊗̂C�(1,0)� �� �
s

⊗̂C�(0,1)⊗̂ · · ·⊗̂C�(0,1)� �� �
t

,

where we have used that the Clifford algebra associated to the zero quadratic form is the exterior al-
gebra. Using that C�(1,0) ∼=C and C�(0,1) ∼=R⊕R, the above result determines in principle all the finite-
dimensional real Clifford algebras as Z2-graded associative algebras. This is nice, but one can do much
better and actually identify the Clifford algebras in terms of the matrix algebras K(n), for K= R,C,H as
we started doing in the first lecture.

2.2 Complex Clifford algebras

Before presenting the classification, let us consider the complex Clifford algebras. Since a complex
quadratic form has no signature, every (finite-dimensional) complex quadratic vector space is iso-
morphic to an orthogonal direct sum

(46) C(0)⊕ · · ·⊕C(0)� �� �
r

⊕C(+)⊕ · · ·⊕C(+)� �� �
n

,

where C(0) is the one-dimensional complex vector spaces with zero quadratic form and C(+) the one-
dimensional complex vector space with Q(1) = 1. Proposition 2.1 then says that the corresponding
complex Clifford algebra is isomorphic to

(47) ΛCr ⊗̂C�(1)⊗̂ · · ·⊗̂C�(1)� �� �
n

,

where C�(1) denotes the Clifford algebra C�(C(+)). To identify it, notice that C�(1) is the complex asso-
ciative algebra generated by e obeying e2 =−1. This means that (i e)2 = 1 and we define complementary
projectors p± = 1

2 (1± i e), which induce an isomorphism C�(1) ∼=C⊕Cwith zp++w p− ↔ (z, w).
One can complexify real quadratic vector spaces as follows. Let (V,Q) be a real quadratic vector

space and let VC = V⊗RC be its complexification. We extend Q complex linearly to a quadratic form QC

defined by QC(v ⊗ z) = z2Q(v). This turns the pair (VC,QC) into a complex quadratic vector space. It is
natural to ask whether C�(V,Q) and C�(VC,QC) are related and the answer could not be nicer.

Proposition 2.2. The Clifford functor C� commutes with complexification; that is,

C�(VC,QC) ∼= C�(V,Q)⊗R C .

Proof. The map V ×C→ C�(V,Q)⊗R C defined by φ(v, z) = v ⊗ z is real bilinear, whence it defines an
R-linear map

V ⊗R C
φ−−−−−→ C�(V,Q)⊗R C .
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Sinceφ(v⊗z) = v⊗z = (v⊗1)z =φ(v⊗1)z, we see that it is alsoC-linear. Also sinceφ(v⊗1)2 = (v⊗1)2 =
−Q(v)(1 ⊗ 1), we see that φ is Clifford, whence it extends uniquely to a homomorphism of complex
algebras

Φ : C�(VC,QC) −→ C�(V,Q)⊗R C .

It is shown to be surjective by observing that the image of Φ contains C�(V,Q)⊗1 and 1⊗C and these
generate the right-hand side. Counting dimension we conclude that Φ is an isomorphism.

As a corollary we have that upon complexification we lose the information about the signature:

(48) C�(s, t )⊗R C∼=C�(s + t ) .

The absence of signature for a complex quadratic vector space means that the complex Clifford algebras
have a much simpler structure than the real Clifford algebras.

2.3 Filling in the Clifford chessboard

From now on we will restrict attention to the case of nondegenerate quadratic forms, whence any real
quadratic vector space is isomorphic to Rs,t for some s, t . We would like to identify the Clifford algebras
C�(s, t ) for all s, t ≥ 0. In the last lecture we already filled in a corner of the table of Clifford algebras:

R(2)
R⊕R R(2)
R C H

−−−−−−−→
s

This corner of the table is enough to fill in the rest of the table, thanks to the following isomorphisms.

Theorem 2.3. For all n, s, t ≥ 0 we have the following isomorphisms

(49)

C�(n,0)⊗C�(0,2) ∼= C�(0,n +2)

C�(0,n)⊗C�(2,0) ∼= C�(n +2,0)

C�(s, t )⊗C�(1,1) ∼= C�(s +1, t +1)

with ⊗ the ungraded tensor product.

Proof. As the three cases are very similar, we shall prove the second equation in (49) and leave the other
two as exercises for the reader.

Let us write Rn+2,0 = Rn,0 ⊕R2,0. Let e1,e2 be an orthonormal basis for R2,0 and let us denote by the
same symbols their image in C�(2,0). This means that e2

1 = e2
2 = −1 and e1e2 = −e2e1. The element

e1e2 ∈ C�(2,0) satisfies the following easily verifiable identities: (e1e2)2 = −1, e1e2ei = −ei e1e2 for i =
1,2. Let us define a linear map

φ :Rn+2,0 −→ C�(0,n)⊗C�(2,0)

by
φ(x) = x ⊗e1e2 and φ(ei ) = 1⊗ei ,
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for x ∈Rn,0. This map is Clifford by virtue of the identities satisfied by e1e2; indeed,

φ(x +λe1 +µe2)2 = (x ⊗e1e2 +λ1⊗e1 +µ1⊗e2)2

=−x2 ⊗1−λ21⊗1−µ21⊗1

+λx ⊗ (e1e1e2 +e1e2e1)+µx ⊗ (e2e1e2 +e1e2e2)+λµ1⊗ (e1e2 +e2e1)

=−(x2 +λ2 +µ2)1⊗1

=−Q(x +λe1 +µe2)1⊗1 .

Hence φ extends uniquely to an algebra homomorphism Φ : C�(n +2,0) → C�(0,n)⊗C�(2,0) which is
surjective (the image contains a generating set) and by dimension must be an isomorphism.

Notice that the first two isomorphisms in (49) allows us to fill the left column and the bottom row in
the table, whereas the last isomorphism allows us to move diagonally. Since any square in the table lies
on some diagonal, it can in principle be determined by using the isomorphisms. Moving diagonally (one
step) is the same as tensoring with C�(1,1) ∼= R(2). To apply this we need to make use of the following
standard isomorphism of matrix algebras.

Lemma 2.4. LetK stand for any of R, C andH and letK(n) denote the real algebra of n×n matrices with
entries inK. Then we have the following isomorphisms of real associative algebras:

(50) K(m)⊗R R(n) ∼=K(mn) .

This already allows us to fill in five of the diagonals in the table:

R(64) R(64)⊕R(64) R(128)

R(32) R(32)⊕R(32) R(64) C(64)

R(16) R(16)⊕R(16) R(32) C(32) H(32)

R(8) R(8)⊕R(8) R(16) C(16) H(16)

R(4) R(4)⊕R(4) R(8) C(8) H(8)

R(2) R(2)⊕R(2) R(4) C(4) H(4)

R⊕R R(2) C(2) H(2)

R C H

−−−−−−−−→
s

To continue it is necessary to extend the bottom row and the left column. For example, let us con-
tinue with the bottom row. From the second of the isomorphisms in (49), we have

C�(3,0) ∼= C�(0,1)⊗C�(2,0) ∼= (R⊕R)⊗H=H⊕H ,

where we have used the distributivity of ⊗ over ⊕. In the same way we obtain

C�(4,0) ∼= C�(0,2)⊗C�(2,0) ∼=R(2)⊗H=H(2) .

We cannot continue along the bottom row without first extending the left column. Using the first of the
isomorphisms in (49), we find

C�(0,3) ∼= C�(1,0)⊗C�(0,2) ∼=C⊗R(2) ∼=C(2),

whereas
C�(0,4) ∼= C�(2,0)⊗C�(0,2) ∼=H⊗R(2) ∼=H(2),

C�(0,5) ∼= C�(3,0)⊗C�(0,2) ∼= (H⊕H)⊗R(2) ∼=H(2)⊕H(2),

and
C�(0,6) ∼= C�(4,0)⊗C�(0,2) ∼=H(2)⊗R(2) ∼=H(4) .

This allows us to fill in six more diagonals in the table!
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H(8) H(8)⊕H(8) H(16) C(32) R(64) R(64)⊕R(64) R(128)

H(4) H(4)⊕H(4) H(8) C(16) R(32) R(32)⊕R(32) R(64) C(64)

H(2)⊕H(2) H(4) C(8) R(16) R(16)⊕R(16) R(32) C(32) H(32)

H(2) C(4) R(8) R(8)⊕R(8) R(16) C(16) H(16) H(16)⊕H(16)

C(2) R(4) R(4)⊕R(4) R(8) C(8) H(8) H(8)⊕H(8) H(16)

R(2) R(2)⊕R(2) R(4) C(4) H(4) H(4)⊕H(4) H(8)

R⊕R R(2) C(2) H(2) H(2)⊕H(2) H(4)

R C H H⊕H H(2)
−−−−−−−−→

s

To continue we have to determine C�(5,0). From the second of the isomorphisms in (49), we find

C�(5,0) ∼= C�(0,3)⊗C�(2,0) ∼=C(2)⊗H∼= ?

To answer the question we need the following result.

Lemma 2.5. The following are isomorphisms of real associative algebras:

1. C⊗RH∼=C(2)

2. H⊗RH∼=R(4)

3. C⊗R C∼=C⊕C

Proof. 1. To prove the first isomorphism, let us give H the structure of a complex vector space by
left multiplication by the complex subalgebra of H generated by i , say. Then we construct a real
bilinear map

φ :C×H−→ EndC(H) by φ(z, q)x = zxq ,

for all z ∈C and x, q ∈H. By universality of the tensor product, it defines a real linear map

Φ :C⊗RH−→ EndC(H) by Φ(z ⊗q) =φ(z, q).

We check that Φ is a homomorphism of real algebras:

Φ(z1 ⊗q1)Φ(z2 ⊗q1)x = z1(z2xq2)q1 = (z1z2)xq1q2 =Φ(z1z2 ⊗q1q2)x .

It is clearly injective becauseC andH are division algebras and counting dimension (dimR = 8) we
see that Φ must be an isomorphism. Now H ∼= C2 as a complex vector space, whence EndC(H) ∼=
C(2).

2. This is proved in a very similar manner to the first isomorphism. Namely we define a real bilinear
map

φ :H×H−→ EndR(H) by φ(q1, q2)x = q1xq2,

for all qi , x ∈H, which by universality of the tensor product induces a real linear map

Φ :H⊗RH−→ EndR(H) by Φ(q1 ⊗q2) =φ(q1, q2).

It is clear that it is injective and counting dimension (dimR = 16), it is an isomorphism of real
vector spaces, but again one checks that Φ is an algebra morphism:

Φ(q1 ⊗q2)Φ(q �
1 ⊗q �

2)x = q1(q �
1xq �

2)q2 = (q1q �
1)xq2q �

2 =Φ(q1q �
1 ⊗q2q �

2)x .

3. This is even easier. Notice that the element i ⊗ i ∈ C⊗R C squares to the identity, whence we can
form complementary projectors p± = 1

2 (1⊗1± i ⊗ i ) whose images are commuting subalgebras
isomorphic to C. Explicitly, the isomorphism C⊕C→C⊗R C is given by (z1, z2) �→ z1p++ z2p−.
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It follows at once from the first of these isomorphisms, that

C(2)⊗H∼=R(2)⊗C⊗H∼=R(2)⊗C(2) ∼=C(4) ,

whence C�(5,0) ∼=C(4), and hence

C�(0,7) ∼= C�(5,0)⊗C�(0,2) ∼=C(4)⊗R(2) ∼=C(8) .

In the same way one can show that C�(6,0) ∼=R(8) and C�(7,0) ∼=R(8)⊕R(8), which allows us to complete
the first 8×8 corner of the table:

C(8) H(8) H(8)⊕H(8) H(16) C(32) R(64) R(64)⊕R(64) R(128)

H(4) H(4)⊕H(4) H(8) C(16) R(32) R(32)⊕R(32) R(64) C(64)

H(2)⊕H(2) H(4) C(8) R(16) R(16)⊕R(16) R(32) C(32) H(32)

H(2) C(4) R(8) R(8)⊕R(8) R(16) C(16) H(16) H(16)⊕H(16)

C(2) R(4) R(4)⊕R(4) R(8) C(8) H(8) H(8)⊕H(8) H(16)

R(2) R(2)⊕R(2) R(4) C(4) H(4) H(4)⊕H(4) H(8) C(16)

R⊕R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)

R C H H⊕H H(2) C(4) R(8) R(8)⊕R(8)
−−−−−−−−→

s

As nice as this is, it might seem that in order to classify real Clifford algebras in arbitrary (albeit finite)
dimension we have to do lots of work. Luckily this is not the case, which explains a posteriori why I have
restricted myself to an 8×8 corner, the so-called Clifford chessboard. It turns out that the real Clifford
algebras have simpler periodicities, which are an easy consequence of Theorem 2.3. We call them the
Bott periodicities.

Corollary 2.6. For all n, s, t ≥ 0, the following are isomorphisms of real algebras:

1. C�(n +8,0) ∼= C�(n,0)⊗R R(16),

2. C�(0,n +8) ∼= C�(0,n)⊗R R(16), and

3. C�(s +4, t +4) ∼= C�(s, t )⊗R R(16).

Proof. This follows directly from repeated application of Theorem 2.3 and the following isomorphisms:

C�(1,1)⊗4 ∼=R(16) and C�(2,0)⊗2 ⊗C�(0,2)⊗2 ∼=R(16) .

Theorem 2.7 (Classification theorem). The Clifford algebra C�(s, t ) is isomorphic to the real associative
algebras in the following table, where d = s + t :

s − t mod 8 C�(s, t )

0,6 R
�
2d/2�

7 R
�
2(d−1)/2�⊕R

�
2(d−1)/2�

1,5 C
�
2(d−1)/2�

2,4 H
�
2(d−2)/2�

3 H
�
2(d−3)/2�⊕H

�
2(d−3)/2�

The proof follows from the Clifford chessboard and the periodicities and it is simply a matter of
bookkeeping.
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2.3.1 The even subalgebra of the Clifford algebra

In the study of spinor representations it is important to identify the even subalgebra C�(s, t )0 of the Clif-
ford algebras C�(s, t ) as an ungraded real associative algebra. Recall that C�(s, t )0 is the fixed subalgebra
under the automorphism induced by the orthogonal transformation in O(s, t ) which sends x �→ −x for
all x ∈Rs,t . This means that every element in C�(s, t )0 can be written as a linear combination of products
of an even number of elements in the image in C�(s, t ) of Rs,t .

Luckily, C�(s, t )0 can be determined from the Clifford algebra one dimension lower.

Proposition 2.8. For all s, t ≥ 0, we have the following isomorphisms of ungraded real associative algeb-
ras:

C�(s, t ) ∼= C�(s +1, t )0
∼= C�(t , s +1)0 .

In particular, we have that C�(s, t )0
∼= C�(t , s)0.

Proof. We will prove one of the isomorphisms and leave the other as an exercise. Let us defineφ :Rs,t →
C�(s +1, t )0 by φ(x) = xes+1, where we write Rs+1,t =Rs,t ⊕Res+1. We check that φ is a Clifford map:

φ(x)2 = xes+1xes+1 =−x2e2
s+1 = x2 =−Q(x)1 ,

whence it extends uniquely to an algebra homomorphismΦ : C�(s, t ) → C�(s+1, t )0. It is clearly surject-
ive since it contains the image contains a generating set, and, counting dimension, we conclude Φ is an
isomorphism.

As a corollary of the classification theorem 2.7, we immediately have a classification of the C�(s, t )0.

Corollary 2.9. The even Clifford algebra C�(s, t )0 is isomorphic to the real associative algebras in the
following table, where d = s + t :

s − t mod 8 C�(s, t )0

1,7 R
�
2(d−1)/2�

0 R
�
2(d−2)/2�⊕R

�
2(d−2)/2�

2,6 C
�
2(d−2)/2�

3,5 H
�
2(d−3)/2�

4 H
�
2(d−4)/2�⊕H

�
2(d−4)/2�

2.4 Classification of complex Clifford algebras

Having determined the real Clifford algebras, it is a simple matter to use Proposition 2.2 and determine
the complex Clifford algebras. It is however easier to derive the complex Bott periodicity directly.

Proposition 2.10. For all n ≥ 0 there is an isomorphism of complex associative algebras

C�(n +2) ∼=C�(n)⊗C C(2) .

Proof. Write Cn+2 =Cn ⊕Ce1 ⊕Ce2 and define a complex linear map

φ :Cn+2 −→C�(n)⊗C C(2)

by

φ(x) = x ⊗
�

0 i
−i 0

�
φ(e1) = 1⊗

�
0 i
i 0

�
and φ(e2) = 1⊗

�
i 0
0 −i

�

for all x ∈ Cn . One checks that φ is Clifford and that the induced map Φ : C�(n + 2) → C�(n)⊗C C(2),
being surjective (the image contains a generating set) and mapping between equidimensional spaces,
is an isomorphism.

The classification of complex Clifford algebras is then an easy corollary.
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Corollary 2.11. For every n ≥ 0, the complex Clifford algebra C�(n) is isomorphic to

C�(n) ∼=
�
C

�
2n/2� if n is even,

C
�
2(n−1)/2�⊕C

�
2(n−1)/2� if n is odd.

Proof. This follows easily from complex Bott periodicity and the “initial conditions” C�(0) ∼= C and
C�(1) ∼=C⊕C.
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Lecture 3: Spinor representations

Yes now I’ve met me another spinor...
— Suzanne Vega (with apologies)

It was Élie Cartan, in his study of representations of simple Lie algebras, who came across repres-
entations of the orthogonal Lie algebra which were not tensorial; that is, not contained in any tensor
product of the fundamental (vector) representation. These are the so-called spinorial representations.
His description [Car38] of the spinorial representations was quite complicated (“fantastic” according
to Dieudonné’s review of Chevalley’s book below) and it was Brauer and Weyl [BW35] who in 1935 de-
scribed these representations in terms of Clifford algebras. This point of view was further explored in
Chevalley’s book [Che54] which is close to the modern treatment. This lecture is devoted to the Pin and
Spin groups and to a discussion of their (s)pinorial representations.

3.1 The orthogonal group and its Lie algebra

Throughout this lecture we will let (V,Q) be a real finite-dimensional quadratic vector space with Q
nondegenerate. We will drop explicit mention of Q, whence the Clifford algebra shall be denoted C�(V)
and similarly for other objects which depend on Q. We will let B denote the bilinear form defining Q.

