Generalized Geometry, an introduction

Assignment 4

Weizmann Institute
Second Semester 2017-2018

There is no formal submission of the assignments but you are expected to work on them

Problem 1. We study the maximally isotropic subspaces $V+V^{*}$ for the canonical pairing

$$
\langle X+\alpha, Y+\beta\rangle=\frac{1}{2}\left(i_{X} \beta+i_{Y} \alpha\right) .
$$

Recall that we proved that the dimension of an isotropic subspace is at most $\operatorname{dim} V$.

- Prove now that the dimension of a maximally isotropic subspace is exactly $\operatorname{dim} V$. Recall that a maximally isotropic subspace is an isotropic subspace that is not strictly contained in an isotropic subspace.

We first prove a couple of elementary results. Let $E \subseteq V$ a vector subspace:

- Prove that $E+\operatorname{Ann} E$ is maximally isotropic.
- Prove that $E^{*} \cong \frac{V^{*}}{\operatorname{Ann}(E)}$.

Denote by π_{V} the projection $\pi_{V}: V+V^{*} \rightarrow V$. Let $L \subset V+V^{*}$ be a maximally isotropic subspace. Define $E=\pi_{V}(L)$.

- Prove that $\operatorname{Ann}(E) \subseteq L$.
- Let $X+\alpha \in L$. Prove that $X+\beta \in L$ if and only if $\beta \in \alpha+\operatorname{Ann}(E)$.
- Check that the correspondence $\varepsilon: E \rightarrow \frac{V^{*}}{\operatorname{Ann}(E)} \rightarrow E^{*}$ given by $\varepsilon: X \mapsto \alpha+$ $\operatorname{Ann}(E) \mapsto \alpha_{\mid E}$ whenever $X+\alpha \in L$ is a well-defined map.
- Check that $L=L(E, \epsilon)$, where

$$
\begin{equation*}
L(E, \epsilon)=\left\{X+\alpha \mid X \in E, \alpha_{\mid E}=\varepsilon(X)\right\} . \tag{1}
\end{equation*}
$$

Conversely, for any $E \subseteq V$ and $\varepsilon \in \wedge^{2} E^{*}$:

- Show that $L(E, \varepsilon)$, as given by (1), is maximally isotropic in $V+V^{*}$.

Problem 2. For $X \in V$, we defined the contraction map $i_{X}: \wedge^{k} V^{*} \mapsto \wedge^{k-1} V^{*}$. For $\alpha \in V^{*}$ define now, for $\varphi \in \wedge^{k} V^{*}$,

$$
\begin{aligned}
\alpha \wedge: \wedge^{k} V^{*} & \mapsto \wedge^{k+1} V^{*} \\
\varphi & \mapsto \alpha \wedge \varphi
\end{aligned}
$$

Note that for $\lambda \in k$ we have $i_{X} \lambda=0$ and $\alpha \wedge \lambda=\lambda \alpha$.
In generalized linear algebra, for $X+\alpha \in V+V^{*}$ and $\varphi \in \wedge^{\bullet} V^{*}$, define the action

$$
(X+\alpha) \cdot \varphi:=i_{X} \varphi+\alpha \wedge \varphi .
$$

- Prove that $(X+\alpha) \cdot((X+\alpha) \cdot \varphi=\langle X+\alpha, X+\alpha\rangle \varphi$.

Define the annihilator of $\varphi \in \wedge^{\bullet} V^{*}$ by

$$
\operatorname{Ann}(\varphi)=\{X+\alpha \mid(X+\alpha) \cdot \varphi=0\}
$$

We want to use annihilators to describe maximally isotropic subspaces in a similar way as we described a complex structure as

$$
\operatorname{span}\left(\bar{z}_{1}, \ldots, \bar{z}_{m}\right)=\operatorname{Ann}\left(z^{1} \wedge \ldots \wedge z^{m}\right)
$$

- Prove that $\operatorname{Ann}(\varphi)$ is always an isotropic subspace, for $\varphi \in \Lambda^{\bullet} V^{*}$.
- Show that $\operatorname{Ann}(1)=V$ and $\operatorname{Ann}(\varphi)=\operatorname{Ann}(\lambda \varphi)$ for $\lambda \neq 0$.
- Let vol $_{V}$ be a non-zero element of $\wedge^{\operatorname{dim} V} V^{*}$, show that $\operatorname{Ann}\left(\right.$ vol $\left._{V}\right)=V^{*}$.
- What is the relation between $\left\{\alpha \in \wedge^{k} V^{*} \mid i_{X} \alpha=0\right.$ for $\left.X \in E\right\}$ and $\wedge^{k} \operatorname{Ann}(E)$?
- Let $E \subseteq V$ be a subspace. Find φ such that $\operatorname{Ann}(\varphi)=E+\operatorname{Ann}(E)$.
- Let $\omega \in \wedge^{2} V^{*}$, find φ such that $\operatorname{Ann}(\varphi)=\operatorname{gr}(\omega)$.

If you feel adventurous, you can try also:

- Let $\pi \in \wedge^{2} V$, find φ such that $\operatorname{Ann}(\varphi)=g r(\pi)$.
- ** Prove that $\operatorname{Ann}(\varphi)=\operatorname{Ann}(\psi)$ if and only if $\varphi=\lambda \psi$ for $\lambda \in k^{*}$.
- *** When does φ define a maximally isotropic subspace?

