Generalized Geometry, an introduction

Assignment 6

Weizmann Institute
Second Semester 2017-2018

There is no formal submission of the assignments but you are expected to work on them.

Problem 1. A linear generalized complex structure on V is an automorphism $\mathcal{J} \in \mathrm{O}\left(V+V^{*}\right)$ such that $\mathcal{J}^{2}=-1$.

- Find a necessary and sufficient condition on V to admit a linear generalized complex structure.

Problem 2. For $B \in \wedge^{2} V^{*}$, use the notation $e^{B}:=\left(\begin{array}{cc}1 & 0 \\ B & 1\end{array}\right) \in \mathrm{O}\left(V+V^{*}\right)$. (This is actually the exponential of an element of the Lie algebra $\mathfrak{o}\left(V+V^{*}\right)$ to $\mathrm{O}\left(V+V^{*}\right)$ acting on the standard representation.)

On the other hand, consider the action on $\varphi \in \wedge^{\bullet} V^{*}$ given by

$$
e^{-B} \wedge \varphi=\varphi-B \wedge \varphi+\frac{1}{2!} B^{2} \wedge \varphi-\ldots
$$

(This is the spinorial action of the exponential of the same $B \in \mathfrak{o}\left(V+V^{*}\right)$, yes, B and not $-B$, to $\operatorname{Spin}\left(V+V^{*}\right)$.)

- Let L be a maximally isotropic subspace such that $L=\operatorname{Ann}(\varphi)$ for some $\varphi \in \wedge^{\bullet} V^{*}$. Prove that

$$
e^{B} L=\operatorname{Ann}\left(e^{-B} \wedge \varphi\right)
$$

- Recall how we write $L(E, 0)$ as an annihilator of a spinor and use the previous identity to say which elements $\varphi \in \wedge^{\bullet} V^{*}$ give a maximally isotropic subspace by $\operatorname{Ann}(\varphi)$.
- Spell out the complex version of the previous statement: which elements $\varphi \in \wedge^{\bullet} V_{\mathbb{C}}^{*}$ give a maximally isotropic subspace by $\operatorname{Ann}(\varphi) \subset\left(V+V^{*}\right)_{\mathbb{C}}$.
- Regarding the last two items: can you say something about the degree of the φ you found?

Problem 3. Let Γ be the Clifford group of the Clifford algebra $\mathrm{Cl}(W, Q)$.

$$
\Gamma:=\left\{g \in \mathrm{Cl}(W)^{\times} \mid \widetilde{\operatorname{Ad}}_{g} W=W\right\}
$$

where $\widetilde{\operatorname{Add}}_{g}(x)=\tilde{g} x g^{-1}$ and \sim denotes the endomorphism extending $-\mathrm{Id}_{W}$.

- * Prove that the Clifford group is also given by

$$
\left\{g=v_{1} \ldots v_{r} \mid v_{j} \in W, Q\left(v_{j}\right) \neq 0\right\}
$$

Recall the definition of the Pin group

$$
\operatorname{Pin}(V)=\left\{g=v_{1} \ldots v_{r} \mid v_{j} \in W, Q\left(v_{j}\right)= \pm 1\right\}
$$

- * Compute the kernel of the projections

$$
\Gamma \rightarrow \mathrm{O}(W), \quad \operatorname{Pin}(W) \rightarrow \mathrm{O}(W)
$$

Problem 4. We talk now about $\mathrm{Cl}\left(V \oplus V^{*}\right)$.

- Check that $\wedge^{\bullet} V^{*}=\mathrm{Cl}\left(V^{*}\right):=\mathrm{Cl}\left(V^{*},\langle\cdot, \cdot\rangle_{\mid V^{*}}\right)$.
- Check that $\mathrm{Cl}\left(V^{*}\right)$ is a subalgebra of $\mathrm{Cl}\left(V \oplus V^{*}\right)$.
- Consider the union of dual bases $\left\{e_{i}\right\} \cup\left\{e^{i}\right\}$, which is a basis of $V \oplus V^{*}$. Check:

$$
e_{i}^{2}=0, \quad\left(e^{i}\right)^{2}=0 \quad e_{i} e^{i}=1-e^{i} e_{i}, \quad e_{i} e^{j}=-e^{j} e_{i} .
$$

We see if there is any relation of the action of $\mathrm{Cl}\left(V \oplus V^{*}\right)$ on $\wedge^{\bullet} V^{*}$ with the Clifford product of $\mathrm{Cl}\left(V \oplus V^{*}\right)$ with an element $\mathrm{Cl}\left(V^{*}\right) \subset \mathrm{Cl}\left(V \oplus V^{*}\right)$.

- Find an example to show that they are not the same.

Choose a volume form det V of V, seen as an element in $\mathrm{Cl}(V) \subset \mathrm{Cl}\left(V \oplus V^{*}\right)$, and regard $\wedge^{\bullet} V^{*}$ inside $\mathrm{Cl}\left(V \oplus V^{*}\right)$ as

$$
\mathrm{Cl}\left(V^{*}\right) \operatorname{det} V \subset \mathrm{Cl}\left(V \oplus V^{*}\right),
$$

where the juxtaposition denotes the Clifford product.

- Convince yourself that the action we defined on $\wedge^{\bullet} V^{*}=\mathrm{Cl}\left(V^{*}\right)$, corresponds to the Clifford product on $\mathrm{Cl}\left(V^{*}\right) \operatorname{det} V$.

Problem 5.

- ** Is the action of $\mathrm{O}\left(V+V^{*}\right)$ on maximally isotropic subspaces transitive?

