Generalized Geometry, an introduction Final Assignment

Weizmann Institute Second Semester 2017-2018

Please, submit electronically by email before 7pm of Monday 6th August 2018.

Problem 1. Let W be a vector space with a pairing of signature (n, n).

- Prove that there exist two isotropic subspaces W_1, W_2 such that $W = W_1 \oplus W_2$.
- Prove that for any decomposition of W into two isotropic subspaces, $W = W_1 \oplus W_2$, we have that both W_1 and W_2 are maximally isotropic subspaces and the pairing induces an isomorphism $W_2 \simeq W_1^*$.

Let V be a real vector space with a pairing of signature (p, q).

- Prove that the dimension of any maximally isotropic subspace is $\min(p, q)$.
- Find an analogue to the decomposition $W = W_1 \oplus W_2$ above (it does not need to be necessarily into two subspaces).
- Use the decomposition you find to describe maximally isotropic subspaces in V.

Problem 2. Let $M = \mathbb{R}^3$ with coordinates (x, y, z). Let, for $a, b \in \mathbb{R}$,

$$u = \sin x \,\partial_y + \cos x \,\partial_z + a \,dx,$$
$$v = \cos x \,\partial_y - \sin x \,\partial_z,$$
$$w = b \,\partial_x + \sin x \,dy + \cos x \,dz$$

be generalized vector fields in $\Gamma(T+T^*)$. For which $a, b \in \mathbb{R}$ does the subbundle

$$L = span(u, v, w) \subset T + T^*$$

define a maximally isotropic subbundle of $T + T^*$? On the other hand, for which $a, b \in \mathbb{R}$ is L involutive? Finally, for which $a, b \in \mathbb{R}$ does L define a Dirac structure?

Problem 3. Prove that symplectic structures $\omega \in \Omega^2(M)$ on a manifold M are in one-to-one correspondence with real Dirac structures L such that $L \cap T = L \cap T^* = \{0\}$.

Problem 4. Let $J: T \to T$ be a complex structure, and $B: T \to T^*$ be a linear bundle map covering the identity map on M. When does

$$\mathcal{J} := \begin{pmatrix} J & 0 \\ BJ + J^*B & -J^* \end{pmatrix}$$

define a generalized almost complex structure? Assume now that $B \in \Omega^2(M)$, when does \mathcal{J} define a generalized complex structure?

Problem 5. Consider the real manifold \mathbb{C}^2 with complex coordinates (z_1, z_2) . Does

$$\varphi = z_1 z_2 + dz_1 \wedge dz_2$$

define a generalized almost complex structure? Does it define a generalized complex structure? In any case, what is the type of φ ?

Problem 6. Consider the real manifold \mathbb{C}^3 with complex coordinates (z_1, z_2, z_3) . Let $f(z_1, z_2, z_3)$ be a complex function $f : \mathbb{C}^3 \to \mathbb{C}$. When does

$$\psi = f(z_1, z_2, z_3)dz_1 + dz_1 \wedge dz_2 \wedge dz_3$$

define a generalized almost complex structure? When does it define a generalized complex structure? In any case, what is the type of ψ ?