Generalized Geometry, an introduction Assignment 4

Weizmann Institute Second Semester 2017-2018

There is no formal submission of the assignments but you are expected to work on them.

Problem 1. We study the maximally isotropic subspaces $V + V^*$ for the canonical pairing

$$\langle X + \alpha, Y + \beta \rangle = \frac{1}{2} (i_X \beta + i_Y \alpha).$$

Recall that we proved that the dimension of an isotropic subspace is at most $\dim V$.

• Prove now that the dimension of a maximally isotropic subspace is exactly dim V. Recall that a maximally isotropic subspace is an isotropic subspace that is not strictly contained in an isotropic subspace.

We first prove a couple of elementary results. Let $E \subseteq V$ a vector subspace:

- Prove that $E + \operatorname{Ann} E$ is maximally isotropic.
- Prove that $E^* \cong \frac{V^*}{\operatorname{Ann}(E)}$.

Denote by π_V the projection $\pi_V : V + V^* \to V$. Let $L \subset V + V^*$ be a maximally isotropic subspace. Define $E = \pi_V(L)$.

- Prove that $\operatorname{Ann}(E) \subseteq L$.
- Let $X + \alpha \in L$. Prove that $X + \beta \in L$ if and only if $\beta \in \alpha + \operatorname{Ann}(E)$.
- Check that the correspondence $\varepsilon : E \to \frac{V^*}{\operatorname{Ann}(E)} \to E^*$ given by $\varepsilon : X \mapsto \alpha + \operatorname{Ann}(E) \mapsto \alpha_{|E}$ whenever $X + \alpha \in L$ is a well-defined map.
- Check that $L = L(E, \epsilon)$, where

$$L(E,\epsilon) = \{X + \alpha \mid X \in E, \alpha_{|E} = \varepsilon(X)\}.$$
(1)

Conversely, for any $E \subseteq V$ and $\varepsilon \in \wedge^2 E^*$:

• Show that $L(E,\varepsilon)$, as given by (1), is maximally isotropic in $V + V^*$.

Problem 2. For $X \in V$, we defined the contraction map $i_X : \wedge^k V^* \mapsto \wedge^{k-1} V^*$. For $\alpha \in V^*$ define now, for $\varphi \in \wedge^k V^*$,

$$\begin{aligned} \alpha \wedge &: \wedge^k V^* \mapsto \wedge^{k+1} V^* \\ \varphi \mapsto \alpha \wedge \varphi. \end{aligned}$$

Note that for $\lambda \in k$ we have $i_X \lambda = 0$ and $\alpha \wedge \lambda = \lambda \alpha$.

In generalized linear algebra, for $X + \alpha \in V + V^*$ and $\varphi \in \wedge^{\bullet} V^*$, define the action

$$(X + \alpha) \cdot \varphi := i_X \varphi + \alpha \wedge \varphi$$

• Prove that $(X + \alpha) \cdot ((X + \alpha) \cdot \varphi = \langle X + \alpha, X + \alpha \rangle \varphi$.

Define the annihilator of $\varphi \in \wedge^{\bullet} V^*$ by

$$\operatorname{Ann}(\varphi) = \{ X + \alpha \mid (X + \alpha) \cdot \varphi = 0 \}.$$

We want to use annihilators to describe maximally isotropic subspaces in a similar way as we described a complex structure as

$$span(\bar{z}_1,\ldots,\bar{z}_m) = \operatorname{Ann}(z^1 \wedge \ldots \wedge z^m).$$

- Prove that $\operatorname{Ann}(\varphi)$ is always an isotropic subspace, for $\varphi \in \wedge^{\bullet} V^*$.
- Show that $\operatorname{Ann}(1) = V$ and $\operatorname{Ann}(\varphi) = \operatorname{Ann}(\lambda \varphi)$ for $\lambda \neq 0$.
- Let vol_V be a non-zero element of $\wedge^{\dim V} V^*$, show that $\operatorname{Ann}(vol_V) = V^*$.
- What is the relation between $\{\alpha \in \wedge^k V^* \mid i_X \alpha = 0 \text{ for } X \in E\}$ and $\wedge^k \operatorname{Ann}(E)$?
- Let $E \subseteq V$ be a subspace. Find φ such that $\operatorname{Ann}(\varphi) = E + \operatorname{Ann}(E)$.
- Let $\omega \in \wedge^2 V^*$, find φ such that $\operatorname{Ann}(\varphi) = gr(\omega)$.

If you feel adventurous, you can try also:

- * Let $\pi \in \wedge^2 V$, find φ such that $\operatorname{Ann}(\varphi) = gr(\pi)$.
- ** Prove that $\operatorname{Ann}(\varphi) = \operatorname{Ann}(\psi)$ if and only if $\varphi = \lambda \psi$ for $\lambda \in k^*$.
- *** When does φ define a maximally isotropic subspace?