We start by defining the group O(V) of orthogonal transformations of V:

(51) O(V) = {a : V → V|Q(av) = Q(v) ∀v ∈ V} .

We write O(Rs,t ) = O(s, t ) and O(n) for O(n,0). If a ∈ O(V), then det a =±1. Those a ∈ O(V) with det a =
1 define the special orthogonal group SO(V). If V is either positive- or negative-definite then SO(V)
is connected: otherwise it has two connected components. This can be inferred by the fact that the
connectedness of a Lie group is controlled by that of its maximal compact subgroup, which in the case
of SO(s, t ), for s, t > 0, is

S(O(s)×O(t )) = {(a,b) ∈ O(s)×O(t )|det a = detb} ,

which has two connected components. The Lie algebra so(V) of SO(V) is defined by

(52) so(V) = {X : V → V|B(Xu, v) =−B(u,Xv) ∀u, v ∈ V} .

As a vector space, so(V) ∼=Λ2V, where the skewsymmetric endomorphism u � v ∈ so(V) corresponding
to u ∧ v ∈Λ2V is defined by

(53) (u� v)(x) = B(u, x)v −B(v, x)u .

It is easy to check that u� v ∈ so(V) as it is to compute the commutator

(54) [u� v, x � y] = B(u, x)v � y −B(u, y)v � x −B(v, x)u� y +B(v, y)u� x .

The Clifford algebra C�(V) being associative, becomes a Lie algebra under the commutator and contains
so(V) as a Lie subalgebra via the embedding

(55) ρ : so(V) → C�(V) where ρ(u� v) = 1
4 (uv − vu) .

Indeed, it is a simple calculation using the Clifford relation uv =−vu −2B(u, v)1 to show that

(56) [ρ(u� v), x] = B(u, x)v −B(v, x)u = (u� v)(x) ,

and hence that

(57) [ρ(u� v),ρ(x � y)] = B(u, x)ρ(v � y)−B(u, y)ρ(v � x)−B(v, x)ρ(u� y)+B(v, y)ρ(u� x) ,

whence ρ is an injective Lie algebra homomorphism.
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Exponentiating so(V) in End(V) generates the identity component SO0(V) of SO(V), whereas expo-
nentiating ρ(so(V)) in C�(V) generates a covering group of SO0(V). We will see this in full generality
below, but let us motivate this with an example. Suppose that V contains a positive-definite plane with
orthonormal basis e1,e2. Then relative to this basis, the restriction to this plane of e1 � e2 ∈ so(V) has
matrix

(58)
�
0 −1
1 0

�

whose exponential is

(59) a(θ) = exp(θ(e1 �e2)) =
�
cosθ −sinθ
sinθ cosθ

�
,

whence, in particular, a(2π) is the identity matrix. On the other hand, exponentiating the image of the
same Lie algebra element ρ(e1 �e2) = 1

2 e1e2 in C�(V) we obtain

(60) b(θ) = exp( 1
2θe1e2) = cos( 1

2θ)1+ sin( 1
2θ)e1e2,

using that (e1e2)2 = −1. In particular we see that b(2π) = −1, so that the periodicity of b(θ) is 4π. In
other words, it suggests that the Lie group generated by exponentiating so(V) in C�(V) is a double cover
of SO0(V). We will see that this is indeed the case.

3.2 Pin and Spin

Definition 3.1. The Pin group Pin(V) of (V,Q) is the subgroup of (the group of units of) C�(V) generated
by v ∈ V with Q(v) =±1. In other words, every element of Pin(V) is of the form u1 · · ·ur where ui ∈ V and
Q(ui ) =±1. We will write Pin(s, t ) for Pin(Rs,t ) and Pin(n) for Pin(n,0).

Let v ∈ V ⊂ C�(V) and let Q(v) �= 0. Then v is invertible in C�(V) and v−1 = −v/Q(v). We define, by
analogy with the case of a Lie group, the adjoint action Adv : V → V, by

(61) Adv (x) = v xv−1 = −1
Q(v)

v xv = −1
Q(v)

(−xv −2B(x, v)1) v =−x +2
B(x, v)
Q(v)

v =−Rv x ,

where Rv stands for the reflection on the hyperplane perpendicular to v and x ∈ V. We can extend
this to a group homomorphism from the Pin group: Adv1···vp = Adv1 ◦ · · ·◦Advp . Since we would prefer

not to see the sign on the right-hand side of Adv (x), we define the twisted adjoint action by �Adv (x) =
(−v)xv−1 = Rv x or more generally �Ada = �axa−1 for a an element of the Pin group and a �→ �a the grading
automorphism of C�(V), which is induced by the orthogonal transformation v �→ −v . Let a = u1 · · ·ur ∈
Pin(V), then �Ada = Ru1 ◦ · · ·◦Rur . Since reflections are orthogonal transformations, �Ad defines a group
homomorphism �Ad : Pin(V) → O(V). It follows from the following classic result that �Ad is surjective.

Theorem 3.2 (Cartan–Dieudonné). Every g ∈ O(V) is the product of a finite number of reflections g =
Ru1 ◦ · · ·◦Rur along non-null lines (Q(ui ) �= 0) and moreover r ≤ dimV.

We will now determine the kernel of �Ad. Let a ∈ Pin(V) be in the kernel of �Ad. This means that
�av = va for all v ∈ V. Let us break up a = a0 +a1 with a0 ∈ C�(V)0 and a1 ∈ C�(V)1, whence �a = a0 −a1.
Therefore a ∈ ker �Ad if and only if the following pair of equations are satisfied for all v ∈ V:

(62) a0v = va0 and a1v =−va1 .

Suppose that v ∈ V with Q(v) �= 0 and consider a0 = α+ vβ, where α and β do not involve v . Since
α ∈ C�(V)0 and does not involve v , then vα= αv , whereas since β ∈ C�(V)1 and does not involve v , then
vβ = −βv . The first equation in (62) says that β = 0, whence a0 = α does not involve v . Repeating this
argument for all the elements of an orthonormal basis (ei ) for V, we see that a0 does not involve any of
the ei and hence must be a multiple of the identity: a0 = α1 for some α ∈R. Similarly, write a1 = γ+ vδ,
where γ,δ do not involve v . Now we have that γv =−vγ, whereas δv = vδ. The second equation in (62)
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says that δ= 0, whence a1 = γ does not involve v . Repeating this argument for the basis (ei ), we see that
a1 does not involve any of the ei and hence must be a multiple of the identity, but a1 ∈ C�(V)1 whereas
1 ∈ C�(V)0, whence a1 = 0. Hence all elements of Pin(V) in the kernel of �Ad are multiples of the identity.
Now let u1 · · ·up = α1 for Q(ui ) =±1. Let us compute the norm of this element using the Clifford inner
product (41), to arrive at

(63) (α1,α1) = α2(1,1) = (u1 · · ·up ,u1 · · ·up ) = (1, (−up ) . . . (−u1)u1 ·up ) = Q(u1) · · ·Q(up )(1,1) .

Since (1,1) �= 0 and Q(ui ) =±1, it follows that α2 =±1. Since α ∈R the only solutions to this equation are
α=±1 and hence ker �Ad = {±1}. In summary we have proved

Proposition 3.3. The following sequence is exact:

1 �� {±1} �� Pin(V)
�Ad �� O(V) �� 1 .

Exact sequences

A sequence of groups and group homomorphisms

1 �� A
i �� B

p �� C �� 1

is said to be exact if the kernel of each homomorphism is the image of the preceding one. In
the above diagram, 1 denotes the one-element group. This is both an initial and final object in
the category of groups, since there is only one homomorphism into it (sending all elements to
the identity) and only one homomorphism out of it (sending the identity to the identity). This
explains why we have not given names to the homomorphisms 1 → A and C → 1. Exactness
at A means that i : A → B is injective, since its kernel is the image of 1 → A, whence consists
only of the identity. Similarly, exactness at C says that p : B → C is surjective, since the kernel
of C → 1 is all of C, and that is precisely the image of p. Finally, exactness at B says that the
kernel of p : B → C is precisely the image of i : A → B. Such an exact sequence says that B is an
extension of C by A.

Finally, let us define the spin group.

Definition 3.4. The spin group of (V,Q) is the intersection

Spin(V) = Pin(V)∩C�(V)0 .

Equivalently, it consists of elements u1 · · ·u2p , where ui ∈ V and Q(ui ) =±1. We will write Spin(s, t ) for
Spin(Rs,t ) and Spin(n) for Spin(n,0).

Since for a reflection Ru ∈ O(V), we have that detRu =−1, it follows that det �Ada = 1 for a ∈ Pin(V) if
and only if a ∈ Spin(V). Since the kernel of �Ad belongs to Spin(V), we immediately have the following

Proposition 3.5. The following sequence is exact:

1 �� {±1} �� Spin(V)
�Ad �� SO(V) �� 1 .

For V of signature (s, t ) with at least one of s, t ≥ 2, the map �Ad : Spin(V) → SO(V) is a nontrivial cov-
ering. This can be shown by exhibiting a continuous path between 1 and −1 in Spin(V). Let e1,e2 be an
orthonormal basis for a positive- or negative-definite plane. That such a plane exists is a consequence
of our assumption on the signature of V. Then consider the following continuous (in fact, analytic)
curve in Spin(V):

a(t ) = (e1 cos t +e2 sin t )(e2 sin t −e1 cos t ) = Q(e1)cos(2t )1+ sin(2t )e1e2 .



Spin 2010 (jmf) 23

We see that a(0) = Q(e1)1, whereas a(π/2) =−Q(e1)1, whence it joins 1 to −1.
Finally let us remark that for V either positive- or negative-definite, SO(V) and hence Spin(V) is

connected, whereas for indefinite V, Spin(V) has two connected components. Let Spin0(V) denote the
identity component. In definite or lorentzian signatures, Spin0(V) → SO0(V) is a universal covering, but
Spin0(s, t ) is not simply connected when both s, t ≥ 2. The simplest interesting examples of spin covers
are SU(2) → SO(3) and SL(2,C) → SO0(3,1).

3.3 Pinors and spinors

Informally, pinors (resp. spinors) are vectors in an irreducible representation of a Clifford algebra (resp.
its even subalgebra) and, by restriction, of the corresponding Pin (resp. Spin) group. In order to define
them properly we need to introduce some notation.

Definition 3.6. Let A be a real associative algebra and letK=R, C or H. By aK-representation of A we
mean an R-linear homomorphism

ρ : A → EndK(E)

for someK-vector space E. TwoK-representations ρ : A → EndK(E) and ρ� : A → EndK(E�) are equivalent
if there is aK-linear isomorphism f : E → E� such that the following triangle commutes:

A
ρ

�����������
ρ�

�����������

EndK(E)
Ad f �� EndK(E�)

where Ad f : EndK(E) → EndK(E�) is defined byϕ �→ f ◦ϕ◦ f −1. In other words, for all a ∈ A, we have that
f ◦ρ(a) = ρ�(a)◦ f .

Quaternionic vector spaces

BecauseH is not commutative, one must distinguish between left and right quaternionic vec-
tor spaces. This is largely a matter of convention, since quaternionic conjugation relates left
and right vector spaces. Throughout these lectures we shall adopt the convention thatHn is a
right quaternionic vector space. In this way, the matrix algebraH(n) can actH-linearly onHn

from the left. (The fact that left and right multiplication commute is precisely associativity.)
This defines an isomorphism of real algebras H(n) ∼= EndH(Hn). In fact, notice that EndH(E)
for a quaternionic vector space E is only a real algebra! This is because of the nonexistence of
H-bilinears.

In Section 1.4.4 we have already seen one example of anR-representation of C�(V), namelyΛV. This
representation is not irreducible, however.

Definition 3.7. A pinor representation of Pin(V) is the restriction of an irreducible representation of
C�(V). Similarly, a spinor representation of Spin(V) is the restriction of an irreducible representation of
C�(V)0. (It is not hard to see that both pinor and spinor representations are irreducible.)

The irreducible representations of C�(V) are easy to determine from the classification of real Clifford
algebras in the second lecture. Recall that as a real algebra, C�(s, t ) is isomorphic to either K(2n) or
K(2n)⊕K(2n) depending on the signature. The following result can be extracted from [Lan84, § XVII].

Theorem 3.8. 1. Every irreducibleR-representation of the real algebraR(n) is isomorphic toRn, where
the matrix A ∈R(n) acts via left matrix multiplication.

2. Every irreducible H-representation of the real algebra H(n) is isomorphic to Hn as a right H-vector
space and where A ∈H(n) acts via left matrix multiplication.
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3. Every irreducible C-representation of the real algebra C(n) is isomorphic either to Cn with the nat-
ural action given by left matrix multiplication by A ∈ C(n) or to Cn with the complex conjugate
action given by left matrix multiplication by A ∈C(n).

This result together with the classification of real Clifford algebras, allows us to determine the pinor
representations easily. First of all, we notice that because of the third isomorphism in (49), the type of
the Clifford algebra does not change, only the dimension does, when we moved diagonally in the table.
This means that the type of the representation of C�(s, t ) only depends on s − t and, moreover, because
of Bott periodicity, only on s − t (mod 8). Thus we need only remember one small part of the Clifford
chessboard to determine the rest:

C(2)
R(2)
R⊕R
R C H H⊕H H(2)
−−−−−−−→

s

Notice that if we colour the squares of the chessboard according to whether C�(s, t ) has one or two
inequivalent irreducible representations, then we do indeed end up with a chessboard pattern.

2 1 2 1 2
1 2 1 2 1
2 1 2 1 2
1 2 1 2 1
−−−−−−−→

s

This dichotomy can also be explained by means of the volume element of C�(V). Given an ordered
orthonormal basis (e+1 , . . . ,e+s ,e−1 , . . . ,e−t ) for Rs,t , with Q(e±i ) =±1, there is associated a volume element
of C�(s, t ) defined as the Clifford product ω= e+1 · · ·e+s e−1 · · ·e−t .

Lemma 3.9. The volume element ω ∈ C�(s, t ) satisfies the following properties:

1. ω2 = (−1)s+d(d−1)/21, where d = s + t ,

2. ω is central if s + t is odd, and

3. ωv =−vω for all v ∈ V, if s + t is even.

It follows from the first part that the sign of ω2 depends only on s − t (mod 4):

ω2 =
�

1, s − t = 0,3 (mod 4)

−1, s − t = 1,2 (mod 4)

− − + +
− + + −
+ + − −
+ − − +
−−−−−−−→

s

Suppose that s + t (equivalently, s − t ) is odd, so that ω is central. Then if ω2 = 1 there are two
pinor representations P±, distinguished by the action of ω: ω = ±1 on P±. If s − t = 3 (mod 8), P± is
quaternionic, whereas if s − t = 7 (mod 8), P± is real. If ω2 = −1, so that s − t = 1,5 (mod 8), there
are two complex pinor representations P and P, distinguished by the action of ω: ω = ±i on P and P,
respectively.
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In summary, the type and dimension of the pinor representations follows from the classification
theorem 2.7. Similarly, the type and dimension of the spinor representations, being representations of
the even subalgebra C�(V)0, follow from Corollary 2.11. It remains to understand how the pinor and
spinor representations are related, for which we need a brief scholium about representation theory.

Real, complex and quaternionic representations

Let G be a Lie group, such as Pin(V) or Spin(V). IfK=R,C orH, we will denote RepK(G) denote
the (symmetric, monoidal) category of K-representations of G, whose objects are K-vector
spaces E (with the usual caveat about the case K=H) together with group homomorphisms
ρ : G → GLK(E) and where a morphism between ρ : G → GLK(E) and ρ� : G → GLK(E�) is a
K-linear map f : E → E� such that for all g ∈ G, f ◦ ρ(g ) = ρ�(g ) ◦ f . There are a number of
functors relating these categories, which commute with the direct sum of representations,
which is the categorical coproduct in RepK(G). These functors are neatly summarised in the
following (noncommutative!) diagram, borrowed from [Ada69] via [BtD85]:

(64) RepC(G)
��

c

��

RepR(G)

eCR
������������

RepH(G)

rHC
������������

RepC(G)
rCR

������������ eHC

������������

where c takes a complex representation E to its complex conjugate c(E) = E, eCR and eHC are
extension of scalars, taking a real representation E to its complexification eCR(E) = E⊗RC and a
complex representation E to its quaternionification eHC (E) = E⊗CH, and where rCR and rHC are
restriction of scalars, so that we simply view a complex representation E as a real represent-
ation rCR (E) and a quaternionic representation E as a complex representation rHC (E). These
functors satisfy a number of identities:

(65)

c2 = 1

ceCR = eCR
eHC c = eHC

rCR eCR = 2

eCRrCR = 1+ c

rCR c = rCR

crHC = rHC
eHC rHC = 2

rHC eHC = 1+ c

where 2E = E⊕E, (1+ c)E = E⊕E, etc.

In the following discussion, d = s + t is the (real) dimension of V. We will let P and S, perhaps with
decorations, denote pinor and spinor representations, respectively; although in order to compare them
we must view them both as representations of Spin(V).

If d is even, then the volume element ω ∈ C�(s, t )0 and commutes with C�(s, t )0, whence its eigen-
spaces in the pinor representation will correspond to the spinors representations. By contrast, if d is
odd, then ω �∈ C�(s, t )0 and hence C�(s, t ) = C�(s, t )0 ⊕C�(s, t )0ω ∼= C�(s, t )⊗R R[ω]. This means that we
will be able to induce a pinor representation of C�(s, t ) from a spinor representation S of C�(s, t )0 essen-
tially by tensoring with R[ω]: P = C�(s, t )⊗C�(s,t )0 S. If s − t = 1,5 (mod 8) then ω2 =−1 so that R[ω] ∼=C,
whereas if s − t = 3,7 (mod 8) then ω2 = 1 so that R[ω] ∼= R⊕R. We will use these facts freely in what
follows.

3.3.1 s − t = 0 (mod 8)

Here P ∼=R2d/2
and S± ∼=R2(d−2)/2

as vector spaces. The volume element obeys ω2 = 1, whence S± are the
eigenspaces of ω with eigenvalues ±1 and P = S+⊕S−.
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3.3.2 s − t = 1 (mod 8)

Here P ∼= C2(d−1)/2
and S ∼= R2(d−1)/2

as vector spaces. The Clifford algebra C�(s, t ) ∼= C�(s, t )0 ⊗C, whence
P ∼= eCR(S). It follows that P ∼= P as representations of Spin(s, t ).

