Dirac structures and generalized geometry Problem Sheet 4

Thursday 28th January 2016, hand in by Thursday 4th

Problem 1

Show that choosing a splitting $T M+T^{*} M=C_{+}+C_{-}$into positive and negative-definite subspaces orthogonal to each other is equivalent to giving an orthogonal automorphism $G \in \mathrm{O}\left(T M+T^{*} M\right)$ squaring to the identity such that $\left\langle_{-}, G_{-}\right\rangle$is positive-definite. This map G is called a generalized metric.

Problem 2

Recall that a Kähler structure on a manifold M can be defined as a pair (g, J) consisting of a positive-definite metric g and a complex structure J such that $\left.g\left(J_{-},\right)_{-}\right)$defines a symplectic structure.
a) How would you define a generalized Kähler structure?

Whatever definition you have given, it should be equivalent to having a pair of commuting generalized complex structures $\mathcal{J}_{1}, \mathcal{J}_{2}$ such that $-\mathcal{J}_{1} \mathcal{J}_{2}$ is a generalized metric.
b) Prove that your definition is equivalent to this one.
c) Show that a usual Kähler structure can be seen as a generalized Kähler structure.
d) Consider the B-transforms of the complex and sympectic structures coming from a Kähler structure. Do they always fit into a generalized Kähler structure?

Problem 3

Let $\left(\mathcal{J}_{1}, \mathcal{J}_{2}\right)$ be a generalized Kähler structure on a $2 n$-dimensional manifold. Each one of the generalized complex structures \mathcal{J}_{i} determines a decomposition $\left(T+T^{*}\right)_{\mathbb{C}}=L_{i}+\overline{L_{i}}$. As we have two of them, we can consider the $\pm i$-eigenbundles of $L_{1}^{ \pm}$with respect to \mathcal{J}_{2} :

$$
\left(T+T^{*}\right)_{\mathbb{C}}=L_{1}^{+}+L_{1}^{-}+\overline{L_{1}^{+}}+\overline{L_{1}^{-}}
$$

a)What are L_{2} and $C_{ \pm} \otimes \mathbb{C}$ in this decomposition?
b) Are $L_{1}^{ \pm}$necessarily closed under the Dorfman bracket?
c) Prove that a generalized Kähler structure is equivalent to giving two complex rank n subbundles L_{1}^{+}, L_{1}^{-}that are isotropic, orthogonal to each other, positive and negative-definite (respectively) w.r.t. $\left\langle,{ }^{-}\right\rangle$, and involutive, such that $L_{1}^{+} \perp \overline{L_{1}^{-}}$and $L_{1}^{+}+L_{1}^{-}$is involutive.

Problem 4

Let $\left(\mathcal{J}_{1}, \mathcal{J}_{2}\right)$ be a generalized Kähler structure on a $2 n$-dimensional manifold. Since $C_{ \pm} \cap T^{*} M=0$, we have that $C_{ \pm}$can be seen as the graph of

$$
g: T M \rightarrow T^{*} M
$$

where g is symmetric and positive-definite, and b is skew-symmetric.
a) Is b necessarily closed?
b) Show that $C_{ \pm}$are stable under \mathcal{J}_{i}, and hence define complex structures on $C_{ \pm}$(without mentioning integrability).

The maps Id $+g \pm b$ give isomorphisms $T M \cong C_{ \pm}$in such a way that we can translate the complex structures \mathcal{J}_{i} on $C_{ \pm}$to an almost complex structure on M. We could have up to four different ones.
c) Are they all necessarily different?
d) When do a metric g, a 2-form b and as many almost complex structures on M as you found in b) determine an almost generalized Kähler structure (same definition as in Problem 2 but with generalized almost complex structures).

