Generalized Geometry, an introduction

Assignment 3

Weizmann Institute
Second Semester 2017-2018

There is no formal submission of the assignments but you are expected to work on them.
Problem 1. The exterior algebra $\wedge^{\bullet} V^{*}$ is formally defined as the quotient of $\otimes^{\bullet} V^{*}$ by an ideal I. For $\alpha_{1}, \ldots, \alpha_{k} \in V^{*}$ we denote by $\alpha_{1} \wedge \ldots \wedge \alpha_{k}$ the element $\left[\alpha_{1} \otimes \ldots \otimes \alpha_{k}\right] \in \wedge^{\bullet} V^{*} / I$. Recall the identification given by

$$
\alpha_{1} \wedge \ldots \wedge \alpha_{k} \mapsto \operatorname{Alt}_{k}\left(\alpha_{1} \otimes \ldots \otimes \alpha_{k}\right):=\sum_{\sigma \in \Sigma_{k}} \operatorname{sgn}(\sigma) \alpha_{\sigma 1} \otimes \ldots \otimes \alpha_{\sigma k} \in \otimes^{\bullet} V^{*}
$$

which allows to see $\Lambda^{\bullet} V^{*}$ as a vector subspace of $\otimes^{\bullet} V^{*}$. As we will mainly use this representation, we will also denoted it by $\wedge^{\bullet} V^{*}$.

Prove that the product induced on $\Lambda^{\bullet} V^{*} \subset \otimes^{\bullet} V^{*}$ corresponds to the wedge product defined as follows: for decomposable

$$
\alpha=\alpha_{1} \wedge \ldots \wedge \alpha_{p} \in \wedge^{p} V^{*}, \quad \beta=\beta_{1} \wedge \ldots \wedge \beta_{q} \in \wedge^{q} V^{*}
$$

where $\alpha_{j}, \beta_{j} \in V^{*}$, the product is given by

$$
\left(\alpha_{1} \wedge \ldots \wedge \alpha_{p}\right) \wedge\left(\beta_{1} \wedge \ldots \wedge \beta_{q}\right)=\alpha_{1} \wedge \ldots \wedge \alpha_{p} \wedge \beta_{1} \wedge \ldots \wedge \beta_{q}
$$

and then it is extended linearly.

Problem 2. Let $e^{1}, e^{2} \in V^{*}$ be linearly independent. From $e^{1} \wedge e^{2}=e^{1} \otimes e^{2}-e^{2} \otimes e^{1}$, we see that $e^{1} \wedge e^{2}=-e^{2} \wedge e^{1}$. Is it also true that for $\alpha \in \wedge^{p} V^{*}, \beta \in \wedge^{q} V^{*}$,

$$
\alpha \wedge \beta=-\beta \wedge \alpha ?
$$

Problem 3. Let V be 4-dimensional with basis $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ and dual basis $\left(e^{1}, e^{2}, e^{3}, e^{4}\right)$. Let

$$
\omega=e^{1} \wedge e^{2}, \quad \omega^{\prime}=e^{1} \wedge e^{2}+e^{2} \wedge e^{3}, \quad \omega^{\prime \prime}=e^{1} \wedge e^{2}+e^{3} \wedge e^{4}
$$

be elements of $\wedge^{2} V^{*}$, that is linear presymplectic structures. Regard them as maps $V \rightarrow V^{*}$ and tell if any of them is a linear symplectic structure.

Problem 4. Let V be an n-dimensional vector space.

- Compute the dimension of the vector spaces $\otimes^{p} V, \operatorname{Sym}^{p} V, \wedge^{p} V$.
- Use the notation $\omega^{m}:=\underbrace{\omega \wedge \ldots \wedge \omega}_{m \text { times }}$. Let $n=2 m$. Prove that the 2-form $\omega \in \wedge^{2} V^{*}$ is non-degenerate if and only if $\omega^{m} \neq 0$.

Problem 5. The contraction by X is the linear map $i_{X}: \otimes^{k} V^{*} \rightarrow \otimes^{k-1} V^{*}$ linearly extending the correspondence

$$
\alpha_{1} \otimes \ldots \otimes \alpha_{k} \mapsto \alpha_{1}(X) \alpha_{2} \otimes \ldots \otimes \alpha_{k}
$$

- Prove that the contraction maps $\wedge^{k} V^{*}$ onto $\wedge^{k-1} V^{*}$ and find a formula for $i_{X}\left(\alpha_{1} \wedge\right.$ $\left.\ldots \wedge \alpha_{k}\right)$.
- Prove that $i_{X} i_{X} \alpha=0$ for $\alpha \in \wedge^{k} V^{*}$. What about $i_{X} i_{X} \varphi$ for $\varphi \in \otimes^{k} V^{*}$?

Problem 6. Consider $V+V^{*}$ with the canonical pairing

$$
\langle X+\alpha, Y+\beta\rangle=\frac{1}{2}(\beta(X)+\alpha(Y))
$$

Recall the notion of signature of a pairing and show that this pairing has signature (n, n). Find bases of $V+V^{*}$ such that the pairing is given by the matrix

$$
\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Prove that the dimension of an isotropic subspace is at most $\operatorname{dim} V$.

Problem 7. Let $\omega \in \otimes^{2} V^{*}$ and $\pi \in \omega^{2} V$, regarded as maps $V \rightarrow V^{*}$ and $V^{*} \rightarrow V$. Denote by $g r$ the graph of map, that is,

$$
\operatorname{gr}(\omega)=\{X+\omega(X) \mid X \in V\}, \quad \operatorname{gr}(\alpha)=\left\{\pi(\alpha)+\alpha \mid \alpha \in V^{*}\right\}
$$

Prove that

- $\omega \in \wedge^{2} V^{*}$ if and only if $g r(\omega)$ is maximally isotropic in $V+V^{*}$.
- $\pi \in \wedge^{2} V$ if and only if $g r(\pi)$ is maximally isotropic in $V+V^{*}$.

Let L be a maximally isotropic subspace of $V+V^{*}$. Prove that

- $L \cap V^{*}=\{0\}$ if and only if $L=g r(\omega)$ for a unique $\omega \in \wedge^{2} V^{*}$.
- $L \cap V=\{0\}$ if and only if $L=g r(\pi)$ for a unique $\pi \in \wedge^{2} V$.