3.3.3 s − t = 2 (mod 8)

Here P ∼=H2(d−2)/2
and S,S ∼=C2(d−2)/2

as vector spaces. We have that P ∼= eHC (S), whence rHC (P) ∼= S ⊕S, the
eigenspace decomposition under ω, which obeys ω2 =−1.

3.3.4 s − t = 3 (mod 8)

Here P± ∼= H2(d−3)/2
and S ∼= H2(d−3)/2

as vector spaces. The Clifford algebra C�(s, t ) ∼= C�(s, t )0 ⊕C�(s, t )0
and hence P± ∼= S.

3.3.5 s − t = 4 (mod 8)

Here P ∼=H2(d−2)/2
and S± ∼=H2(d−4)/2

as vector spaces. We have that P ∼= S+⊕S− is the eigenspace decom-
position of ω, which obeys ω2 = 1.

3.3.6 s − t = 5 (mod 8)

Here P,P ∼= C2(d−1)/2
and S ∼= H2(d−3)/2

as vector spaces. The Clifford algebra C�(s, t ) ∼= C�(s, t )0 ⊗R C and
hence P ∼= rHC (S). It follows that P ∼= P as representations of Spin(s, t ).

3.3.7 s − t = 6 (mod 8)

Here P ∼=R2d/2
and S,S ∼=C2(d−2)/2

. Then P ∼= rCR (S), so that eCR(P) ∼= S⊕S is the eigenspace decomposition
of ω, which obeys ω2 =−1, acting on the complexification of P.

3.3.8 s − t = 7 (mod 8)

Here P± ∼= R2(d−1)/2
and S ∼= R2(d−1)/2

as vector spaces. The Clifford algebra C�(s, t ) ∼= C�(s, t )0 ⊕C�(s, t )0
and hence P± ∼= S.

We can summarise and paraphrase these results by saying that in even dimensions the pinor rep-
resentation (or if s − t = 6 (mod 8), its complexification) decomposes into the direct sum of two equi-
dimensional spinor representations, whereas in odd dimensions, we must distinguish several cases: if
s − t = 3,7 (mod 8) then each of the two pinor representations is isomorphic to the unique spinor rep-
resentation, whilst if s − t = 1,5 (mod 8) then the two complex pinor representations are isomorphic
either to the complexification of the unique spinor representation, if s− t = 1 (mod 8), or to the restric-
tion of scalars of the unique quaternionic spinor representation, if s − t = 5 (mod 8).

3.4 Inner products for pinors and spinors

The pinor and spinor representations have inner products which are Spin(V) invariant. In fact, the
precise statement, which can be found together with a complete discussion of this topic in [Har90],
requires us to review the Clifford involutions.
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Clifford involutions

There are three natural involutions of the Clifford algebra C�(V):

1. the grading automorphism α �→ �α, which extends the orthogonal transformation v �→
−v on V, e.g., �u1 · · ·up = (−1)p u1 · · ·up ;

2. the check involution α→ α̌, which is the antiautomorphism of C�(V) defined by revers-
ing the order of the generators in every monomial, e.g., (u1 . . .up )̌ = up · · ·u1; and

3. the hat involution α �→ α̂, obtained by combining the previous two.

If α ∈ C�(V) comes from Λp V under the isomorphism C�(V) ∼=ΛV, then α̃, α̌ and α̂ will be ±α
according the following signs:

p mod 4 0 1 2 3
˜ + − + −
ˇ + − − +
ˆ + + − −

Notice that on C�(V)0, the hat and check involutions agree. This is called the canonical in-
volution of C�(V)0.

The following theorem can be found in [Har90, Chapter 13].

Theorem 3.10. There exists an inner product 〈−,−〉 on every spinor representation S such that

(66) 〈ax, y〉= 〈x, ây〉 for all a ∈ C�(V)0 and x, y ∈ S.

There exist inner products ε̂ and ε̌ on the pinor representation P (possibly taking the direct sum of the two
irreducible pinor representations when appropriate) such that

(67) ε̌(ax, y) = ε̌(x, ǎy) and ε̂(ax, y) = ε̂(x, ây).

Moreover all seven types of inner products (real symmetric, real symplectic, complex symmetric, complex
symplectic, complex hermitian, quaternionic hermitian and quaternionic skewhermitian) appear!

The spinor representations (with these Spin(V)-invariant inner products) are behind most of the
isomorphisms between the following low-dimensional Lie groups:

(68)

Spin(2) ∼= U(1)

Spin(3) ∼= Sp(1)

Spin(4) ∼= Sp(1)×Sp(1)

Spin(5) ∼= Sp(2)

Spin(6) ∼= SU(4)

Spin(2,1)0
∼= SL(2,R)

Spin(3,1)0
∼= SL(2,C)

Spin(4,1)0
∼= Sp(1,1)

Spin(5,1)0
∼= SL(2,H)

Spin(2,2)0
∼= SL(2,R)×SL(2,R)

Spin(3,2)0
∼= Sp(4,R)

Spin(4,2)0
∼= SU(2,2)

In particular, notice the sequence Spin0(2,1) ∼= SL(2,R) , Spin0(3,1) ∼= SL(2,C), Spin0(5,1) ∼= SL(2,H),
which would suggest that Spin0(9,1) would be isomorphic to SL(2,O) if the octonions were associative
and such a group could be defined.
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Lecture 4: Spin manifolds

Thus, the existence of a spinor structure appears, on phys-
ical grounds, to be a reasonable condition to impose on
any cosmological model in general relativity.

— Robert Geroch, 1969

In this lecture we will discuss the notion of a spin structure on a finite-dimensional smooth man-
ifold. We start with some basic notions, just in case the intended audience includes people with little
background in differential geometry.

4.1 What is a manifold?

We start with a familiar definition from topology.

Definition 4.1. A (topological) n-dimensional manifold is a Hausdorff topological space with a count-
able basis and which is locally homeomorphic to Rn ; that is, every point in M has a neighbourhood
which is homeomorphic to Rn .

We shall be interested in doing calculus on manifolds, and this requires introducing a differentiable
structure. We assume that we know how to do calculus on Rn and the point of a differentiable structure
is to enable us to do calculus on spaces which are locally “like” Rn in a way that it is as independent
as possible on the precise form of the local homeomorphisms. Please note that we will consider only
infinitely differentiable (or smooth) structures. This is not necessary, but it is certainly sufficient for our
purposes.

Definition 4.2. A smooth structure on an n-dimensional manifold M is an atlas of coordinate charts�
(Uα,φα)

�
α∈I, for I some indexing set, where {Uα} is an open cover of M and φα : Uα → Rn are homeo-

morphisms whose transition functions on nonempty overlaps Uαβ := Uα∩Uβ

gαβ =φα ◦φ−1
β :φβ(Uαβ) −→φα(Uαβ)

are diffeomorphisms between open subsets of Rn ; that is, gαβ are infinitely differentiable with infinitely
differentiable inverses. Two smooth structures

�
(Uα,φα)

�
and

�
(Vβ,ψβ)

�
are equivalent if their union

is also an atlas. A maximal atlas consists of the union of all atlases in one such equivalence class. A
topological manifold with a maximal atlas is called a smooth manifold.

Remark 4.3. Notice that not every topological manifold admits a smooth structure and that there are
topological manifolds admitting more than one inequivalent smooth structures. For example, it is
known that R4 admits an uncountably infinite number of smooth structures, but for us in this course
Rn will always have the standard smooth structure, unless otherwise explicitly stated.

Let M be a smooth manifold. A function f : M → R is smooth if for each α ∈ I, f ◦φ−1
α : Rn → R is

smooth as a function of n real variables. Similarly a function f : M → Rp is smooth if each component
function fi : M → R, for i = 1, . . . , p, is smooth. A map f : Mn → Np between smooth manifolds of
dimensions n and p, respectively, is smooth if for every m ∈ M,ψβ◦ f : Vβ→Rp is smooth for some (and
hence all) coordinate charts (Vβ,ψβ) containing the point f (m). Smooth manifolds form the objects of
a category whose morphisms are the smooth maps between them. The isomorphisms in that category
are the called diffeomorphisms: namely, smooth maps f : M → N with a smooth inverse.

We could say a lot more about calculus on manifolds, but perhaps this suffices for now.

4.2 Fibre bundles

The definition of a spin structure on a smooth manifold is phrased in the language of fibre bundles and
we introduce this language in this section.
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4.2.1 Basic notions

Let G be a Lie group and let F be a smooth manifold with a smooth G-action: G×F → F. We will assume
that G acts effectively so that if (g , f ) �→ f for all f ∈ F, then g = 1, the identity. It is often convenient to
write the action as a map ρ : G → Aut(F), where Aut(F) is the automorphism group of the fibre. In the
most general case, Aut(F) = Diff(F) is the group of diffeomorphisms, but we will be working mostly with
vector bundles, for which F is a vector space and Aut(F) = GL(F), whence ρ is a representation of G.

Definition 4.4. A fibre bundle (with structure group G and typical fibre F as above) over M is a smooth
surjection π : E → M together with a local triviality condition: every m ∈ M has a neighbourhood U and
a diffeomorphism φU :π−1U −→ U×F such that the following triangle commutes:

π−1U

π
����

��
��

��

φU �� U×F

pr1����������

U

and such that on nonempty overlaps U∩V

φU ◦φ−1
V

��
{m}×F = ρ(gUV(m))

for some the transition functions gUV : U ∩ V → G. The manifold M is called the base of the fibre
bundle, whereas E is called the total space. For each m ∈ M, the fibre π−1m = {e ∈ E|π(e) = m} over m is
a submanifold of E which is diffeomorphic to F.

The trivial bundle with typical fibre F is simply the Cartesian product M×F
pr1−→ M, in which case

we can take the φU to be the restriction to U of the identity diffeomorphism. Fibre bundles are of
course locally trivial, but can be twisted in the large. The maps φU in the general case are called local
trivialisations. Fibre bundles (with structure group G) over a fixed smooth manifold M are the objects
of a category, where a morphism between two fibre bundles π : E → M and π� : E� → M over M is a
G-equivariant fibre-preserving smooth map ϕ : E → E� such that the following triangle commutes:

(69) E

π
���

��
��

��
�

ϕ �� E�

π�����
��

��
�

M

The restriction of having the same structure group can be lifted and we can equally well consider
morphisms between fibre bundles with different structure groups where now the fibre-preserving map
ϕ : E → E� intertwines between the G and G� actions on the fibres. In any case, if ϕ is a diffeomorphism,
then the two bundles are said to be equivalent. A fibre bundle is said to be trivial if it is equivalent to
the trivial bundle M×F.

A smooth map s : M → E is a section of the fibre bundle π : E → M if π◦ s = idM. In other words, it is
a smooth assignment to every m ∈ M of a point s(m) on its fibre. A fibre bundle may admit no sections:
principal fibre bundles (see below) do not unless they are trivial, vector bundles (see below) always do.
Local triviality means that local sections always exist, they are locally defined maps from M → F. Our
notation for sections of E is C∞(M,E), unless otherwise stated.

4.2.2 Construction from local data

A fibre bundle gives rise to some local data from where it can then be reconstructed, up to equivalence.
Let U= {Uα}α∈I be an open cover of M and letφα :π−1Uα→ Uα×F be local trivialisations with transition

functions gαβ : Uαβ → G, defined by ρ(gαβ(m)) = φα ◦φ−1
β

���
{m}×F

as above. Notice that the {gαβ} satisfy

the following conditions:

1. gαα(m) = 1 for all m ∈ Uα,
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2. gαβ(m)gβα(m) = 1 for all m ∈ Uαβ, and

3. the cocycle condition

(70) gαβ(m)gβγ(m)gγα(m) = 1 for all m ∈ Uαβγ := Uα∩Uβ∩Uγ.

Notice that if we do not demand that α, β and γ be different, then the cocycle condition implies the
other two. We will refer to them collectively as the “cocycle conditions”. Notice as well that we are using
that G acts effectively on F, otherwise the right-hand sides of these equations would not necessarily
be the identity in G, but anything in the kernel of the action ρ. Now the local trivialisations φα glue to
define a diffeomorphism

(71) E ∼=
��

α∈I
Uα×F

��
∼ where (m, f ) ∼ (m,ρ(gαβ(m)) f ), for all m ∈ Uαβ and f ∈ F.

From now on we shall drop ρ from the notation and simply write g f for g ∈ G acting on f ∈ F. Notice
that the cocycle conditions above are, respectively, the reflexive, symmetry and transitivity conditions
for the equivalence relation ∼.

This allows us to construct fibre bundles by gluing local data. Indeed, if we are given an open cover
U= {Uα}α∈I for M and functions gαβ : Uαβ→ G on overlaps satisfying the cocycle conditions then we get
a fibre bundle by defining E by (71) and the surjection π : E → M by the projection pr1 : Uα×F → Uα,
which is respected by the equivalence relation. The resulting bundle is a fibre bundle trivialised over U.

4.2.3 Vector and principal bundles

As mentioned above, a general fibre bundle will have as structure group the diffeomorphism group of
the typical fibre, but there are important examples where G is much smaller. For example, if we take
F to be a vector space and G to act linearly, then we have a vector bundle. Similarly if F ∼= G itself and
G acts on G by left multiplication, then we have a principal G-bundle. In this latter case, there is a
well-defined right action of G on the total space E of the principal bundle: (m, g ) �→ (m, g g �) which is
fibre-preserving and clearly G-equivariant, since associativity of the group multiplication says that left
and right multiplications commute. Since right multiplication of G on itself is simply transitive, we have
that M ∼= E/G is the quotient of E by this right action of G. One often sees this as the starting point for a
definition of a principal bundle.

We can go back and forth between vector and principal bundles via two natural constructions:

vector
bundles

bundle of frames−−−−−−−−−−−−−→
←−−−−−−−−−−−−−

associated bundle

principal
bundles

Given a vector bundle E
π−→ M with typical fibre a vector space F, let us define a principal bundle

GL(E)
Π−→ M by declaring the fibre GL(E)m to be the set of frames of the vector space Em . This is a

principal homogeneous space (or torsor) of the general linear group in that any two frames are related
by a unique invertible linear transformation. This means that as a set GL(E)m

∼= GL(Em), but the iso-
morphism is not natural: it depends on choosing a reference frame. Nevertheless, in terms of a local
trivialisation

�
(Uα,φα)

�
α∈I for E, with transition functions gαβ : Uαβ→ GL(F) we define

GL(E) =
��

α∈I
Uα×GL(F)

��
∼ where (m, g ) ∼ (m, gαβ(m)g ), for all m ∈ Uαβ and g ∈ GL(F).

This is then a principal GL(F)-bundle called the frame bundle of E.

Conversely, given a principal G-bundle P
Π−→ M and a finite-dimensional representation ρ : G →

GL(F) on a vector space F, we have a right G-action on P×F given by (p, f )g = (pg ,ρ(g−1) f ) for p ∈ P,
f ∈ F and g ∈ G. This action is free because G acts freely on P, and hence the quotient E = (P×F)/G can
be given a smooth structure. Since P/G ∼= M, we see that this is a fibre bundle with typical fibre F. The
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surjection π : E → M is induced from the surjection Π : P → M which is preserved by the equivalence
relation by virtue of Π(pg ) =Π(p). Alternatively, in terms of a local trivialisation

�
Uα,φα

�
α∈I for P with

transition functions gαβ : Uαβ→ G, we define

E =
��

α∈I
Uα×F

��
∼ with (m, f ) ∼ (m, gαβ(m) f ) for m ∈ Uαβ and f ∈ F

and π : E → M defined by π[(m, f )] = m. This vector bundle, often denoted P ×G F → M is called an
associated vector bundle of P → M, associated to the representation ρ.

In summary, the two constructions above relate fibre bundles which are locally trivialisable over
the same cover and the corresponding transition functions are simply related. It is largely a matter of
choice whether one decides to work with principal bundles and their associated bundles or with vector
bundles and their bundles of frames. For the most part we will choose the former.

4.2.4 Equivalence classes of principal bundles

From the above discussion, the emerging picture is one of principal G-bundles defined by data con-
sisting of a trivialising cover U = {Uα}α∈I and functions gαβ : Uαβ → G on double overlaps satisfying the
cocycle conditions (70). Different choices of U and of cocycles {gαβ} can still give rise to equivalent
bundles.

From the definition of the gαβ in terms of local trivialisations gαβ = φα ◦φ−1
β

one can see that it is

still possible to compose φα with functions gα : Uα → G to give rise to a new trivialisation φ�
α = gα ◦φα

and hence to new transition functions g �
αβ

= gα ◦ gαβ ◦ g−1
β

which still satisfy the cocycle conditions. We

say that two cocycles {gαβ} and {g �
αβ

} are equivalent if g �
αβ

= gα ◦ gαβ ◦ g−1
β

for some “cochain” {gα}. We

will let H1(U,G) denote the set of equivalence classes of cocycles. It classifies the principal G-bundles
trivialised on U up to equivalence.

Remark 4.5. Those familiar with sheaf cohomology will recognise H1(U,G) as the first Čech cohomo-
logy set of the sheaf of germs of smooth functions M → G relative to the open cover U. For G nonabelian,
this will fail to be a group and be only a pointed set, with distinguished element the isomorphism class
of the trivial bundle.

Now suppose that we are given two principal G-bundles defined by local data (U = {Uα}α∈I, {gαβ})
and (V = {Vα}α∈J, {g �

αβ
}). In order to compare them we would like to define the two bundles relative to

the same trivialising cover. This is done by passing to a common refinement of U and V. More precisely
let U = {Uα}α∈I be an open cover for M. We say that an open cover V = {Vβ}β∈J refines U if there is a
reindexing map j : J → I such that for every β ∈ J, Vβ ⊆ U j (β). Now any two open covers U= {Uα}α∈I and
V = {Vβ}β∈J have a common refinement. For example, we can take W = {Uα∩Vβ}(α,β)∈I×J. It is clearly
again an open cover and it is clear that it refines both U and W: the reindexing functions I× J → I and
I× J → J are the cartesian projections. (This makes the set of open covers into a directed set.) We can
then restrict the cocycles {gαβ} defined on U and {g �

αβ
} defined on V to W and in effect consider them

as cocycles on W where they can be compared as above. So that two principal bundles defined by local
data (U= {Uα}α∈I, {gαβ}) and (V= {Vα}α∈J, {g �

αβ
}) are equivalent if the restriction of their cocycles to some

refinement W are equivalent, whence they define the same class in H1(W,G). The way to formalise this
is to define define H1(M,G) = lim−−→U

H1(U,G), the direct limit of the restriction maps H1(U,G) → H1(V,G)
for V a refinement of U. Then we see that two principal G-bundles are equivalent if they define the
same class in H1(M,G), which then becomes the set of equivalence classes of principal G-bundles on
M. It is a pointed set with the trivial bundle as distinguished element.

