Dirac structures and generalized geometry Problem Sheet 4

Thursday 28th January 2016, hand in by Thursday 4th

Problem 1

Show that choosing a splitting $TM + T^*M = C_+ + C_-$ into positive and negative-definite subspaces orthogonal to each other is equivalent to giving an orthogonal automorphism $G \in O(TM + T^*M)$ squaring to the identity such that $\langle \neg, G_- \rangle$ is positive-definite. This map G is called a generalized metric.

Problem 2

Recall that a Kähler structure on a manifold M can be defined as a pair (g, J) consisting of a positive-definite metric g and a complex structure J such that $g(J_{-}, _{-})$ defines a symplectic structure.

a) How would you define a generalized Kähler structure?

Whatever definition you have given, it should be equivalent to having a pair of commuting generalized complex structures \mathcal{J}_1 , \mathcal{J}_2 such that $-\mathcal{J}_1\mathcal{J}_2$ is a generalized metric.

b) Prove that your definition is equivalent to this one.

c) Show that a usual Kähler structure can be seen as a generalized Kähler structure.

d) Consider the *B*-transforms of the complex and sympectic structures coming from a Kähler structure. Do they always fit into a generalized Kähler structure?

Problem 3

Let $(\mathcal{J}_1, \mathcal{J}_2)$ be a generalized Kähler structure on a 2*n*-dimensional manifold. Each one of the generalized complex structures \mathcal{J}_i determines a decomposition $(T + T^*)_{\mathbb{C}} = L_i + \overline{L_i}$. As we have two of them, we can consider the $\pm i$ -eigenbundles of L_1^{\pm} with respect to \mathcal{J}_2 :

$$(T+T^*)_{\mathbb{C}} = L_1^+ + L_1^- + \overline{L_1^+} + \overline{L_1^-}.$$

a)What are L_2 and $C_{\pm} \otimes \mathbb{C}$ in this decomposition?

b) Are L_1^{\pm} necessarily closed under the Dorfman bracket?

c) Prove that a generalized Kähler structure is equivalent to giving two complex rank *n* subbundles L_1^+ , L_1^- that are isotropic, orthogonal to each other, positive and negative-definite (respectively) w.r.t. $\langle , - \rangle$, and involutive, such that $L_1^+ \perp \overline{L_1^-}$ and $L_1^+ + L_1^-$ is involutive.

Problem 4

Let $(\mathcal{J}_1, \mathcal{J}_2)$ be a generalized Kähler structure on a 2n-dimensional manifold. Since $C_{\pm} \cap T^*M = 0$, we have that C_{\pm} can be seen as the graph of

$$g:TM\to T^*M,$$

where g is symmetric and positive-definite, and b is skew-symmetric.

a) Is *b* necessarily closed?

b) Show that C_{\pm} are stable under \mathcal{J}_i , and hence define complex structures on C_{\pm} (without mentioning integrability).

The maps $\operatorname{Id} +g \pm b$ give isomorphisms $TM \cong C_{\pm}$ in such a way that we can translate the complex structures \mathcal{J}_i on C_{\pm} to an almost complex structure on M. We could have up to four different ones.

c) Are they all necessarily different?

d) When do a metric g, a 2-form b and as many almost complex structures on M as you found in b) determine an almost generalized Kähler structure (same definition as in Problem 2 but with generalized almost complex structures).