Dirac structures and generalized geometry Problem Sheet 1

Friday 8th January 2016,
hand in by Thursday 14th

Let M be a smooth manifold with tangent bundle $T M$.

Problem 1

A Lie algebroid A over M is a vector bundle $A \rightarrow M$ together with:

- a Lie bracket [,] on $\Gamma(A)$.
- a bundle map $\rho: A \rightarrow T M$, known as anchor, such that, for $f \in \mathcal{C}^{\infty}(M)$ and $u, v \in \Gamma(A)$, the Leibniz rule is satisfied:

$$
[u, f v]=f[u, v]+\rho(u)(f) w
$$

and ρ is a Lie algebra homomorphism on sections, i.e.,

$$
[\rho(u), \rho(v)]=\rho([u, v])
$$

Let us look for some examples:
a) The tangent bundle itself is an example of a Lie algebroid, what are the bracket and the anchor?
b) What is a Lie algebroid over a point $M=\{*\}$?
c) When is a distribution of A a Lie algebroid?

We can see that the previous definition has too much information:
d) Prove that $[\rho(v), \rho(w)]=\rho([v, w])$ is a consequence of the other properties. (Hint: Consider the Jacobi identity for $u, v, f w$ and apply the Leibniz rule.)

Problem 2

The bracket of the Lie algebroid is responsible for some structure not only on the sections of A, but also on the the sections of the exterior algebra $\wedge^{\bullet} A^{*}$. To start with, we have an exterior derivative $d_{A}: \Gamma\left(\wedge^{k} A^{*}\right) \rightarrow \Gamma\left(\wedge^{k+1} A^{*}\right)$ defined by

$$
\begin{aligned}
\left(d_{A} \varphi\right)\left(X_{0}, X_{1}, \ldots, X_{k}\right)= & \sum_{i=0}^{k}(-1)^{i} \rho\left(X_{i}\right)\left(\varphi\left(X_{0}, X_{1}, \ldots, \hat{X}_{i}, \ldots X_{k}\right)\right) \\
& +\sum_{i<j}(-1)^{i+j} \varphi\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots X_{k}\right)
\end{aligned}
$$

where $\varphi \in \Gamma\left(\wedge^{k} A^{*}\right), X_{i} \in \Gamma(A)$, and \hat{X}_{i} denotes that X_{i} is missing. Moreover, the Lie derivative by $X \in \Gamma(A), L_{X}: \Gamma\left(\wedge^{k} A^{*}\right) \rightarrow \Gamma\left(\wedge^{k} A^{*}\right)$, is defined by

$$
\left(L_{X} \varphi\right)\left(X_{1}, \ldots, X_{k}\right)=\rho(X)\left(\varphi\left(X_{1}, \ldots, X_{k}\right)\right)-\sum_{i=1}^{k} \varphi\left(X_{1}, \ldots,\left[X, X_{i}\right], \ldots, X_{k}\right)
$$

Prove that they satisfy the Cartan formula

$$
L_{X} \varphi=d_{A}\left(i_{X} \varphi\right)+i_{X}\left(d_{A} \varphi\right)
$$

Problem 3

In this course we will look very often at sections of $\mathbb{T} M=T M+T^{*} M$. Let us fix some notation for them:

$$
u=X+\alpha, \quad v=Y+\beta, \quad w=Z+\gamma \quad \in \Gamma(\mathbb{T} M)
$$

Let us define a bracket in $\Gamma(\mathbb{T} M)$ by

$$
[u, v]=[X+\alpha, Y+\beta]:=[X, Y]+\mathcal{L}_{X} \beta-i_{Y} d \alpha
$$

a) Check that $[u,[v, w]]=[[u, v], w]+[v,[u, w]]$.
b) Compute $[u, f v]$, for $f \in \mathcal{C}^{\infty}(M)$.
c) Check that $[\rho(u), \rho(v)]=\rho([u, v])$.
d) Looking at the definition in Problem 1, when does a subbundle $L \subset \mathbb{T} M$ become a Lie algebroid by restricting the bracket and the anchor map to L ?