4.3 Fibre bundles on riemannian manifolds

We will now specialise to riemannian manifolds.
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4.3.1 Orientability and the orthonormal frame bundle

Tangent bundle

Let M be a smooth manifold and m ∈ M a point. Then by a curve through m we mean a
smooth function t �→ c(t ), with c(0) = m. Its velocity at m is the derivative with respect to
t evaluated at t = 0: c �(0). The space of the velocities at m of all curves though m defines
the tangent space TmM of M at m. It is a vector space. The union TM := �

m∈M TmM can be
given the structure of a smooth manifold in such a way that the map π : TM → M which sends
v ∈ TmM to m is a surjection making it into a vector bundle over M. Sections of the tangent
bundle are called vector fields and the space of vector fields on M is denoted X (M).

A riemannian manifold (M, g ) is a manifold M together with a metric g , which is a smoothly varying
family of nondegenerate symmetric bilinear forms on the tangent spaces of M. Notice that we do not
demand that g be positive-definite.

Remark 4.6. Although every (paracompact) smooth manifold admits a positive-definite metric, the ex-
istence of indefinite metrics often imposes topological restrictions on M. For example, if M is compact
(and orientable?) then it admits a lorentzian metric (i.e., one of signature (1,n−1) or (n−1,1) for n > 1)
if and only if its Euler characteristic vanishes – a result due to Geroch.

The tangent bundle of a smooth n-dimensional manifold has structure group GL(n,R), but for a
riemannian manifold, the existence of orthonormal frames implies that it is equivalent to a vector
bundle with structure group O(s, t ) if the metric has signature (s, t ). If U= {Uα}α∈I is a trivialising cover
for the tangent bundle, we let gαβ : Uαβ → O(s, t ) be the transition functions for the bundle O(M) → M
of orthonormal frames.

Example 4.7. Let Sn ⊂ Rn+1 be the unit sphere. For x ∈ Sn , the tangent space Tx Sn is given by those
vectors in Rn+1 which are perpendicular to x. The orthonormal frame bundle is O(n +1) → Sn . Indeed,
given x ∈ Sn and an orthonormal frame e1, . . . ,en for Tx Sn , the (n + 1)× (n + 1)-matrix whose first n
columns are given by the ei and whose last column is given by x is orthogonal. Conversely, given a ∈
O(n +1), the map π : O(n +1) → Sn defined by setting π(a) to be the last column of a is such that the
fibre at π(a) is the set of orthonormal frames for the perpendicular subspace to π(a) in Rn+1.

A riemannian manifold (M, g ) is oriented if we can restrict consistently to oriented orthonormal
frames or, in other words, whether we can reduce the structure group of TM from O(s, t ) to SO(s, t ). Con-
cretely, this means being able to choose transition functions for the orthonormal frame bundle which lie
in SO(s, t ), perhaps relative to a refinement of the trivialising cover. So given {gαβ} taking values in O(s, t )
we ask whether we can find {g �

αβ
} taking values in SO(s, t ). Let fαβ(m) = det gαβ(m) for m ∈ Uαβ. Since an

orthogonal matrix, independently of the signature, has determinant ±1, the fαβ(m) take values in the
group {±1} of order 2. The cocycle condition for {gαβ} imply the cocycle condition for { fαβ}, whence this
defines a principal fibre bundle with structure groupZ2. Orientability of M is equivalent to the triviality
of this bundle. Indeed, if (and only if) fαβ(m) = fα(m) fβ(m) for some Z2-valued “cochain” fα : Uα →Z2,
then we can define g �

αβ
(m) = gα(m)gαβ(m)g−1

β
(m) for some gα : Uα → O(s, t ) with det gα(m) = fα(m),

whence g �
αβ

: Uαβ → SO(s, t ) and still satisfies the cocycle conditions. The cohomology class defined by

{ fαβ} in H1(M,Z2) which measures the failure of M to being orientable is called the first Stiefel–Whitney
class of M. Its vanishing is tantamount to orientability. Since H1(M,Z2) ∼= Hom(π1(M),Z2), if M is simply
connected then it is automatically orientable. Even if M is not orientable, there is a double cover, namely
the total space of the principal Z2-bundle defined by the class of { fαβ} in H1(M,Z2), which is oriented
and locally isometric to (M, g ).

Remark 4.8. Readers familiar with Čech cohomology will recognise the obstruction of orientability as
image of the class in H1(M,O(s, t )) corresponding to the orthonormal frame bundle under the last map
in the long exact cohomology sequence

H1(M,SO(s, t )) �� H1(M,O(s, t )) �� H1(M,Z2)
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coming from the exact sheaf sequence which is induced from the exact sequence of groups

1 �� SO(s, t ) �� O(s, t )
det �� Z2 �� 1

Notice that since O(s, t ) and SO(s, t ) are nonabelian groups, there are no Hp>1, whence the exact co-
homology sequence ends there.

Example 4.9. For n ≥ 2, the sphere Sn is simply connected, whence it is orientable. In fact, the oriented
orthonormal frame bundle is SO(n+1) → Sn , with the map given again by the last column of the matrix.

4.3.2 The Clifford bundle and the obstruction to defining a pinor bundle

Any functorial construction on vector spaces — e.g., ⊕, ⊗, Hom,... — gives rise to a similar construction
on vector bundles, and in particular any such construction on representations of G gives rise to sim-
ilar constructions on associated vector bundles to any principal G-bundle. On a riemannian manifold
(M, g ) each tangent space becomes a quadratic vector space, relative to the quadratic form induced
from the inner product defined by the metric. Hence one should expect that any functorial construc-
tion on quadratic vector spaces should globalise to a similar construction on a riemannian manifold.
One such construction is the Clifford algebra, which gives rise to a Clifford bundle C�(TM). As a vec-
tor bundle, C�(TM) ∼= ΛTM, but C�(TM) is actually a bundle of Clifford algebras. Alternatively we can
define it from a local trivialisation of the orthonormal frame bundle O(M):

C�(TM) =
��

α∈I
Uα×C�(s, t )

��
∼ with (m,c) ∼ (m,C�(gαβ(m))c) for m ∈ Uαβ and c ∈ C�(s, t ),

where C�(gαβ(m)) is the Clifford algebra automorphism derived functorially from the orthogonal trans-
formation gαβ(m). Since C�(gαβ(m)) are automorphisms of the Clifford algebra, the Clifford product on
C�(TM) is well-defined.

A natural question, given the existence of the Clifford bundle, is whether there is a vector bundle as-
sociated to the pinor representation of the Clifford algebra. If P(s, t ) is a pinor representation of C�(s, t )
one could try to build such a bundle from local data as follows

P
?=

��

α∈I
Uα×P(s, t )

��
∼ with (m, p) ∼ (m, gαβ(m)p) for m ∈ Uαβ and p ∈ C�(s, t ),

except that O(s, t ) does not act on P(s, t ) and hence we don’t know what gαβ(m)p is.
Since Pin(s, t ) does act on P(s, t ), we could try to define

P
?=

��

α∈I
Uα×P(s, t )

��
∼ with (m, p) ∼ (m, �gαβ(m)p) for m ∈ Uαβ and p ∈ C�(s, t ),

where �gαβ(m) ∈ Pin(s, t ) is a lift of gαβ(m) ∈ O(s, t ). In other words, �Ad�gαβ(m) = gαβ(m), where �Ad :

Pin(s, t ) → O(s, t ) is the surjection in Proposition 3.3. For the above definition to make sense, ∼ must be
an equivalence relation and this is tantamount to the cocycle condition for �gαβ(m) : Uαβ→ Pin(s, t ):

�gαβ(m) �gβγ(m) �gγα(m) = 1 for all m ∈ Uαβγ.

Applying �Ad to the cocycle conditions, we obtain the cocycle conditions for the gαβ(m) : Uαβ → O(s, t ),
which are satisfied, hence

fαβγ(m) := �gαβ(m) �gβγ(m) �gγα(m) ∈ ker �Ad =Z2

and hence defines maps fαβγ : Uαβγ→Z2. Moreover fαβγ is itself a cocycle, in that in quadruple overlaps

fαβγ(m) fαβδ(m) fαγδ(m) fβγδ(m) = 1 for all m ∈ Uαβγδ.
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Since �Ad has nontrivial kernel, the lift �gαβ(m) is not unique and any other lift is related to this by some
cochain fαβ : Uαβ→Z2. This changes the cocycle fαβγ by a coboundary

fαβγ(m) �→ f �
αβγ(m) := fαβγ(m) fαβ(m) fβγ(m) fαγ(m) .

In particular, f �
αβγ

still satisfies the cocycle condition on quadruple overlaps and its class in H2(U,Z2),

and hence in H2(M,Z2), is unchanged. If (and only if) this class vanishes, will we be able to lift the gαβ
to Pin(s, t ) in such a way that the cocycle conditions are satisfied. Indeed, the class of fαβγ in H2(M,Z2)
vanishes if on some “good” cover U, fαβγ(m) = fαβ(m) fβγ(m) fαγ(m) for some fαβ : Uαβ→Z2. This being
the case, then g �

αβ
(m) = �gαβ(m) fαβ(m) is our desired Pin(s, t )-valued cocycle. The class in H2(M,Z2)

defined by the fαβγ is essentially the second Stiefel–Whitney class of M, and the pinor bundle can be
defined if and only if this class vanishes.

We can view the same class appearing in the more traditional approach to defining a spin structure,
to which we now turn.

4.3.3 Spin structures

Let (M, g ) be an orientable riemannian manifold of signature (s, t ) and let SO(M) → M denote the bundle
of oriented orthonormal frames.

Definition 4.10. A spin structure on (M, g ) is a principal Spin(s, t )-bundle Spin(M) → M together with
a bundle morphism

Spin(M)

����
��

��
��

�

ϕ �� SO(M)

����
��

��
��

�

M

which restricts fibrewise to the covering homomorphism �Ad : Spin(s, t ) → SO(s, t ) of Proposition 3.5.

Spin structures need not exist and even if they do they need not be unique. To understand the ob-
struction let us try to build a spin bundle starting with a trivialisation (U, {gαβ}) of SO(M). We choose
�gαβ(m) ∈ Spin(s, t ) such that under �Ad : Spin(s, t ) → SO(s, t ), �gαβ(m) �→ gαβ(m). This choice is not

unique, of course: any other choice �g �
αβ

(m) is related to �gαβ(m) by multiplication with some fαβ(m) ∈
ker �Ad =Z2: �g �

αβ
(m) = �gαβ(m) fαβ(m). We would build the spin bundle Spin(M) as usual by

Spin(M)
?=

��

α∈I
Uα×Spin(s, t )

��
∼ with (m, s) ∼ (m, �gαβ(m)s) for m ∈ Uαβ and s ∈ Spin(s, t ),

except that, for this to make sense, the �gαβ(m) should satisfy the cocycle condition. As in the case of
the construction of the pinor bundle, the obstruction is the class of fαβγ(m) = �gαβ(m) �gβγ(m) �gγα(m) in
H2(M,Z2), which is again the second Stiefel–Whitney class of M. If and only if this class vanishes does
(M, g ) admit a spin structure. Assuming the class vanishes, then one can ask whether the spin structure
is unique. Spin structures are in bijective correspondence with the inequivalent lifts �gαβ of gαβ. As
mentioned above, any two lifts are related by multiplication by fαβ : Uαβ ∈Z2. The cocycle conditions of
the two lifts implies the cocycle condition of fαβ, whence it defines a class in H1(M,Z2). If (and only if)
this class is trivial, so that fαβ(m) = fα(m) fβ(m) for some fα : Uα →Z2, do the two lifts yield equivalent
spin bundles. In summary, spin structures are classified by H1(M,Z2) ∼= Hom(π1(M),Z2), whence it
usually comes down to assigning signs to noncontractible loops consistently.

Remark 4.11. Readers familiar with Čech cohomology will recognise the obstruction of the existence
of a spin structure as the image of the class of SO(M) in H1(M,SO(s, t )) under the connecting map in the
long exact cohomology sequence

H1(M,Z2) �� H1(M,Spin(s, t )) �� H1(M,SO(s, t )) �� H2(M,Z2)
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coming from the exact sheaf sequence which is induced from the exact sequence of groups

1 �� Z2 �� Spin(s, t )
�Ad �� SO(s, t ) �� 1

Again notice that since SO(s, t ) and Spin(s, t ) are (in general) nonabelian, there are no Hp>1, whence the
exact cohomology sequence ends there. Indeed a principal SO(s, t )-bundle admits a Spin lift if and only
its image in H2(M,Z2) under the connecting homomorphism vanishes and the “difference” of any two
lifts lives in H1(M,Z2).

Example 4.12. For n ≥ 2, the sphere Sn admits a unique spin structure, and indeed Spin(Sn) = Spin(n+
1) and the bundle morphism Spin(Sn) → SO(Sn) is the covering homomorphism Spin(n+1) → SO(n+1).

Example 4.13. The circle S1 has two inequivalent spin structures which, in some quarters at least, go
by the names of Ramond and Neveu–Schwarz. (This is not a joke.)

Example 4.14. A compact Riemann surface Σ of genus g admits 22g inequivalent spin structures. The
second Stiefel–Whitney class vanishes because if it the reduction mod 2 of the Euler class and the
Euler characteristic is even (= 2−2g ). The inequivalent spin structures are classified by homomorph-
isms Hom(π1(Σ),Z2). Now the fundamental group of Σ is generated by 2g elements A1, . . . , Ag ,B1, . . . ,Bg
subject to the relation [A1,B1][A2,B2] · · · [Ag ,Bg ] = 1, where [A,B] = ABA−1B−1 is the (group-theoretical)
commutator of A,B. Every homomorphism is determined by what it does on generators, subject to the
relation being satisfied. Clearly, though, since Z2 is abelian, any homomorphism from the free group
generated by the Ai and the Bi automatically preserves the relation. Thus every spin structure is spe-
cified by associating a sign to every generator. For the case of genus 1, there are four spin structures
which, in some quarters at least, are called Neveu–Schwarz/Neveu–Schwarz, Neveu–Schwarz/Ramond,
Ramond/Neveu–Schwarz and Ramond/Ramond. (This is not a joke either and moreover illustrates the
multiplicative nature of the spin structures.)

Given a spin structure Spin(M) → M we can now construct spinor bundles as associated vector
bundles. Let S(s, t ) denote a spinor representation of Spin(s, t ) and define S(M) → M to be the vector
bundle with total space

S(M) =
�
Spin(M)×S(s, t )

��
Spin(s, t ) .

Depending on signature we might also have half-spinor bundles S±(M) associated to the half-spinor
representations S(s, t )±.

FIXME: I am not very happy with this lecture. I will eventually update this to include a small
discussion of Čech cohomology with coefficients in a sheaf, to allow me at the very least to use the
language freely.
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Lecture 5: Connections on principal and vector bundles

The beauty and profundity of the geometry of fibre bundles
were to a large extent brought forth by the (early) work of
Chern. I must admit, however, that the appreciation of this
beauty came to physicists only in recent years.

— CN Yang, 1979

The aim of this lecture is the construction of a connection on the spin bundle and hence on the as-
sociated spinor bundles, but first we will discuss the rudiments of the theory of Ehresmann and Koszul
connections on principal and vector bundles, respectively. This is, of course, the language of gauge
theory and I will borrow freely from my own preliminary lecture notes on this subject.

5.1 Connections on principal bundles

The push-forward and the pull-back

Let f : M → N be a smooth map between manifolds. The push-forward

T f : TM → TN

is the collection of fibre-wise linear maps f∗ : TmM → T f (m)N defined as follows. Let v ∈ TmM
be represented as the velocity of a curve t �→ γ(t ) through m; that is, γ(0) = m and γ�(0) = v .
Then f∗(v) ∈ T f (m)N is the velocity at f (m) of the curve t �→ f (γ(t )); that is, f∗γ�(0) = ( f ◦γ)�(0).
If g : N → Q is another smooth map between manifolds, then so is their composition g ◦ f :
M → Q. The chain rule for derivatives says that T(g ◦ f ) = Tg ◦T f . Since the push-forward of
the identity diffeomorphism 1M is the identity diffeomorphism 1TM, we see that T is indeed a
functor from the category of smooth manifolds and smooth maps to itself.
Dual to the tangent bundle TM is the cotangent bundle T∗M, where T∗

mM = Hom(TmM,R). Its
sections are called one-forms and the space of one-forms on M is denoted Ω1(M). The dual
of the push-forward is the pull-back f ∗ : T∗N → T∗M, defined for a one-form α by ( f ∗α)(v) =
α( f∗v). Notice that f ∗ : T∗

f (m)N → T∗
mM. It is also functorial, but now reversing the order

(g ◦ f )∗ = f ∗ ◦g∗. (It’s a contravariant functor.) Unlike the case of the push-forward, the pull-
back defines a map on sections also denoted f ∗ : Ω1(N) →Ω1(M). We also use the notation
Ωk (M) to denote the sections of the k-th exterior power : Λk T∗M of the cotangent bundle. If
k = 0, Ω0(M) = C∞(M).

Letπ : P → M be a principal G-bundle and let m ∈ M and p ∈π−1(m). The vertical subspace Vp ⊂ Tp P
consists of those vectors tangent to the fibre at p; in other words, Vp = kerπ∗ : Tp P → TmM. A vector
field v ∈ X (P) is vertical if v(p) ∈ Vp for all p. The Lie bracket of two vertical vector fields is again
vertical. The vertical subspaces define a G-invariant distribution (in the sense of Frobenius) V ⊂ TP:
indeed, since π◦Rg =π, we have that π∗ ◦ (Rg )∗π∗, whence (Rg )∗Vp = Vpg .

We can understand the vertical space also as the image of the Lie algebra g of G under the G-action.
If we fix p ∈ P, then the action gives a map G → P defined by g �→ pg , whose push-forward at the identity
defines a map σp : g→ Tp P; explicitly,

σp (X) = d
d t

�
p exp(tX)

�����
t=0

.

