Dirac structures and generalized geometry Problem Sheet 3

Thursday 21st January 2016, hand in by Thursday 28th

Problem 1

Let $L \subset T M+T^{*} M$ be a Dirac structure on a manifold M. We say that a function $f \in \mathcal{C}^{\infty}(M)$ is admissible when there exists a vector field X_{f} such that $X_{f}+d f \in \Gamma(L)$. Show that the admissible functions form a Poisson algebra with the usual product $f g$ and the bracket defined by $\{f, g\}=X_{f}(g)$.

Problem 2

Find the two examples of distributions that we were missing:
a) a regular and smooth distribution that is not integrable,
b) a regular distribution that is neither smooth nor integrable.

Problem 3 Apart from the pairing $\langle X+\alpha, Y+\beta\rangle=\frac{1}{2}\left(i_{X} \beta+i_{Y} \alpha\right)$, we can define a skew-symmetric bilinear form by

$$
\langle X+\alpha, Y+\beta\rangle_{-}=\frac{1}{2}\left(i_{Y} \alpha-i_{X} \beta\right)
$$

Given a Dirac structure L with associated 2-form Ω_{L}, prove the identity

$$
\left(\rho_{\mid L}\right)^{*} \Omega_{L}=i_{L}^{*}\left(\langle,\rangle_{-}\right)
$$

where $\rho_{\mid L}$ is the restriction of ρ to L and i_{L} is the inclusion $L \rightarrow T M+T^{*} M$.

Problem 4

Let W be a subspace of the vector space V. We would like to be able to define a (linear) Dirac structure on $W+W^{*}$ from a (linear) Dirac structure $L \subset V+V^{*}$.
a) Can we just do $L \cap\left(W+W^{*}\right)$ in order to define a Dirac structure?
b) Look at L as $L(E, \varepsilon)$ for some E and ε. When will $L\left(E \cap W, \varepsilon_{\mid W}\right)$ define a Dirac structure on $W+W^{*}$?
c) Consider the projection $\pi: W+V^{*} \rightarrow W+W^{*}$, and define $L_{W}=$ $\pi\left(L \cap\left(W+V^{*}\right)\right)$. Prove that $\left(L_{W}\right)^{\perp}=L_{W}$.
d) Prove that

$$
L_{W} \cong \frac{L \cap\left(W+V^{*}\right)}{L \cap(0+\operatorname{Ann}(W))}
$$

Problem 5

When working with linear Dirac structures, we showed that, by choosing a splitting $V+V^{*}=P+N$ into positive and negative-definite subspaces orthogonal to each other, the set of all Dirac structures could be seen as the Lie group $\mathrm{O}(n)$.
a) What can you say about the Dirac structure corresponding to $\operatorname{Id} \in \mathrm{O}(n)$?
b) Do you think there is a structure that is more suitable than Lie group?

Looking at the possible splittings $P+N$ will be relevant.
c) Once we choose P, does the subspace P^{\perp} necessarily define a negativedefinite subspace, complementary to P ?
d) Parameterize the possible choices of P. (Hint: notice that $P \cap V^{*}=0$ implies that P can be seen as the graph of a certain map, take the symmetric and skew-symmetric components of this and check what they must satisfy.)

Problem 6

We define an action of $X+\alpha \in V+V^{*}$ on $\varphi \in \wedge V^{*}$ by

$$
(X+\alpha) \cdot \varphi=i_{X} \varphi+\alpha \wedge \varphi
$$

a) Compute $(X+\alpha)^{2} \cdot \varphi:=(X+\alpha) \cdot((X+\alpha) \cdot \varphi)$.
b) Show that

$$
\operatorname{Ann}(\varphi)=\left\{(X+\alpha) \in V+V^{*} \mid(X+\alpha) \cdot \varphi=0\right\}
$$

is an isotropic space. Is it necessarily maximally isotropic?

Problem 7

Consider $V+V^{*}$ with the usual pairing. The linear transformations of $V+V^{*}$ preserving the pairing are the Lie group $\mathrm{O}\left(V+V^{*}\right)$.
a) What are the elements preserving both V and V^{*} ? (i.e., $g \in \mathrm{O}\left(V+V^{*}\right)$ such that $\left.g(V) \subset V, g\left(V^{*}\right) \subset V^{*}\right)$
b) Describe the elements of $\mathrm{O}\left(V+V^{*}\right)$ commuting with $\rho: V+V^{*} \rightarrow V$.
c) Let L be a Dirac structure and $g \in \mathrm{O}\left(V+V^{*}\right)$, is $g(L)$ a Dirac structure?
d) What is the image of a Dirac structure $L(E, \varepsilon)$ by an element $b \in \mathrm{O}(V+$ $\left.V^{*}\right)$ commuting with ρ ?

