Dirac structures and generalized geometry

Problem Sheet 2

Friday 15th January 2016, hand in by Thursday 21st

Problem 1

We talked in the previous problem sheet about Lie algebroids, and how the bracket gives a differential on $\Gamma\left(\wedge^{\bullet} A^{*}\right)$ and the Lie derivative.

We can extend the Lie bracket to sections of $\wedge^{\bullet} A$, so that we get

$$
[,]: \mathcal{C}^{\infty}\left(\wedge^{k} A\right) \times \mathcal{C}^{\infty}\left(\wedge^{m} A\right) \rightarrow \mathcal{C}^{\infty}\left(\wedge^{k+m-1} A\right)
$$

extending the Lie bracket (when $k=m=1$), acting on functions $f \in \mathcal{C}^{\infty}(M)$ by $[X, f]=\pi(X)(f)$ for $X \in \mathcal{C}^{\infty}(A)$, and satisfying the following properties, for $Z \in \mathcal{C}^{\infty}\left(\wedge^{a} A\right), Z^{\prime} \in \mathcal{C}^{\infty}\left(\wedge^{b} A\right)$ and $Z^{\prime \prime} \in \mathcal{C}^{\infty}\left(\wedge^{c} A\right)$:
(S1): $\left[Z, Z^{\prime}\right]=-(-1)^{(a-1)(b-1)}\left[Z^{\prime}, Z\right]$,
(S2): $\left[Z,\left[Z^{\prime}, Z^{\prime \prime}\right]\right]=\left[\left[Z, Z^{\prime}\right], Z^{\prime \prime}\right]+(-1)^{(a-1)(b-1)}\left[Z^{\prime},\left[Z, Z^{\prime \prime}\right]\right]$,
(S3): $\left[Z, Z^{\prime} \wedge Z^{\prime \prime}\right]=\left[Z, Z^{\prime}\right] \wedge Z^{\prime \prime}+(-1)^{(a-1) b} Z^{\prime} \wedge\left[Z, Z^{\prime \prime}\right]$.
This extension is unique and is called the Schouten bracket.
a) For $X \in \Gamma(A), Z \in \Gamma\left(\wedge^{a} A\right)$ and $\omega \in \Gamma\left(\wedge^{a} A^{*}\right)$, we know what $\mathcal{L}_{X} \omega$ is, and we use the notation $\mathcal{L}_{X} Z=[X, Z]$ (Schouten bracket). Prove that

$$
\mathcal{L}_{X}\langle\omega, Z\rangle=\left\langle\mathcal{L}_{X} \omega, Z\right\rangle+\left\langle\omega, \mathcal{L}_{X} Z\right\rangle
$$

(Hint: prove it first for $a=1$ and apply induction on decomposable elements.)
b) Finally, let both A and A^{*} be Lie algebroids. Prove the following identity for $\xi, \eta \in \Gamma\left(A^{*}\right)$ and $X \in \Gamma(A)$,

$$
i_{X} \mathcal{L}_{\xi} d \eta=\left[\xi, L_{X} \eta\right]-L_{L_{\xi} X} \eta+d\left(i_{L_{\xi} X} \eta\right)-L_{\xi} d\langle\eta, X\rangle
$$

(Hint: Evaluate at $Y \in \Gamma(A)$, apply part a) on $\left(\mathcal{L}_{\xi} d \eta\right)(X, Y)$, then Cartan's magic formula conveniently, and rearrange in order to get the identity.)

Problem 2

We have been enriching $\mathbb{T} M=T M+T^{*} M$ with some extra structure. We started by spotting the natural pairing $\langle X+\alpha, X+\alpha\rangle=i_{X} \alpha$, we singled out the anchor map $\rho(X+\alpha)=X$, and then the Dorfman bracket $[X+\alpha, Y+\beta]=$ $[X, Y]+\mathcal{L}_{X} \beta-i_{Y} d \alpha$ joined the party. These three ingredients are related by the following equation.
a) Prove that, for $u, v, w \in \Gamma(\mathbb{T} M)$,

$$
\rho(u)\langle v, w\rangle=\langle[u, v], w\rangle+\langle v,[u, w]\rangle .
$$

Let us go abstract and consider a vector bundle $E \rightarrow M$ together with a bundle map $\rho: E \rightarrow T M$, a non-degenerate pairing \langle,$\rangle , and an \mathbb{R}$-bilinear product $[]:, \Gamma(E) \otimes \Gamma(E) \rightarrow \Gamma(E)$ satisfying $[u,[v, w]]=[[u, v], w]+[v,[u, w]]$ for $u, v, w \in \Gamma(E)$, such that they all together satisfy

$$
\rho(u)\langle v, w\rangle=\langle[u, v], w\rangle+\langle v,[u, w]\rangle .
$$

b) Prove that, for $f \in \mathcal{C}^{\infty}(M)$ and $u, v \in \Gamma(E)$, we must have

$$
[u, f v]=f[u, v]+\rho(u)(f) v
$$

c) Argue that, for $u, v \in \Gamma(E)$, we must also have

$$
\rho([u, v])=[\rho(u), \rho(v)] .
$$

The tuple $(E,\langle\rangle,,[],, \rho)$ is only missing a property to become a so-called Courant algebroid. But for this property, we need a differential

$$
d: \mathcal{C}^{\infty}(M) \rightarrow \Gamma(E)
$$

d) Find a differential by using ρ and the pairing \langle,$\rangle . What property are you$ using? (Hint: you may want to stop at $\Gamma\left(E^{*}\right)$ on the way.)
e) What is the property that the bracket, the pairing and the usual differential satisfy in $T M+T^{*} M$?

As we will see, the generalization of this property is the remaining axiom in order to endow $(E,\langle\rangle,,[],, \rho)$ with the structure of a Courant algebroid.