Since π(p exp(tX)) =π(p), it follows that σp (X) ∈ Vp . Since the action of G is free, the map in one-to-one
and hence counting dimension we see that σp : g→ Vp is an isomorphism.

Lemma 5.1.
(Rg )∗σp (X) =σpg

�
Adg−1 X

�
.
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Proof. By definition, at p ∈ P, we have

(Rg )∗σp (X) = d
d t

Rg
�
p exp(tX)

����
t=0

= d
d t

�
p exp(tX)g

����
t=0

= d
d t

�
pg g−1 exp(tX)g

����
t=0

= d
d t

�
pg exp(t Adg−1 X)

����
t=0

=σpg

�
Adg−1 X

�
.

In the absence of any extra structure, there is no natural complement to Vp in Tp P. This is in a sense
what a connection provides.

5.1.1 Connections as horizontal distributions

A connection (in the sense of Ehresmann) on P is a smooth choice of horizontal subspaces Hp ⊂ Tp P
complementary to Vp :

Tp P = Vp ⊕Hp

and such that (Rg )∗Hp = Hpg . In other words, a connection is a G-invariant distribution H ⊂ TP com-
plementary to V.

Example 5.2. A G-invariant riemannian metric on P gives rise to a connection, simply by defining
Hp = V⊥

p . This simple observation underlies the Kałuża–Klein programme relating gravity on P to gauge
theory on M. It also underlies many geometric constructions, since it is often the case that ‘nice’ metrics
will give rise to ‘nice’ connections and viceversa.

5.1.2 The connection one-form

The horizontal subspace Hp ⊂ Tp P, being a linear subspace, is cut out by k = dimG linear equations
Tp P → R. In other words, Hp is the kernel of k one-forms at p, the components of a one-form ω at
p with values in a k-dimensional vector space. There is a natural such vector space, namely the Lie
algebra g of G, and since ω annihilates horizontal vectors it is defined by what it does to the vertical
vectors, and we do have a natural map Vp → g given by the inverse of σp . This prompts the following
definition.

The connection one-form of a connection H ⊂ TP is the g-valued one-form ω ∈Ω1(P;g) defined by

ω(v) =
�

X if v =σ(X)

0 if v is horizontal.

Proposition 5.3. The connection one-form obeys

R∗
gω= Adg−1 ◦ω .

Proof. Let v ∈ Hp , so that ω(v) = 0. By the G-invariance of H, (Rg )∗v ∈ Hpg , whence R∗
gω also annihil-

ates v and the identity is trivially satisfied. Now let v =σp (X) for some X ∈ g. Then, using Lemma 5.1,

R∗
gω(σ(X)) =ω

�
(Rg )∗σ(X)

�
=ω

�
σ

�
Adg−1 X

��
= Adg−1 X .

Conversely, given a one-form ω ∈ Ω1(P;g) satisfying the identity in Proposition 5.3 and such that
ω(σ(X)) = X, the distribution H = kerω defines a connection on P.

We say that a form on P is horizontal if it annihilates the vertical vectors. Notice that if ω and ω� are
connection one-forms for two connections H and H� on P, their differenceω−ω� ∈Ω1(P;g) is horizontal.
We will see later that this means that it defines a section through a bundle on M associated to P.
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5.1.3 The horizontal projection

Given a connection H ⊂ TP, we define the horizontal projection h : TP → TP to be the projection onto
the horizontal distribution along the vertical distribution. It is a collection of linear maps hp : Tp P →
Tp P, for every p ∈ P, defined by

hp (v) =
�

v if v ∈ Hp , and

0 if v ∈ Vp .

In other words, imh = H and kerh = V. Since both H and V are invariant under the the action of G, the
horizontal projection is equivariant:

h ◦ (Rg )∗ = (Rg )∗ ◦h .

We will let h∗ : T∗P → T∗P denote the dual map, whence if, say, α ∈ Ω1(P) is a one-form, h∗α = α ◦h.
More generally if β ∈Ωk (P), then (h∗β)(v1, . . . , vk ) = β(hv1, . . . ,hvk ). However...

jDespite the notation, h∗ is not the pull-back by a smooth map! In particular,
h∗ will not commute with the exterior derivative d !

5.1.4 The curvature 2-form

Let ω ∈Ω1(P;g) be the connection one-form for a connection H ⊂ TP. The 2-form Ω := h∗dω ∈Ω2(P;g)
is called the curvature (2-form) of the connection. We will derive more explicit formulae for Ω later on,
but first let us interpret the curvature geometrically.

By definition,

Ω(u, v) = dω(hu,hv)

= (hu)ω(hv)− (hv)ω(hu)−ω([hu,hv])

=−ω([hu,hv]) ;(since h∗ω= 0)

whence Ω(u, v) = 0 if and only if [hu,hv] is horizontal. In other words, the curvature of the connection
measures the failure of integrability of the horizontal distribution H ⊂ TP.

Frobenius integrability

A distribution D ⊂ TP is said to be integrable if the Lie bracket of any two sections of D lies
again in D. The theorem of Frobenius states that a distribution is integrable if every p ∈ P
lies in a unique submanifold of P whose tangent space at p agrees with the subspace Dp ⊂
Tp P. These submanifolds are said to foliate P. As we have just seen, a connection H ⊂ TP is
integrable if and only if its curvature 2-form vanishes.
In contrast, the vertical distribution V ⊂ TP is always integrable, since the Lie bracket of two
vertical vector fields is again vertical, and Frobenius’s theorem guarantees that P is floated by
submanifolds whose tangent spaces are the vertical subspaces. These submanifolds are of
course the fibres of π : P → M.

The integrability of a distribution has a dual formulation in terms of differential forms. A horizontal
distribution H = kerω is integrable if and only if (the components of) ω generate a differential ideal,
so that dω = Θ∧ω, for some Θ ∈Ω1(P;End(g)). Since Ω measures the failure of integrability of H, the
following formula should not come as a surprise.

Proposition 5.4 (Structure equation).
Ω= dω+ 1

2 [ω,ω] ,

where [−,−] is the symmetric bilinear product consisting of the Lie bracket on g and the wedge product
of one-forms.
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Proof. We need to show that

(72) dω(hu,hv) = dω(u, v)+ [ω(u),ω(v)]

for all vector fields u, v ∈X (P). We can treat this case by case.

• Let u, v be horizontal. In this case there is nothing to show, since ω(u) =ω(v) = 0 and hu = u and
hv = v .

• Let u, v be vertical. Without loss of generality we can take u =σ(X) and v =σ(Y), for some X,Y ∈ g.
Then equation (72) becomes

0
?= dω(σ(X),σ(Y))+ [ω(σ(X)),ω(σ(Y))]

=σ(X)Y−σ(Y)X−ω([σ(X),σ(Y)])+ [X,Y](ω(σ(X)) = X, etc)

=−ω([σ(X),σ(Y)])+ [X,Y]

=−ω(σ([X,Y]))+ [X,Y] ,([σ(X),σ(Y)] =σ([X,Y]))

which is clearly true.

• Finally, let u be horizontal and v =σ(X) be vertical, whence equation (72) becomes

dω(u,σ(X)) = 0 ,

which in turn reduces to
ω([u,σ(X)]) = 0 .

In other words, we have to show that the Lie bracket of a vertical and a horizontal vector field is
again horizontal. But this is simply the infinitesimal version of the G-invariance of H.

An immediate consequence of this formula is the

Proposition 5.5 (Bianchi identity).
h∗dΩ= 0 .

Proof. This is simply a calculation using the structure equation:

h∗dΩ= h∗d
�
dω+ 1

2 [ω,ω]
�

= h∗ � 1
2 [dω,ω]− 1

2 [ω,dω]
�

= h∗[dω,ω]

= [h∗dω,h∗ω]

= 0 .

5.2 Connections on vector bundles

A connection on a principal bundle allows us to define a covariant derivative (a.k.a. a Koszul con-
nection) on sections of any associated vector bundle. If E → M is a vector bundle, we let C∞(M,E)
denote the space of smooth sections. If s ∈ C∞(M,E) and f ∈ C∞(M), then f s ∈ C∞(M,E), where
( f s)(m) = f (m)s(m). This makes C∞(M,E) into a C∞(M)-module. In fact, a celebrated theorem of
Swann’s (based on a theorem of Serre’s in algebraic geometry) says that the category of smooth vec-
tor bundles on a (compact) manifold M is equivalent to the category of finitely-generated projective
C∞(M)-modules.
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5.2.1 Koszul connections

Notation

If E → M is a vector bundle, we let Ωk (M,E) denote the space of sections of the vector bundle
Λk T∗M⊗E. If F is a vector space then Ωk (M,F) denotes the F-valued k-forms on M, but they
can also be interpreted as an example of the previous notation, where E = M×F is a trivial
bundle.

Definition 5.6. A Koszul connection on a vector bundle π : E → M is a map ∇ : C∞(M,E) → Ω1(M,E)
satisfying the following property:

∇( f s) = d f ⊗ s + f ∇s for all f ∈ C∞(M) and s ∈ C∞(M,E).

In other words, if ξ ∈X (M) is a vector field then ∇ξ : C∞(M,E) → C∞(M,E) satisfies the following prop-
erties:

∇ f ξs = f ∇ξs ∇ξ+χs =∇ξs +∇χs and ∇ξ( f s) = ξ( f )s + f ∇ξs ,

for all ξ,χ ∈X (M), f ∈ C∞(M) and s ∈ C∞(M,E).

We will now show how a connection on a principal bundle P → M defines a Koszul connection on
any associated vector bundle P×G F → M, but first we need to understand better the relation between
forms on P and forms on M.

5.2.2 Basic forms

A k-form α ∈Ωk (P) is horizontal if h∗α= α. A horizontal form which in addition is G-invariant is called
basic. It is a basic fact (no pun intended) that α is basic if and only if α = π∗ᾱ for some k-form ᾱ on
M (hence the name). This story extends to forms on P taking values in a vector space F admitting a
representation � : G → GL(F) of G. Let α be such a form. Then α is horizontal if h∗α = α and it is
invariant if for all g ∈ G,

R∗
gα= �(g−1)◦α .

If α is both horizontal and invariant, it is said to be basic. Basic forms are in one-to-one correspondence
with forms on M with values in the associated bundle P×G F. Indeed, let

(73) Ωk
G(P,F) =

�
ζ̄ ∈Ωk (P,F)

���h∗ζ̄= ζ̄ and R∗
g ζ̄= �(g−1)◦ ζ̄

�

denote the basic forms on P with values in F. Then we have an isomorphism Ωk
G(P,F) ∼=Ωk (M,P×G F).

The case k = 0 is particularly important. This is the an isomorphism between G-equivariant functions
P → F (which are vacuously horizontal) and sections of P×G F.

It is instructive to prove the general result, though. To this end we need to introduce one more
object.

Every principal fibre bundle admits local sections. In fact, a local trivialisation U= {Uα},

π−1Uα

π
����������

ψα �� Uα×G

pr1����
��

��
��

�

Uα

defines local sections sα : Uα → π−1Uα by ψα(sα(m)) = (m,e), where e is the identity in G. Conversely,
local sections sα : Uα → π−1Uα define a trivialisation by ψα(sα(m)g ) = (m, g ). On overlaps, these sec-
tions are related by the transition functions of the bundle. Indeed, if m ∈ Uα∩Uβ, then

(74) ψα(sβ(m)) = (ψα ◦ψ−1
β ◦ψβ)(sβ(m)) = (ψα ◦ψ−1

β )(m,e) = (m, gαβ(m)) ,

whence sβ(m) = sα(m)gαβ(m). Using the local sections we can now prove the following:
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Proposition 5.7. We have an isomorphism of C∞(M)-modules

Ωk
G(P,F) ∼=Ωk (M,P×G F) .

Proof. We will only give the construction and let the verification to the reader. If ζ ∈ Ωk
G(P,F), let ζα =

s∗αζ ∈ Ωk (Uα,F). Then one shows that on Uαβ, ζβ(m) = �(gαβ(m)−1)ζα(m), whence the {ζα} define a
section of Ωk (M,P ×G F). Conversely, if {ζα ∈Ωk (Uα,F)} satisfy ζβ(m) = �(gαβ(m)−1)ζα(m) for m ∈ Uαβ,

we define ζα(p) = �(g−1
α )◦π∗ζα, where gα : π−1(m) → G is defined by ψα(p) = (π(p), gα(p)). The ζα are

basic by construction and one simply checks that on π−1Uαβ, ζα = ζβ.

5.2.3 The covariant derivative

The exterior derivative d : Ωk (P,F) → Ωk+1(P,F) obeys d 2 = 0 and defines a complex: the F-valued
de Rham complex. The invariant forms do form a subcomplex, but the basic forms do not, since dα
need not be horizontal even if α is. Projecting onto the horizontal forms defines the exterior covariant
derivative

d∇ :Ωk
G(P,F) →Ωk+1

G (P,F) by d∇α= h∗dα .

The price we pay is that (d∇)2 �= 0 in general, so we no longer have a complex. Indeed, the failure of d∇

defining a complex is again measured by the curvature of the connection.
Let us start by deriving a more explicit formula for the exterior covariant derivative on sections of

P×GF. Every section ζ ∈Ω0(M,P×GF) defines an equivariant function ζ̄ ∈Ω0
G(P,F) obeying R∗

g ζ̄= �(g−1)◦
ζ̄ and whose covariant derivative is given by d∇ζ̄ = h∗d ζ̄. Applying this to a vector field u = uV +hu ∈
X (P),

(d∇ζ̄)(u) = d ζ̄(hu) = d ζ̄(u −uV) = d ζ̄(u)−uV(ζ̄) .

The derivative uV ζ̄ at a point p only depends on the value of uV at that point, whence we can take
uV =σ(ω(u)), so that

uV ζ̄=σ(ω(u))ζ̄= d
d t

���
t=0

R∗
g (t )ζ̄ for g (t ) = exp(tω(u)).

By equivariance,

uV ζ̄=
d

d t

���
t=0

�(g (t )−1)◦ ζ̄=−�(ω(u))◦ ζ̄ ,

where we also denote by � : g→ gl(F) the representation of the Lie algebra. In summary,

(d∇ζ̄)(u) = d ζ̄(u)+�(ω)(u)◦ ζ̄

or, abstracting u,

(75) d∇ζ̄= d ζ̄+�(ω)◦ ζ̄ .

This form is clearly horizontal by construction, and it is also invariant:

R∗
g d∇ζ̄= R∗

g h∗d ζ̄

= h∗R∗
g d ζ̄(since H is invariant)

= h∗dR∗
g ζ̄(since d commutes with pull-backs)

= h∗d
�
�(g−1)◦ ζ̄

�
(equivariance of ζ̄)

= �(g−1)◦h∗d ζ̄

= �(g−1)◦d∇ζ̄ .

As a result, it is a basic form and hence comes from a 1-form ∇ζ ∈Ω1(M,P ×G F). In this way, we have
defined a Koszul connection

∇ : C∞(M,P×G F) →Ω1(M,P×G F) .
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This story extends to k-forms in the obvious way. Let α ∈Ωk (M,P ×G F) and represent it by a basic
form ᾱ ∈Ωk

G(P,F). Define d∇ᾱ= h∗d ᾱ. Then one can show that

d∇ᾱ= d ᾱ+�(ω)∧ ᾱ ∈Ωk+1
G (P,F) ,

where ∧ denotes both the wedge product of forms and the composition of the components of �(ω) with
ᾱ, whence it defines an element d∇α ∈Ωk+1(M,P ×G F). Contrary to the exterior derivative, (d∇)2ζ̄ �= 0
in general. Instead, for ζ̄ ∈Ω0

G(P,F), we have

(d∇)2ζ̄= h∗dh∗d ζ̄

= h∗d
�
d ζ̄+�(ω)◦ ζ̄

�

= h∗ �
�(dω)◦ ζ̄−�(ω)∧d ζ̄

�

= �(h∗dω)◦ ζ̄(since h∗ω= 0)

= �(Ω)◦ ζ̄ .

More generally, if ᾱ ∈Ωk
G(P,F), we have

(d∇)2ᾱ= �(Ω)∧ ᾱ ,

whence the curvature measures the obstruction of the exterior covariant derivative to define a complex.

5.2.4 Gauge fields

We often need to do explicit calculations with objects in the base manifold of a fibre bundle and we
need to have an expression for the covariant derivative of, say, a section of P ×G F explicitly and not
just in terms of the G-equivariant functions P → F. This requires the introduction of locally defined
1-forms which go by the name of gauge fields. More precisely, the connection 1-form ω on a principal
fibre bundle pulls back to the base via any local section. In particular we can use the local sections sα
associated to a trivialisation to define Aα ∈Ω1(Uα,g) by Aα = s∗αω. One can show that on overlaps Uαβ,

(76) Aα(m) = gαβ(m)Aβ(m)gαβ(m)−1 −d gαβg−1
αβ ,

in a notation appropriate to matrix groups. Conversely given Aα ∈Ω1(Uα,g) subject to equation (76) on
overlaps, we can define ωα ∈Ω1(π−1Uα,g) by

(77) ωα = Adg−1
α

◦π∗Aα+ g−1
α d gα ,

where the second term on the right-hand side is the pullback by gα of the left-invariant Maurer–Cartan
1-form on G, again in a notation appropriate to matrix groups. One checks that on π−1Uαβ, ωα = ωβ,
whence it does define a global one-form ω ∈ Ω1(P,g). One finally verifies that it is a connection one-
form.

This means that we have now three ways to think of connections on a principal fibre bundle: as
invariant horizontal distributions, as connection one-forms or as gauge fields. Each way has its virtue
and it’s convenient to understand all three and how they are related.

