Generalized Geometry, an introduction Assignment 6

Weizmann Institute Second Semester 2017-2018

There is no formal submission of the assignments but you are expected to work on them.

Problem 1. A linear generalized complex structure on V is an automorphism $\mathcal{J} \in O(V + V^*)$ such that $\mathcal{J}^2 = -1$.

• Find a necessary and sufficient condition on V to admit a linear generalized complex structure.

Problem 2. For $B \in \wedge^2 V^*$, use the notation $e^B := \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} \in \mathcal{O}(V + V^*)$. (This is actually the exponential of an element of the Lie algebra $\mathfrak{o}(V + V^*)$ to $\mathcal{O}(V + V^*)$ acting on the standard representation.)

On the other hand, consider the action on $\varphi \in \wedge^{\bullet} V^*$ given by

$$e^{-B} \wedge \varphi = \varphi - B \wedge \varphi + \frac{1}{2!}B^2 \wedge \varphi - \dots$$

(This is the spinorial action of the exponential of the same $B \in \mathfrak{o}(V + V^*)$, yes, B and not -B, to $\text{Spin}(V + V^*)$.)

• Let L be a maximally isotropic subspace such that $L = \operatorname{Ann}(\varphi)$ for some $\varphi \in \wedge^{\bullet} V^*$. Prove that

$$e^B L = \operatorname{Ann}(e^{-B} \wedge \varphi).$$

- Recall how we write L(E, 0) as an annihilator of a spinor and use the previous identity to say which elements $\varphi \in \wedge^{\bullet} V^*$ give a maximally isotropic subspace by $\operatorname{Ann}(\varphi)$.
- Spell out the complex version of the previous statement: which elements $\varphi \in \wedge^{\bullet} V^*_{\mathbb{C}}$ give a maximally isotropic subspace by $\operatorname{Ann}(\varphi) \subset (V + V^*)_{\mathbb{C}}$.
- Regarding the last two items: can you say something about the degree of the φ you found?

Problem 3. Let Γ be the Clifford group of the Clifford algebra Cl(W, Q).

$$\Gamma := \{ g \in \operatorname{Cl}(W)^{\times} \mid \widetilde{\operatorname{Ad}}_g W = W \},\$$

where $\widetilde{\mathrm{Ad}}_g(x) = \tilde{g}xg^{-1}$ and \tilde{d} denotes the endomorphism extending $-\mathrm{Id}_W$.

• * Prove that the Clifford group is also given by

$$\{g = v_1 \dots v_r \mid v_j \in W, Q(v_j) \neq 0\}.$$

Recall the definition of the Pin group

$$Pin(V) = \{g = v_1 \dots v_r \mid v_j \in W, Q(v_j) = \pm 1\}.$$

• * Compute the kernel of the projections

$$\Gamma \to \mathcal{O}(W), \qquad \operatorname{Pin}(W) \to \mathcal{O}(W).$$

Problem 4. We talk now about $Cl(V \oplus V^*)$.

- Check that $\wedge^{\bullet}V^* = \operatorname{Cl}(V^*) := \operatorname{Cl}(V^*, \langle \cdot, \cdot \rangle_{|V^*}).$
- Check that $\operatorname{Cl}(V^*)$ is a subalgebra of $\operatorname{Cl}(V \oplus V^*)$.
- Consider the union of dual bases $\{e_i\} \cup \{e^i\}$, which is a basis of $V \oplus V^*$. Check:

$$e_i^2 = 0,$$
 $(e^i)^2 = 0$ $e_i e^i = 1 - e^i e_i,$ $e_i e^j = -e^j e_i.$

We see if there is any relation of the action of $\operatorname{Cl}(V \oplus V^*)$ on $\wedge^{\bullet} V^*$ with the Clifford product of $\operatorname{Cl}(V \oplus V^*)$ with an element $\operatorname{Cl}(V^*) \subset \operatorname{Cl}(V \oplus V^*)$.

• Find an example to show that they are not the same.

Choose a volume form det V of V, seen as an element in $\operatorname{Cl}(V) \subset \operatorname{Cl}(V \oplus V^*)$, and regard $\wedge^{\bullet}V^*$ inside $\operatorname{Cl}(V \oplus V^*)$ as

$$\operatorname{Cl}(V^*)\operatorname{det} V \subset \operatorname{Cl}(V \oplus V^*),$$

where the juxtaposition denotes the Clifford product.

• Convince yourself that the action we defined on $\wedge^{\bullet}V^* = \operatorname{Cl}(V^*)$, corresponds to the Clifford product on $\operatorname{Cl}(V^*)\operatorname{det}V$.

Problem 5.

• ** Is the action of $O(V + V^*)$ on maximally isotropic subspaces transitive?