Clifford algebras, spinors and applications Problem Sheet 3

14 February 2017

Problem 1.

We had two descriptions of the group Spin:

$$
\begin{gathered}
\operatorname{Spin}(V, Q)=\left\{g \in\left(C l^{e v}(V, Q)\right)^{\times}: g V g^{-1}=V, \Delta(g)= \pm 1\right\} \\
\operatorname{Spin}(V, Q)=\left\{v_{1} \ldots v_{2 r} ; r \geq 0, v_{j} \in V, Q\left(v_{j}\right)= \pm 1\right\}
\end{gathered}
$$

With the first definition, we deduced that

$$
\operatorname{Spin}(2,0)=\left\{a+b e_{1} e_{2}: a^{2}+b^{2}=1\right\}
$$

Its elements are not expressed as a product of unit vectors, but as a linear combination of elements in the Clifford algebra, which does not trivially fit the second definition.
a) Is $a+b e_{1} e_{2}$ a product of an even number of unit vectors? How?
b) Conversely, can we write any product of an even number of unit vectors as $a+b e_{1} e_{2}$ with $a^{2}+b^{2}=1$?

Problem 2.

Describe $\operatorname{Spin}(4,0)$ and $\operatorname{Spin}^{+}(1,3)$ using the Clifford algebra. Recall that the subscript + refers to $\Delta(g)=+1$. How different are $\operatorname{Spin}(r, s)$ and $\operatorname{Spin}(s, r)$?

Problem 3

We proved with all detail what the irreducible representations of $C l(r, s)$ are, but we did not prove that every representation of $C l(r, s)$ is necessarily the sum of irreducibles, i.e., is completely reducible. You are very welcome to search around in any references to answer these two questions.
a) Find a representation (of an algebra) that is not completely reducible.
b) Prove that any representation of $C l(r, s)$ is completely reducible.