Back to the covariant derivative, letting E = P ×G F, we define d∇ : Ωk (M,E) → Ωk+1(M,E) by the
commutativity of the following diagram:

Ωk
G(P,F)

��

h∗d �� Ωk+1
G (P,F)

��
Ωk (M,E)

��

d∇
�� Ωk+1(M,E)

��

For example, if {σα : Uα→ F} defines a section σ ∈ C∞(M,E), then on Uα, d∇σ is represented by

d∇σα = dσα+�(Aα)σα .
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Then on overlaps, we have

(78) d∇σα = �(gαβ)d∇σβ ,

which earns the derivative d∇ the adjective ‘covariant’.
Often we write simply ∇σ for d∇σ when σ is a section. The curvature 2-form R∇ associated to ∇ is

the section of Ω2(M,EndE) given by R∇ = d∇ ◦∇, or explicitly,

(79) R∇(X,Y)σ=∇[X,Y]σ−∇X∇Yσ+∇Y∇Xσ ,

for all X,Y ∈X (M).
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Lecture 6: The spin connection

On the tangent bundle of a riemannian manifold (M, g ) there is a privileged connection called the Levi-
Civita connection. Thinking of the tangent bundle as an associated vector bundle to the bundle O(M)
of orthonormal frames, we will see that this connection is induced from a connection on O(M), which
restricts to a connection on SO(M) when (M, g ) is orientable and lifts to a connection on any spin bundle
Spin(M) if (M, g ) is spin. That being the case, it defines a connection on the spinor bundles which is
usually called the spin connection.

6.1 The Levi-Civita connection

Let (M, g ) be a riemannian manifold. We summarise here the basic definitions and results of the rieman-
nian geometry of (M, g ).

Theorem 6.1 (The fundamental theorem of riemannian geometry). There is a unique connection on the
tangent bundle TM which is

1. metric-compatible:

∇X g = 0 equivalently Xg (Y,Z) = g (∇XY,Z)+ g (Y,∇XZ) ,

2. and torsion-free:
∇XY−∇YX = [X,Y] ,

where X,Y,Z are vector fields on M and [X,Y] denotes the Lie bracket of vector fields.

Proof. The proof consists in finding an explicit formula for the connection in terms of the metric. Let
X,Y,Z ∈X (M). The metric compatibility condition says that

Xg (Y,Z) = g (∇XY,Z)+ g (Y,∇XZ)

Yg (Z,X) = g (∇YZ,X)+ g (Z,∇YX)

Zg (X,Y) = g (∇ZX,Y)+ g (X,∇ZY) ,

whereas the vanishing of the torsion allows to rewrite the middle equation as

Yg (Z,X) = g (∇YZ,X)+ g (Z,∇XY)+ g (Z, [X,Y]) .

We now compute

Xg (Y,Z)+Yg (Z,X)−Zg (X,Y) = 2g (∇XY,Z)+ g (Y,∇XZ−∇ZX)+ g (∇YZ−∇ZY,X)+ g (Z, [X,Y])

and use the torsionless condition once again to arrive at the Koszul formula

(80) 2g (∇XY,Z) = Xg (Y,Z)+Yg (Z,X)−Zg (X,Y)− g (Y, [X,Z])− g ([Y,Z],X)− g (Z, [X,Y])

which determines ∇XY uniquely.

The connection so defined is called the Levi-Civita connection. Its curvature, defined by

(81) R(X,Y)Z =∇[X,Y]Z−∇X∇YZ−∇Y∇XZ ,

gives rise to the Riemann curvature tensor

R(X,Y,Z,W) := g (R(X,Y)Z,W) .

Proposition 6.2. The curvature satisfies the following identities
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1. symmetry conditions:

R(X,Y)Z =−R(Y,X)Z and R(X,Y,Z,W) =−R(X,Y,W,Z) ,

2. algebraic Bianchi identity:
R(X,Y)Z+R(Y,Z)X+R(Z,X)Y = 0 ,

3. differential Bianchi identity:

∇XR(Y,Z)+∇YR(Z,X)+∇ZR(X,Y) = 0 .

A tensor satisfying the symmetry conditions and the algebraic Bianchi identity is called an algebraic
curvature tensor.

If we fix X,Y ∈ X (M), the curvature defines a linear map Z �→ R(X,Z)Y, whose trace is the Ricci
(curvature) tensor r (X,Y).

Proposition 6.3. The Ricci tensor is symmetric: r (X,Y) = r (Y,X).

The trace (relative to the metric g ) of the Ricci tensor is called the scalar curvature of (M, g ) and
denoted s.

Definition 6.4. A riemannian manifold (M, g ) is said to be Einstein if r (X,Y) = λg (X,Y) for some λ ∈ R.
Clearly λ= s/n where n is the dimension of M. It is said to be Ricci-flat if r = 0 and flat if R = 0.

If h,k ∈ C∞(M,S2T∗M) are two symmetric tensors, their Kulkarni–Nomizu product h ⊙k is the al-
gebraic curvature tensor defined by

(82) (h ⊙k)(X,Y,Z,W) = h(X,Z)k(Y,W)+h(Y,W)k(X,Z)−h(X,W)k(Y,Z)−h(Y,Z)k(X,W) ,

for all X,Y,Z,W ∈X (M).

Proposition 6.5. The Riemann curvature tensor can be decomposed as

R = s
2n(n −1)

g ⊙ g + 1
n −2

(r − s
n

g )⊙ g +W

where W is the Weyl (curvature) tensor.

The Weyl tensor is the “traceless” part of the Riemann tensor. It is conformally invariant and if it
vanishes, (M, g ) is said to be conformally flat. If (M, g ) is Einstein, then the middle term in R is absent.
If only the first term is present then (M, g ) is said to have constant sectional curvature.

6.2 The connection one-forms on O(M), SO(M) and Spin(M)

The Levi-Civita connection of a riemannian manifold induces a connection one-form ω on the or-
thonormal frame bundle and, if orientable, also on the oriented orthonormal frame bundle. Indeed,
let us assume that M is orientable and let E : U ⊂ M → SO(M) be local orthonormal frame, i.e., a local
section of SO(M). Then we may pull ω back to a gauge field E ∗ω on U with values in so(s, t ), for (M, g )
of signature (s, t ). We can describe the gauge field explicitly as follows. Let (ei ) denote the elements in
the frame E . Being orthonormal, their inner products are given by g (ei ,e j ) = εiδi j , where εi =±1. Then
we have

E ∗ω= 1
2

�

i , j
ωi j εi ε j ei �e j ,

where ωi j ∈Ω1(U) is defined by

(83) ωi j (X) = g (∇Xei ,e j )
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for all X ∈ X (M) and ei � e j ∈ so(s, t ) are the skewsymmetric endomorphisms defined by (53). It is
convenient in calculations to introduce the dual frame ei = εi ei , where now g (ei ,e j ) = δi j , and in terms
of which

E ∗ω= 1
2

�

i , j
ωi j ei �e j .

If E � is another local frame E � : U� → SO(M), so that on U∩U�, E � = E h for some h : U∩U� → SO(s, t ),
then on U∩U�,

E �∗ω= hE ∗ωh−1 −dhh−1 ,

whence it does indeed give rise to a gauge field.
Now let

Spin(M)

����
��

��
��

�

ϕ �� SO(M)

����
��

��
��

�

M

denote a spin bundle. The connection 1-form ω on SO(M) pulls back to a connection 1-form ϕ∗ω on
Spin(M), called the spin connection. Now given a local section E of SO(M), let �E denote a local section
of Spin(M) such that ϕ ◦ �E = E . Then the gauge field associated to ϕ∗ω via �E coincides with the one
associated to ω via E :

(84) �E ∗ϕ∗ω= (ϕ◦ �E )∗ω= E ∗ω .

If � : Spin(s, t ) → GL(F) is any representation, then on sections of the associated vector bundle
Spin(M)×Spin(s,t ) F we have a covariant derivative

(85) d∇ = d + 1
2

�

i , j
ωi j�(ei �e j ) ,

where we also denote by � : so(s, t ) → gl(F) the representation of the Lie algebra.
We shall be interested primarily in the spinor representations of Spin(s, t ), which are induced by re-

striction from pinor representations of C�(s, t ). This means that the associated bundle Spin(M)×Spin(s,t )
F is (perhaps a subbundle of) a bundle C�(TM)×C�(s,t )P of Clifford modules. In this case, it is convenient
to think of the gauge field as taking values in the Clifford algebra. If we let ρ : so(s, t ) → C�(s, t ) denote
the embedding defined in (55), then

(86) ρ(E ∗ω) = 1
4

�

i , j
ωi j ei e j ,

where ei e j ∈ C�(s, t ). The curvature two-form of this connection is given by

(87) ρ(E ∗Ω) = 1
4

�

i , j
Ωi j ei e j ,

where Ωi j (X,Y) = g (R(X,Y)ei ,e j ) for all X,Y ∈X (M), with R(X,Y) defined by (81).
The Clifford algebra-valued covariant derivative is compatible with Clifford action in the following

sense. Suppose that θ ∈ C�(TM) andψ is a section of a bundle of Clifford modules associated to C�(TM).
Then for all vector fields X ∈X (M), we have that

(88) ∇X(θ ·ψ) =∇Xθ ·ψ+θ ·∇Xψ ,

where ∇Xθ agrees with the action of the Levi-Civita connection on θ viewed as a section of ΛTM.
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6.3 Parallel spinor fields

We can now define the notion of a parallel spinor field as a (nonzero) section of a spinor bundle which
is covariantly constant. On a trivialising neighbourhood U of M, where Spin(M) is trivialised by a local
section �E lifing a local orthonormal frame E , a spinor field is given by a function ψ : U → S(s, t ) taking
values in the spinor representation, which we think of as the restriction to Spin(s, t ) of an irreducible
C�(s, t )-module. Depending on (s, t ), it may very well be the case that the S(s, t ) so defined is not irre-
ducible, in which case S(s, t ) = S(s, t )+⊕S(s, t )− decomposes into two half-spinor irreducible represent-
ations of Spin(s, t ). The covariant derivative of ψ is given by

(89) d∇ψ= dψ+ 1
4

�

i , j
ωi j ei e jψ ,

and we say that ψ is covariantly constant (or parallel) if d∇ψ = 0. The fact (78) that d∇ is covariant
means that this equation is well-defined on global section of the spinor bundle.

Differentiating d∇ψ again we obtain an integrability condition for the existence of parallel spinor
fields, namely

(90) d∇d∇ψ= 1
4

�

i , j
Ωi j ei e jψ= 0 .

This equation is equivalent to

(91) R(X,Y)ψ= 0 ,

where R(X,Y) ∈ C�(TM) acts on ψ via Clifford multiplication. Relative to the local orthonormal frame
E = (ei ), we have

(92) R(ei ,e j ) ·ψ= 0 =⇒
�

k,�
Ri j k�ek e�ψ= 0 .

If we multiply the above equation with e j and sum over j , we obtain the following:

0 =
�

j ,k,�
Ri j k�e j ek e�ψ

=
�

j ,k,�
Ri j k�

�
e j k�− g j k e�+ g j�ek

�
ψ

=
�

j ,k,�
Ri j k�

�
e j k�+2g j�ek

�
ψ .

The first term vanishes by the algebraic Bianchi identity and the second term yields the Ricci tensor,
whence the integrability condition becomes

(93)
�

j
Ri j e jψ= 0 .

More invariantly, this says the following. The Ricci tensor defines an endomorphism R of the tangent
bundle called the Ricci operator, by g (R(X),Y) = r (X,Y). Then the above integrability condition says
that R(X)ψ= 0 for all X ∈X (M). Hitting this equation again with R(X), we see that g (R(X),R(X)) = 0 for
all X. If g is positive-definite, then R(X) = 0 and (M, g ) is Ricci-flat. In indefinite signature, the image of
the Ricci operator consists of null vectors, whence we could call such manifolds Ricci-null.

In the next lecture we will reformulate the question of which spin manifolds admit parallel spinor
fields in terms of holonomy.
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Lecture 7: Holonomy groups

Knowing the importance of groups in mathematics, it is
quite natural to try to capture some part of Riemannian
geometry in a group.

— Marcel Berger, 2003

In this lecture we will discuss the rudiments of the theory of holonomy groups for principal and
vector bundles and in particular the relevant case of the holonomy group of the Levi-Civita connection
on a riemannian manifold. As we will see in the next lecture, both the problems of determining the class
of manifolds admitting parallel and Killing spinor fields will be solved in terms of riemannian holonomy
groups.

7.1 Parallel transport in principal fibre bundles

Let π : P → M be a fixed principal G-bundle with connection H ⊂ TP. Let ω denote the connection 1-
form. A smooth curve �γ : [0,1] → P is said to be horizontal if the velocity vector is everywhere horizontal:
�̇γ(t ) ∈ H�γ(t ) for all t . This is equivalent to ω(�̇γ(t )) = 0. Let γ(t ) = π(�γ(t )) denote the projection of the
curve onto M. Assume that the curve is small enough so that the image of γ lies inside some trivialising
neighbourhood Uα. Then ψα(�γ(t )) = (γ(t ), g (t )), where g (t ) is a smooth curve on G. The condition
ω(�̇γ(t )) = 0 translates into the following ordinary differential equation for the curve g (t ). Indeed, using
equation (77) and noticing that π∗�̇γ= γ̇, we arrive at

(94) adg (t )−1 Aα(γ̇(t ))+ g (t )−1 ġ (t ) = 0 ,

where Aα is the gauge field on Uα corresponding to the connection and where again we use notation
appropriate to matrix groups. Indeed, for matrix groups we can rewrite this equation further as a matrix
differential equation:

(95) ġ (t )+Aα(γ̇(t ))g (t ) = 0 .

Being a first-order ordinary differential equations with smooth coefficients, equation (94) (equival-
ently (95)) has a unique solution for specified initial conditions, so that if we specify g (0) then g (1) is
determined uniquely. This then defines a map Πγ : Pγ(0) → Pγ(1) from the fibre over γ(0) to the fibre over
γ(1), associated to the curve γ : [0,1] → M. Rephrasing, given the curve γ, there is a unique horizontal
lift �γ once we specify �γ(0) ∈ Pγ(0) and Πγ�γ(0) = �γ(1) is simply the endpoint of this horizontal curve. The
map Πγ is called parallel transport along γ with respect to the connection H.

Lemma 7.1. Parallel transport is G-equivariant: Πγ ◦Ra = Ra ◦Πγ.

Proof. This follows from the observation that if �γ(t ) is a horizontal lift of γ(t ), then so is �γ(t )a.

Now let γ be a loop, so that γ(0) = γ(1). Parallel transport along γ defines a group element gγ ∈ G
defined by gγ = g (1)g (0)−1. To show that this element is well-defined, we need to show that it does not
depend on the initial point g (0). Indeed, suppose we choose a different starting point g (0). Then there
is some group element h ∈ G such that g (0) = g (0)h. From the lemma g (t ) := g (t )h is the horizontal lift
with initial condition g (0). Therefore the final point of the curve is g (1) = g (1)h, whence g (1)g (0)−1 =
g (1)g (0)−1 and gγ is well-defined. This procedure defines a map from piecewise-smooth loops based
at m = γ(0) to G, whose image is a subgroup of G called the holonomy group of the connection at m
denoted

(96) Hol(m) =
�

gγ
��γ : [0,1] → M , γ(1) = γ(0) = m

�
.

The holonomy group is indeed a subgroup of G; that is, it is closed under inverses and multiplica-
tion. More precisely, if gγ ∈ Hol(m), then let γ−1(t ) := γ(1− t ) be the curve with the same image as γ but
traced backward and let (γ(1−t ), g (1−t )) be its horizontal lift. Then gγ−1 = g (0)g (1)−1 = (g (1)g (0)−1)−1 =
g−1
γ . Similarly, if gγ1 and gγ2 are elements in Hol(m), then so is their product. Indeed let (γ1, g1) be a
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horizontal lift of γ1 (in a trivialisation) and (γ2, g2) a horizontal lift of γ2, so that gγ1 = g1(1)g1(0)−1 and
gγ2 = g2(1)g2(0)−1. It then follows that gγ1 gγ2 = g1(1)g1(0)−1g2(1)g2(0)−1. Let us consider the piecewise
smooth curve

γ(t ) =
�
γ2(2t ) , t ∈ [0, 1

2 ]

γ1(2t −1) , t ∈ [ 1
2 ,1] .

A continuous horizontal lift of this curve is given (in a trivialisation) by (γ(t ), g (t )) where

g (t ) =
�

g2(2t ) , t ∈ [0, 1
2 ]

g1(2t −1) , t ∈ [0, 1
2 ]

where, for continuity, we choose the horizontal lift of γ1 in such a way that g1(0) = g2(1). Then

gγ1 gγ2 = g1(1)g1(0)−1g2(1)g2(0)−1 = g1(1)g2(0)−1 = g (1)g (0)−1 = gγ .

Furthermore, if m,m� ∈ M belong to the same connected component, the holonomy groups Hol(m)
and Hol(m�) are conjugate in G and hence isomorphic. For a manifold the notion of connected com-
ponent agrees with that of path component, hence there is a curve δ : [0,1] → M such that δ(0) = m and
δ(1) = m�. Let δ−1 : [0,1] → M be the curve δ−1(t ) = δ(1− t ). Then there is a one-to-one correspondence
between loops based at m and based at m�. Indeed, if γ� is a loop based at m� then the composition
γ = δ−1 ◦γ� ◦δ is a loop based at m; and viceversa. Arguments similar to the ones above show that the
element gγ of the holonomy group at m is given by hgγ�h−1 where h is the group element correspond-
ing to δ(0) in the trivialisation. This shows that Hol(m) and Hol(m�) are conjugate subgroups of G, so
that if M is connected there is a sense in which we can discuss the holonomy group of the connection,
up to isomorphism, without having to specify the base point.

Considering only null-homotopic loops, we arrive at a normal subgroup of the holonomy group
called the restricted holonomy group and denoted Hol0(m). It can be shown that it is the identity com-
ponent of the holonomy group. We have a surjective homomorphism π1(M,m) → Hol(m)/Hol0(m),
which is not generally an isomorphism: any flat connection on a non-simply connected manifold is a
counterexample.

7.2 Parallel transport on vector bundles

Let E = P ×G F → M be an associated vector bundle to P → M and let ∇ be the Koszul connection on
sections of E induced from the connection on P. If γ : [0,1] → M is a curve on M, then we define the
parallel transport Πγ : Eγ(0) → Eγ(1) as follows. We can use γ to pull the bundle E back to a bundle
γ−1E → [0,1], whose fibre at t ∈ [0,1] is the fibre of E atγ(t ). Vector bundles over the interval are trivial, so
that sections of γ−1E are functions [0,1] → F, where F is the typical fibre. Let f0 ∈ Eγ(0) and let f : [0,1] →
F satisfy ∇γ̇(t ) f = 0, subject to f (0) = f0. Then Πγ f0 = f (1) ∈ Eγ(1). Explicitly, the parallel transport
equation ∇γ̇(t ) f = 0 becomes the ordinary differential equation

(97)
d

d t
f (t )+�(A(γ̇(t ))) f (t ) = 0 ,

where � : g → gl(F) and A is the gauge field, where we have assumed that the image of γ lies inside a
trivialising neighbourhood. By considering loops we define the notion of (restricted) holonomy group
just as for principal fibre bundles.

