Generalized Geometry, an introduction

Assignment 10

Weizmann Institute
Second Semester 2017-2018

There is no formal submission of the assignments but you are expected to work on them.

Problem 1. Let \mathcal{J} be an almost genearalized complex structure (that is, a bundle map $\mathcal{J} \in \mathrm{O}\left(T+T^{*}\right)$ such that $\left.\mathcal{J}^{2}=-1\right)$ and L the $+i$-eigenspace of \mathcal{J} in $\left(T+T^{*}\right)_{\mathbb{C}}$.

- Prove that the following expression defines a tensor (the Nijenhuis tensor), that is, it is $\mathcal{C}^{\infty}(M)$-linear, where $u, v \in \Gamma\left(T+T^{*}\right)$,

$$
N_{\mathcal{J}}(u, v)=[\mathcal{J} u, \mathcal{J} v]-\mathcal{J}[\mathcal{J} u, v]-\mathcal{J}[u, \mathcal{J} v]-[u, v] .
$$

- Prove that \mathcal{J} is a generalized complex structure if and only if $N_{\mathcal{J}}$ vanishes.
- Compare this to the case of usual complex structures.

Problem 2.

Let L be the $+i$-eigenspace of the generalized complex structure \mathcal{J} and $B \in \Omega_{c l}^{2}$.

- What is the \mathcal{J}-operator corresponding to $e^{B} L$?

Let \mathcal{J}_{1} and \mathcal{J}_{2} be two anticommuting generalized almost complex structures, that is

$$
\mathcal{J}_{1} \mathcal{J}_{2}=-\mathcal{J}_{2} \mathcal{J}_{1} .
$$

- Show that, for $t \in\left[0, \frac{\pi}{2}\right]$, the following is a generalized almost complex structure:

$$
\mathcal{J}_{t}=\sin t \mathcal{J}_{1}+\cos t \mathcal{J}_{2} .
$$

A Kähler manifold is a complex manifold (M, J) together with a riemannian metric such that $\omega:=g(J \cdot, \cdot)$ is a closed 2-form (see Section 1.7 of the lecture notes to see the linear version of this). A hyperKähler manifold is a manifold M together with three anticommuting usual complex structures $\{I, J, K\}$ (that is, they satisfy the relations of quaternions, $I J=-J I$, etc.) and a riemannian metric such that

$$
\omega_{I}:=g(I \cdot, \cdot), \quad \omega_{J}:=g(J \cdot, \cdot), \quad \omega_{K}:=g(K \cdot, \cdot)
$$

are closed two forms.

- Show that, when we regard $\omega_{I}, \omega_{J}, \omega_{K}: T \rightarrow T^{*}$, we have

$$
\omega_{I} I=-I^{*} \omega_{I}, \quad \omega_{J} I=I^{*} \omega_{J}
$$

Consider the generalized complex structures

$$
\mathcal{J}_{I}:=\left(\begin{array}{cc}
-I & 0 \\
0 & I^{*}
\end{array}\right), \quad \mathcal{J}_{\omega_{J}}:=\left(\begin{array}{cc}
0 & -\omega_{J}^{-1} \\
\omega_{J} & 0
\end{array}\right)
$$

- Prove that \mathcal{J}_{I} and $\mathcal{J}_{\omega_{J}}$ anticommute.

Consider \mathcal{J}_{t} as above for $\mathcal{J}_{1}=\mathcal{J}_{I}$ and $\mathcal{J}_{2}=\mathcal{J}_{\omega_{J}}$.

- Prove that \mathcal{J}_{t} is a generalized complex structure. (Hint: use a B-field related to ω_{K} to transform \mathcal{J}_{t} into a generalized complex structure whose integrability is easy.)