We can recover the connection from the parallel transport by the following limiting procedure ana-
logous to the usual definition of the derivative of a real variable:

(98) ∇γ̇(t ) f = lim
h→0

1
h

�
Π−h f (γ(t +h))− f (γ(t ))

�
,

where Π−h : Eγ(t+h) → Eγ(t ) is the parallel transport along γ from t +h to t .
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7.3 The holonomy principle

The holonomy principle is arguably the most important conceptual result in the theory of holonomy.
Let E → M be a vector bundle with connection over a connected manifold M. A section σ of E → M is
said to be invariant under parallel transport if for every curve γ : [0,1] → M we have that Πγσ(γ(0)) =
σ(γ(1)). Taking γ to be a loop, we see that σ(γ(0)) is invariant under Hol(γ(0)). Conversely, given σ(m)
invariant under Hol(m), we define σ(m�) = Πγσ(m), where γ : [0,1] → M is a curve with γ(0) = m and
γ(1) = m�. This does not depend on the choice of curve γ precisely because σ(m) is invariant under
the holonomy group. From equation (98), it follows that if σ is invariant under parallel transport, it is
covariantly constant: ∇σ= 0. If M is simply connected, then the converse also holds. This follows from
the following

Theorem 7.2 (Ambrose–Singer). Let E → M be a vector bundle with connection with M connected.
Then the Lie algebra hol(m) of the holonomy group Hol(m) is the Lie subalgebra of gl(Em) spanned by
the curvature endomorphisms R∇(X,Y) and all its covariant derivatives ∇Z1 · · ·∇Zk R∇(X,Y) for X,Y,Zi ∈
X (M).

Indeed, fix m ∈ M and suppose that ∇σ = 0. Then R∇(X,Y)σ(m) = 0 for all X,Y ∈ TmM. Taking a
further covariant derivative ∇Z, say, we see that

0 =∇Z(R∇(X,Y)σ) = (∇ZR∇(X,Y))σ+R∇(X,Y)∇Zσ ,

but the last term vanishes because σ is covariantly constant, whence the endomorphism ∇ZR∇(X,Y)
annihilates σ(m). Continuing in this way and using the Theorem we see that σ(m) is invariant under
the Lie algebra of the holonomy group Hol(m), whence under the restricted holonomy group Hol0(m).
If M is simply-connected, then the holonomy group agrees with the restricted holonomy group, and
hence σ(m) is invariant under Hol(m).

We can summarise the above in the following

Theorem 7.3 (Holonomy principle). Let M be a 1-connected manifold and E → M be a vector bundle
with connection. Then there is a one-to-one correspondence between

1. sections of E which are invariant under parallel transport,

2. Hol(m)-invariant vectors in Em, for some m ∈ M, and

3. covariantly constant sections of E.

If M is connected but not simply-connected, then there may be covariantly constant sections which are
only Hol0(m)-invariant, but not Hol(m)-invariant.

The holonomy principle allows us to turn questions concerning covariantly constant objects into
algebraic questions about the holonomy representation.

7.4 Riemannian holonomy groups

Let (M, g ) be a connected riemannian manifold of signature (s, t ). Let ∇ denote the Levi-Civita con-
nection on the tangent bundle TM. Since g is covariantly constant, it follows from the holonomy prin-
ciple that the holonomy group is contained inside the orthogonal group, or more precisely, Hol(m) ⊂
O(TmM) ∼= O(s, t ) and in particular at the level of the Lie algebras, hol(m) ∼= so(TmM) ∼= so(s, t ). A natural
question is whether any Lie subalgebra of so(s, t ) can appear as the holonomy Lie algebra of a rieman-
nian manifold. To this day this problem has only been solved in the positive-definite and lorentzian
signatures. In this section we will recall the positive-definite case and explain why the indefinite case is
so much harder.

The vector space TmM is naturally a representation of Hol(m), called the holonomy representation.
It is clear that for a riemannian product (M, g ) = (M1, g1)× (M2, g2) the holonomy representation is re-
ducible. (Since M is assumed connected, the (ir)reducibility of the holonomy representation does not
depend on the point m.) The de Rham decomposition theorem below provides a partial converse to
this in positive-definite signature.
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Theorem 7.4 (De Rham). Let (M, g ) be a 1-connected, complete, positive-definite riemannian manifold.
If its holonomy representation is reducible, then (M, g ) is a riemannian product.

A sketch of a proof can be found in [Bes87, §10.44]. This result essentially reduces the classification
of positive-definite riemannian holonomy groups to representation theory. The classification problem
was was eventually solved by Berger, although later refined by a number of people including Simons,
Alekseevsky and Bryant. A recent survey of this story can be found in [Bry00b], which also describes
the more general problem for torsion-free affine connection (not necessarily metric), recently solved by
Merkulov and Schwachhöfer. The torsion-free condition is what makes this problem nontrivial, since a
classical theorem of Nomizu’s states that any group can appear if we drop the torsion-free condition.

Back to the riemannian holonomy problem, the difference in indefinite signature is that reducibility
is not enough to decompose the space. We say that a subspace W ⊂ TmM is nondegenerate if the
restriction of the metric to W is non-degenerate, and degenerate otherwise. Clearly in positive-definite
signature all subspaces are nondegenerate, but this is not the case in indefinite signature: a null line, for
instance, provides an example of a degenerate subspace. In a riemannian product (M, g ) = (M1, g1)×
(M2, g2), the embedding at m2 ∈ M2 of the tangent space Tm1 M1 into T(m1,m2)M is a nondegenerate
subspace, and similarly for the embedding Tm2 M2 ⊂ T(m1,m2)M at m1 ∈ M1. Hence it may happen that
the holonomy representation is reducible, yet the manifold is not a riemannian product. Let us say
that the holonomy representation is decomposable if it is reducible and if each invariant subspace is
nondegenerate. We can then state the following extension of the de Rham decomposition theorem due
to Wu [Wu64].

Theorem 7.5 (Wu). Let (M, g ) be a 1-connected, complete, riemannian manifold. If its holonomy repres-
entation is decomposable, then (M, g ) is a riemannian product.

This means that it is not enough to restrict to irreducible holonomy representations in order to
classify indefinite riemannian holonomy groups. Indeed, a result of Bérard-Bergery and Ikemakhen
[BI93] says that the only irreducible lorentzian holonomy group is the Lorentz group itself, yet there exist
indecomposable lorentzian manifolds with reduced holonomy. It is this which makes the indefinite
case much harder. To date only the lorentzian problem has been solved completely. It is described in a
recent survey by Leistner and Galaev [GL08].

Let us review the positive-definite classification, since this will play an important rôle in the rest
of the lectures. The classification breaks up naturally into two classes of irreducible manifolds. The
first class consists of those for which the curvature is parallel with respect to the Levi-Civita connection:
∇R = 0. Such manifolds are said to be locally symmetric and if complete and simply connected, they are
(riemannian) symmetric spaces. Symmetric spaces were classified by Élie Cartan. He found two types,
each type being a pair consisting of a compact and a noncompact space and all indexed by simple Lie
algebras. Pairs of the first type are (G,GC), where G is a 1-connected compact simple Lie group and
GC is the corresponding complex Lie group. Typical examples are (the simply-connected version of)
(SO(n),SO(n,C)) and (SU(n),SL(n,C)). The second type consists of pairs (G/H,G∗/H) where G is a 1-
connected noncompact simple Lie group, H the connected maximal compact subgroup and G∗ the
compact form. A typical example is (the simply-connected version of) (SL(n,R)/SO(n),SU(n)/SO(n)).
The holonomy group is G in the first type and H in the second type.

The second class, which in some sense is the most interesting for our purposes, consists of a fi-
nite list known as Berger’s table; although the original list contained one more case which Alekseevsky
showed was necessarily symmetric.

Theorem 7.6. Let (M, g ) be a complete, 1-connected, non-symmetric positive-definite riemannian man-
ifold. Then its holonomy representation is one of the following:
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n = dimM H ⊂ SO(n) Geometry
n SO(n) generic

2m U(m) Kähler
2m SU(m) Calabi–Yau
4m Sp(m) hyperkähler
4m Sp(m) ·Sp(1) quaternionic Kähler

7 G2 exceptional
8 Spin(7) exceptional

where Sp(m) ·Sp(1) is the image of Sp(m)×Sp(1) ⊂ Spin(4m) under Spin(4m) → SO(4m).

One can understand these subgroups better in terms of the objects that they leave invariant which,
by the holonomy principle, translates into the existence of covariantly constant fields on a riemannian
manifold with that holonomy. We will look in detail at the Kähler, Calabi–Yau and G2-holonomy cases.

7.4.1 Kähler manifolds

Every U(m) subgroup of SO(2m) arises as the subgroup of automorphisms of R2m which commute
with an orthogonal complex structure. Recall that a complex structure on R2m is any endomorphism
J : R2m → R2m obeying J2 = −1. The reason for the name is that J allows us to multiply by complex
numbers: a+ i b ∈C acts like a1+bJ. This makes R2m into a complex vector space. A linear transforma-
tion which commutes with J commutes with complex multiplication, whence it is complex linear. The
complex structure determines an embedding GL(m,C) in GL(2m,R): namely, those invertible linear
transformations commuting with J.

A complex structure J is said to be orthogonal if it preserves the inner product 〈−,−〉 defining the
SO(2m) subgroup; that is, 〈Jx, Jy〉= 〈x, y〉 for all x, y ∈R2m . In particular, we have thatω(x, y) := 〈Jx, y〉 is
a symplectic structure. Any two of 〈−,−〉, J andω determines the third. It also defines a positive-definite
hermitian structure on R2m by

(99) H(x, y) = 〈x, y〉+ iω(x, y) .

It follows that H(Jx, y) = −i H(x, y) and H(x, Jy) = i H(x, y) and H(x, y) = H(y, x), whence H is indeed
a hermitian structure. It is positive definite since so is 〈−,−〉. Any orthogonal linear transformation
commuting with J preserves H and, conversely, if it preserves H, then it preserves its real and imaginary
parts separately, whence it is orthogonal and commutes with J. Hence the U(m) subgroup defined
above is precisely the subgroup leaving H invariant. It can be thought of as the intersection with SO(2m)
of the GL(m,C) subgroup defined by J.

On a 2m-dimensional riemannian manifold with U(m) holonomy, the holonomy principle guaran-
tees the existence of a parallel complex structure J and a parallel symplectic form ω, called the Kähler
form. Since J2 = −1, its eigenvalues are ±i . The complexified tangent bundle TCM decomposes into a
direct sum of eigenbundles of J:

(100) TCM = T+M⊕T−M ,

where T±M is the J-eigenbundle with eigenvalue ±i . It follows from the fact that J is parallel, that T±M
are integrable distributions in the sense of Frobenius. In other words, if X,Y are smooth sections of T+M,
then so is their Lie bracket [X,Y], and similarly for T−M. A hard theorem of Newlander and Nirenberg
[NN57] then shows that M is a complex manifold; that is, there are coordinate charts homeomorphic
to open subsets of Cm such that the transition functions on nonempty overlaps are biholomorphic.
That means that we have local complex coordinates zα and that there is a well-defined notion of holo-
morphicity. In turn this refines the de Rham complex, allowing us to define a notion of (p, q)-form, as a
differential form of the form (summation convention in force!)

(101) fα1...αpβ1...βq d zα1 ∧ · · ·∧d zαp ∧d zβ1 ∧ · · ·∧d zβq ,

where fα1...αpβ1...βq are smooth functions on the domain of definition of the coordinates zα. The notion
of being a (p, q)-form is preserved on overlaps due to the holomorphicity of the transition functions. For
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example, the Kähler form ω(X,Y) = g (JX,Y) is a (1,1)-form. Its normalised powers 1
k !ω

k are (k,k)-forms
and, in particular, 1

m!ω
m is the volume form corresponding to the metric g .

LetΩ(p,q)(M) denote the C∞(M)-module of (p, q)-forms. This is a bigraded refinement of the de Rham
complex in that

(102) Ωr (M) =
�

p+q=r
Ω(p,q)(M) .

If f ∈ C∞(M), then d f ∈Ω1(M) =Ω(1,0)(M)⊕Ω(0,1)(M). Let us denote the component in Ω(1,0)(M) by ∂ f
and the component in Ω(0,1)(M) by ∂ f . More generally one has that d = ∂+ ∂, where ∂ : Ω(p,q)(M) →
Ω(p+1,q)(M) and ∂ : Ω(p,q)(M) → Ω(p,q+1)(M). Since d 2 = 0, it follows by looking at degrees that ∂2 = 0,

∂
2 = 0 and ∂∂+∂∂= 0. A great deal more could be said about Kähler manifolds, but this is not the place.

7.4.2 Calabi–Yau manifolds

Since SU(m) ⊂ U(m), manifolds with SU(m) holonomy are Kähler. They are Ricci-flat and, in fact, they
are characterised also in this way. Calabi–Yau manifolds have a parallel complex structure J and Kähler
form ω, but in addition also a parallel complex volume form Θ ∈Ω(m,0)(M). This follows from the fact
that SU(m) is the intersection of U(m) with SL(m,C) and SL(m,C) is the subgroup of GL(m,C) which
acts trivially on the top exterior power ofCm . The complex volume formΘ is in particular holomorphic:
∂Θ = 0. Let Θ ∈Ω(0,m) be its complex conjugate. Then Θ∧Θ is the volume form corresponding to the
metric g .

7.4.3 Manifolds of G2 holonomy

The group G2 can be defined in several ways. It is the subgroup of Spin(8) fixed under the triality auto-
morphism. Therefore any two representations of Spin(8) related by triality are equivalent when restric-
ted to G2. In particular, consider the three 8-dimensional representations: the vector V and the two half-
spinor representations S±. They are equivalent as representations of G2. With hindsight, let us denote
this representation (which is not irreducible) byO. The Clifford action V⊗S+ → S− becomes, under G2,
a non-associative multiplicationO⊗O→O, turningO into an R-algebra. This is nothing but the algebra
of octonions and G2 is the group of automorphisms of the octonions: the map V ⊗S+ → S− is Spin(8)
equivariant, hence O×O→ O is G2-equivariant. Since G2 acts under automorphisms, it preserves the
identity 1 ∈O. Thus we see that O breaks up under G2 into a direct sum of irreducible representations
R1⊕ ImO. The holonomy representation G2 ⊂ SO(7) is precisely the action of G2 on ImO. Octonion
multiplication restricts to a bilinear map ImO⊗ImO→O and this, in turn, defines a G2-invariant tensor
ϕ : ImO⊗ ImO⊗ ImO→ R by ϕ(x, y, z) = B(x y, z) for all x, y, z ∈ ImO. Here B(−,−) is the inner product
on O, defined by B(x, y) = Re(x y), where y is the octonionic conjugate of y . When x, y ∈ ImO, then
B(x, y) = −Rex y . The octonion algebra is not associative, but nevertheless ϕ is totally skewsymmetric.
The holonomy principle guarantees that on a manifold of G2 holonomy, there is a parallel 3-form, also
denotedϕ. Its Hodge dual�ϕ is a parallel 4-form and 1

7ϕ∧�ϕ is equal to the volume form correspond-
ing to the metric. These are the only parallel forms on a generic manifold of G2 holonomy. Manifolds of
G2 holonomy are also Ricci-flat.

7.4.4 Ricci-flatness

We saw in the previous lecture that Ricci-flatness was an integrability condition for the existence of par-
allel spinors in a positive-definite riemannian manifold. It is thus natural to ask whether a reduction
of the holonomy group implies Ricci-flatness. We saw above that Calabi–Yau and G2-holonomy man-
ifolds are Ricci flat. It turns out that hyperkähler and Spin(7)-holonomy manifolds are also Ricci-flat.
In contrast, quaternionic Kähler manifolds are Einstein but never Ricci-flat – indeed, a Ricci-flat qua-
ternionic Kähler manifold is hyperkähler. Similarly, the Calabi conjecture (proved by Yau) says that a
Ricci-flat Kähler manifold is Calabi–Yau. There are examples of noncompact positive-definite rieman-
nian manifolds with SO(n) holonomy, but to this day there is no known Ricci-flat compact manifold
which has SO(n)-holonomy. This is perhaps the last remaining mystery in the holonomy of positive-
definite riemannian manifolds.
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Lecture 8: Parallel and Killing spinor fields

In this lecture we will characterise manifolds admitting spinor fields satisfying some natural differen-
tial equations. We will first revisit parallel (or covariantly constant) spinor fields, which were already
discussed in §6.3, from the point of view of the holonomy representation. We will then introduce the
notion of a (real) Killing spinor field, as a special case of a “twistor” spinor field.

8.1 Manifolds admitting parallel spinor fields

Recall that a covariantly constant spinor field ψ — that is, one obeying d∇ψ = 0 — is invariant under
parallel transport and hence its value at any point m is a spinor which is invariant under (the spin
lift of) the holonomy group Hol(m). We also learnt that in positive-definite signature, a spin manifold
admits parallel spinor fields only if it is Ricci-flat. This means that if Hol(m) leaves invariant a (nonzero)
spinor, the manifold must be Ricci-flat. As we discussed in the last lecture, there are four Ricci-flat
holonomy representations: SU(n) ⊂ SO(2n), Sp(n) ⊂ SO(4n), G2 ⊂ SO(7) and Spin(7) ⊂ SO(8). Curiously,
as shown by Wang [Wan89], each of these representations preserve a nonzero spinor. His results can
be summarised in the following table. The column labelled “Parallel spinors” lists the dimension of the
space of parallel spinors. In even dimensions, this is further refined according to chirality, in such a way
that (n+,n−) means that the space of positive (resp. negative) parallel half-spinors has (real) dimension
n+ (resp. n−). Of course, changing the orientation of the manifold interchanges n+ and n−.

Table 1: Irreducible, simply-connected manifolds admitting parallel spinors

Holonomy representation Geometry Parallel spinors
SU(2n +1) ⊂ SO(4n +2) Calabi–Yau (1,1)
SU(2n) ⊂ SO(4n) Calabi–Yau (2,0)
Sp(n) ⊂ SO(4n) hyperkähler (k +1,0)
G2 ⊂ SO(7) exceptional 1
Spin(7) ⊂ SO(8) exceptional (1,0)

We will concentrate on two examples: SU(3) ⊂ SO(6) and G2 ⊂ SO(7).

8.1.1 Calabi–Yau 3-folds

We start with the following lemma.

Lemma 8.1. The spin representation gives an isomorphism Spin(6) ∼= SU(4).

Proof. First of all we remark that Spin(6) ⊂ C�(6)0
∼= C(4). Thus we have an injective homomorphism

ι : Spin(6) → GL(4,C), which is the spin representation. Since Spin(6) is compact, its image in GL(4,C)
must lie inside a maximal compact subgroup of GL(4,C): namely, a copy of U(4). Since Spin(6) is simple,
its image must be inside SU(4). Finally, since dimSpin(6) = dimSU(4) = 15, and since both Spin(6) and
SU(4) are connected, ι is an isomorphism.

This means that the spinor representation of Spin(6) is the defining representation of SU(4) on C4.
A nonzero spinor is a vector ψ ∈ C4. Without loss of generality we can assume that ψ = (z,0,0,0) for
some 0 �= z ∈ C. It is then clear that the subgroup of SU(4) leaving that vector invariant is an SU(3)
subgroup, which is the image under ι of an SU(3) subgroup of Spin(6). Since −1 ∈ Spin(6) does not
leave ψ invariant, it does not belong to SU(3) whence its image under �Ad : Spin(6) → SO(6) is an SU(3)
subgroup of SO(6). This is precisely the holonomy representation SU(3) ⊂ SO(6) in Berger’s table. The
complex conjugate spinor ψ has the opposite chirality to ψ and is also left invariant by the same SU(3)
subgroup, whence the (1,1) in the corresponding entry in the table.
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8.1.2 Manifolds of G2 holonomy

Let O denote the real division algebra of octonions, obtained from the quaternions by the Cayley–
Dickson doubling construction. It is a normed algebra with a positive-definite inner product B(x, y) =
Re(x y). The octonions are not associative, but they are alternating, which means that the subalgebra
generated by any two elements is associative. In particular, if x, y ∈O, then x(x y) = x2 y and (y x)x = y x2.
This is equivalent to associator (x y)z − x(y z) being totally skewsymmetric in x, y, z. Consider now the
linear maps defined by � : x �→ �x and r : x �→ rx , where �x and rx are, respectively, left and right multi-
plication by x ∈O.

Lemma 8.2. The linear maps �,r : ImO→ EndR(O) defined above are Clifford.

Proof. We will prove the lemma for � and leave r as an exercise. First of all, notice that the alternating
property ofO says that for all x, y, z ∈O,

(103) x(y z)− (x y)z =−y(xz)+ (y x)z ,

whence

�x�y z +�y�x z = x(y z)+ y(xz)

= (x y)z + (y x)z by equation (103)

= (x y + y x)z .

But notice that since x, y ∈ ImO, x y + y x ∈R⊂O and is indeed equal to −2B(x, y), whence we conclude
that

�x�y +�y�x =−2B(x, y)1 .

This means that � and r extend to representations of the Clifford algebra C�(ImO) ∼= C�(7). Indeed,
the isomorphism C�(7) ∼=R(8)⊕R(8) is the Clifford extension of the Clifford map x �→ (�x ,rx ). The spinor
representation of Spin(7) is obtained by restricting either of these two Clifford modules to Spin(7) ⊂
C�(7). This defines a map Spin(7) → GL(8,R) whose image, since Spin(7) is compact and connected, lies
inside SO(8), for some SO(8) subgroup of GL(8,R). Indeed, it is the SO(8) which preserves the octonionic
inner product. This follows form the fact that O is a normed algebra, whence B(x y, x y) = B(x, x)B(y, y),
whence if B(x, x) = 1 then both �x and rx are isometries.

Let ψ be a nonzero spinor, which we may take to correspond to 1 ∈ R⊂O. The subgroup of Spin(7)
which fixes ψ is a G2 subgroup of Spin(7) which does not contain −1 and hence projects under �Ad :
Spin(7) → SO(7) to a G2 subgroup of SO(7), which is precisely the holonomy representation G2 ⊂ SO(7).
Any other spinor left invariant by this G2 subgroup is proportional to ψ.

8.1.3 Some comments about indefinite signature

In physical applications it is often necessary to determine the lorentzian (or even higher index) spin
manifolds admitting parallel spinors. There is a classification of lorentzian holonomy groups due to
Leistner and Galaev [GL08], as well as earlier results of Bryant [Bry00a] and myself [FO00]. A lorent-
zian spin n-dimensional manifold admits parallel spinors if its holonomy representation is G�Rn−2 ⊂
SO0(n−1,1), where G ⊂ SO(n−2) is one of the riemannian holonomy representations admitting parallel
spinors. The subgroup G�Rn−2 of SO(n−1,1) is such that G acts on Rn−2 via the holonomy representa-
tion G ⊂ SO(n−2), and the abelian normal subgroup Rn−2 acts as null rotations on Rn−1,1. The situation
for higher index is much less clear and still the subject of investigation.

8.2 Manifolds admitting (real) Killing spinor fields

On a spin manifold one can define natural equations satisfied by spinor fields other than d∇ψ = 0.
In this section we will discuss the Killing spinor equation which is a special case of the twistor spinor
equation, about which we will not say anything beyond its definition.
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8.2.1 The Dirac operator

Let E = (ei ) be a local frame and let (ei ) denote the dual frame, so that g (ei ,e j ) = δi
j . The Dirac operator

is the differential operator D acting on a spinor field ψ as

(104) Dψ=
�

i
ei ·∇eiψ ,

where the dot (·) stands for Clifford action. More invariantly, it is defined as the composition of the
following two maps

(105) C∞(M,S(M))
d∇

−−−−−→ C∞(M,T∗M⊗S(M))
cl−−−−−→ C∞(M,S(M))

where the first map is the covariant derivative and the second map is the fibrewise Clifford action T∗M⊗
S(M) → S(M).

Example 8.3. The original Dirac operator was defined on four-dimensional Minkowski spacetime. Re-
lative to flat coordinates xµ and the associated frame, the Dirac operator takes the form

(106) Dψ=
�

µ
Γµ ·∇ ∂

∂xµ
ψ=

�

µ
Γµ

∂ψ

∂xµ
,

where ψ : R3,1 → C4 and Γµ = �
ν η

µνΓν and Γµ are the 4×4 gamma matrices representing the Clifford
action by the frame vectors ∂

∂xµ .

Spinors which are annihilated by the Dirac operator are known as harmonic spinors. The origin of
the name is due to the fact that squaring the original Dirac operator, one gets the laplacian:

(107) D2ψ=−ηµν ∂

∂xµ
∂

∂xν
ψ=�ψ .

In the general case, squaring the Dirac operator results in a curvature-dependent correction:

(108) D2ψ=∇∗∇ψ+ s
4
ψ ,

where s is the scalar curvature and ∇∗∇ is the covariant laplacian.
An immediate corollary of this calculation is the following theorem due to Lichnerowicz.

Theorem 8.4 (Lichnerowicz). If (M, g ) is a compact positive-definite riemannian spin manifold with
s ≥ 0 and s > 0 at at least one point, then (M, g ) admits no nonzero harmonic spinor fields; whereas if
s ≡ 0 then a harmonic spinor field is parallel.

Proof. Indeed, let (−,−) denote the invariant inner product on the spinor bundle, and consider the
integral �

M

�
ψ,D2ψ

�
=

�

M
|d∇ψ|2 + 1

4

�

M
s|ψ|2 .

Let Dψ = 0, so that the LHS vanishes. Then if s ≥ 0, the RHS is positive-semidefinite and in particular
we see that d∇ψ= 0. This being the case, ψ is determined uniquely by its value at any point, so that in
particular if it vanishes anywhere, it must vanish everywhere. If s > 0 at at least one point, then it s > 0
is a neighbourhood of that point and hence ψ = 0 in a neighbourhood of that point and hence ψ = 0
everywhere.

8.2.2 The Penrose operator and twistor spinor fields

Let W ⊂ T∗M⊗S(M) denote the subbundle defined as the kernel of the Clifford action T∗M⊗S(M) →
S(M). Let π : T∗M⊗ S(M) → W denote the projection onto W along S(M). The Penrose operator P :
C∞(M,S(M)) → C∞(M,W) is defined as the composition

(109) C∞(M,S(M))
d∇

−−−−−→ C∞(M,T∗M⊗S(M))
π−−−−−→ C∞(M,W) .

Explicitly, we can write for all spinor fields ψ and all vector fields X,

(110) PXψ=∇Xψ+ 1
n X ·Dψ ,

where n = dimM. Spinor fields in the kernel of the Penrose operator are known as twistor fields.
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8.2.3 Killing spinor fields

A Killing spinor field is a special type of twistor field ψ which satisfies the stronger equation

(111) ∇Xψ= λX ·ψ ,

for some constant λ ∈ C called the Killing constant. A calculation similar to that in section 6.3 reveals
that the integrability condition for the existence of Killing spinor fields is

(R(X)−4λ2(n −1)X) ·ψ= 0 ,

for all vector fields X and where X �→ R(X) is the Ricci operator and n = dimM. In positive-definite signa-
ture, it says that R(X) = 4λ2(n −1)X for all vector fields X, or equivalently after taking the inner product
with a second vector field Y, that r (X,Y) = 4λ2(n −1)g (X,Y), whence (M, g ) is Einstein. In indefinite sig-
nature this is no longer the case, but we can take the Clifford trace of the above equation to conclude
that

sψ= 4λ2n(n −1)ψ ,

whence ifψ is not identically zero, the scalar curvature is constrained in terms ofλ: namely, s = 4λ2n(n−
1). Since the scalar curvature is real, we see that λ2 is real, whence it is either real or pure imaginary.
The nature of the Killing constant gives rise to two different kinds of Killing spinor fields: real and ima-
ginary, respectively. They each have a very different flavour and in the rest of this lecture we will con-
centrate on the real case. Furthermore via a homothety (i.e., rescaling the metric by a constant positive
number) we can further assume that λ = ± 1

2 . Finally, we will concentrate on positive-definite signa-
ture, whence we will be interested in characterising those positive-definite riemannian spin manifolds
admitting nonzero spinor fields ψ satisfying

(112) ∇Xψ=± 1
2 X ·ψ ,

for all vector fields X.
Bär’s cone construction [Bär93] will relate such Killing spinor fields to parallel spinor fields in an

auxiliary geometry. To at least demonstrate the plausibility of such a construction, let us first of all
notice that a spinor field obeying equation (112) is actually parallel with respect to the connection DX =
∇X ∓ 1

2 X·. The connection one-form associated with D is given, relative to a local frame E = (ei ), by

(113) 1
4

�

i , j
ωi j ei e j ∓ 1

2

�

i
θi ei ,

where ωi j (X) = g (∇Xei ,e j ) and θi (X) = g (X,ei ). But now notice that 1
4 [ei ,e j ] and ∓ 1

2 ei in C�(n) span an
so(n+1) subalgebra of C�(n), whence the above connection one-form is so(n+1)-valued, which suggests
that it could very well be the spin connection of an (n +1)-dimensional manifold. This manifold is the
metric cone as we now review.

8.2.4 The cone construction

Let (M, g ) be an n-dimensional riemannian manifold and let �M = R+×M. We parametrise R+ by r > 0
and define a metric �g on �M by �g = dr 2 + r 2g . The riemannian manifold ( �M, �g ) thus constructed is the
metric cone of (M, g ). (M, g ) embeds isometrically into ( �M, �g ) as the submanifold at r = 1. Generically
the metric on �M cannot be extended smoothly to r = 0. The exception occurs when (M, g ) is the round
n-sphere, in which case the cone is Rn+1 \ {0} with the flat euclidean metric, since in that case the flat
metric is clearly regular at the origin and can be extended there.

The cone �M admits a homothetic action by R+, where et ∈R+ acts by rescaling the “radial” coordin-
ate: (r, x) �→ (et r, x). The conformal Killing vector generating this action is the Euler vector ξ = 1

r
∂
∂r . A

vector field X ∈X (M) admits a unique lift to �M, also denoted X with a little abuse of notation, such that
it is orthogonal to ξ and such that it maps to X under the natural projection �M → M, sending (r, x) to x.
Let �∇ denote the Levi-Civita connection on �M.
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Lemma 8.5. Let X,Y ∈X ( �M) be lifts of vector fields on M. Then

�∇ξξ= ξ , �∇ξX = X , �∇Xξ= X and �∇XY =∇XY− g (X,Y)ξ .

Remark 8.6. In fact, a result of Gibbons and Rychenkova [GR98] states that a riemannian manifold is a
metric cone if and only if there exists a vector field ξ such that ∇Vξ= V for all vector fields V, where ∇ is
the Levi-Civita connection.

Now given a local frame E = (ei ) for M, we extend it to a local frame �E = (�e0 = ∂
∂r , �ei = 1

r ei ) for �M. The
connection coefficients of �∇ relative to �E are given in terms of the connection coefficients of ∇ relative
to E by the following formulae.

Lemma 8.7. Let �ωab = �g (�∇�ea , �eb) be the connection 1-form in �M relative to the local frame �E . Then

�ωab( ∂
∂r ) = 0 , �ω0i (e j ) = δi j and �ωi j (ek ) =ωi j (e j ) .

Since R+ is contractible, the cone �M is homotopy equivalent to M, whence if M is spin, so is �M.
Furthermore, if M is spin, the embedding (at r = 1) of M into �M sets up a bijective correspondence
between the spin structures on M and on �M. From now on we assume that both M and �M are spin,
with corresponding spin structures. Now let �ψ be a spinor field on �M. Its covariant derivative can be
computed from equation (89) and the previous lemma and one finds

�∇ ∂
∂r

�ψ= ∂
∂r �ψ and �∇ek

�ψ=∇ek
�ψ+ 1

2 �e0�ek �ψ .

Therefore a parallel spinor field �ψ on �M satisfies ∂
∂r �ψ = 0 and ∇ek

�ψ = 1
2 �ek �e0 �ψ. The restriction of �ψ

to r = 1 is a spinor field on M which satisfies the second of the above equations. To understand this
equation intrinsically, we recall the isomorphism C�(n) ∼= C�(n + 1)0 given in Proposition 2.8. In fact,
there are two possible isomorphisms, distinguished by a sign: ei �→ ε�ei �e0, for ε2 = 1. It is now that
we must make a distinction between even- and odd-dimensional M. Consider the volume element
e1 · · ·en ∈ C�(n). Its image in C�(n +1)0 under the above isomorphism is given by

(114) e1 · · ·en �→
�
−ε�e0�e1 · · · �en n odd

�e1 · · · �en n even.

If n = dimM is odd, then there are two inequivalent Clifford modules, each determined by the action
of the volume element e1 · · ·en in C�(n), which goes over to −ε times the action of the volume element
�e0�e1 · · · �en in C�(n +1). This means that ε can be fixed in order to relate Killing spinor fields on M (with
respect to one choice of Clifford module) to the chirality of the parallel spinor field on �M. Hence the sign
of the Killing constant and the chirality of the parallel spinor field are correlated. On the other hand, if
n is even, then ε is not fixed and for every parallel spinor field on �M we obtain a Killing spinor field on
M with either sign of the Killing constant, simply by making the right choice of ε.

8.2.5 The classification

We have just reduced the problem of which riemannian manifolds admit real Killing spinor fields to
which metric cones admit parallel spinors. We will assume that (M, g ) is complete and admits real
Killing spinor fields. Then since it is Einstein, Myers Theorem [CE75, Theorem 1.26] implies that it
is compact. Then a result of Gallot’s [Gal79, Proposition 3.1] says that if (M, g ) is in addition simply
connected, the cone ( �M, �g ) is either irreducible or flat. If the latter, (M, g ) is the round sphere; if the
former it is one of the geometries in Table 8.1.

Every geometry in Table 8.1 admits parallel forms, constructed via the holonomy principle from the
invariants under the holonomy representation and indeed constructed out of the parallel spinors. Since
in addition the manifold in question is a cone, and hence we have at our disposal also the Euler vector
field ξ, we can construct a number of geometric structures on the manifold M, which are listed in Table
8.2.5, where N± is the dimension of the space of Killing spinor fields with Killing constant ± 1

2 .



Spin 2010 (jmf) 59

Table 2: Simply-connected, complete riemannian manifolds with real Killing spinor fields

dim Geometry Cone (N+,N−)

n round sphere flat (2�n/2�,2�n/2�)

4k −1 3-Sasaki hyperkähler (k +1,0)

4k −1 Sasaki–Einstein Calabi–Yau (2,0)

4k +1 Sasaki–Einstein Calabi–Yau (1,1)

6 nearly Kähler G2 (1,1)

7 weak G2 Spin(7) (1,0)

For example, if the cone is Calabi–Yau, then we have a parallel complex structure J. The vector field
χ = Jξ is orthogonal to ξ and it is the lift of a vector field on M, which we also denote χ. It is easy to
show that χ is a Killing vector and has unit norm. Its dual one-form θ is (the restriction to r = 1 of) the
contraction of the Euler vector into the Kähler form on the cone. The covariant derivative ∇χ defines a
skewsymmetric endomorphism T of the TM such that T(X) =∇Xχ. The fact that J is parallel means that

(115) (∇XT)(Y) = θ(Y)X− g (X,Y)χ .

The triple (χ,θ,T) defines a Sasakian structure on M, whence M is Sasaki–Einstein.
For another example, consider the case of a G2-holonomy cone. We have a parallel 3-form φ into

which we contract the Euler vector field ξ to define a 2-form ω ∈Ω2(M): ω(X,Y) = φ(ξ,X,Y), evaluated
at r = 1. This defines an endomorphism J of TM by g (J(X),Y) = ω(X,Y). One can show that J is an
orthogonal almost complex structure. It is not parallel, but it satisfies (∇XJ)(X) = 0 for all vector fields
X ∈X (M). This defines a (non-Kähler) nearly Kähler structure on M.

These geometries defined via Killing spinors are presently under very active investigation, largely
due to their rôle in the gauge/gravity correspondence (see, e.g., [AFOHS98, MP99]).
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