Generalized Geometry, an introduction Final Assignment

Weizmann Institute
Second Semester 2017-2018

Please, submit electronically by email before 7pm of Monday 6th August 2018.

Problem 1. Let W be a vector space with a pairing of signature (n, n).

- Prove that there exist two isotropic subspaces W_{1}, W_{2} such that $W=W_{1} \oplus W_{2}$.
- Prove that for any decomposition of W into two isotropic subspaces, $W=W_{1} \oplus W_{2}$, we have that both W_{1} and W_{2} are maximally isotropic subspaces and the pairing induces an isomorphism $W_{2} \simeq W_{1}^{*}$.

Let V be a real vector space with a pairing of signature (p, q).

- Prove that the dimension of any maximally isotropic subspace is $\min (p, q)$.
- Find an analogue to the decomposition $W=W_{1} \oplus W_{2}$ above (it does not need to be necessarily into two subspaces).
- Use the decomposition you find to describe maximally isotropic subspaces in V.

Problem 2. Let $M=\mathbb{R}^{3}$ with coordinates (x, y, z). Let, for $a, b \in \mathbb{R}$,

$$
\begin{aligned}
u & =\sin x \partial_{y}+\cos x \partial_{z}+a d x, \\
v & =\cos x \partial_{y}-\sin x \partial_{z}, \\
w & =b \partial_{x}+\sin x d y+\cos x d z
\end{aligned}
$$

be generalized vector fields in $\Gamma\left(T+T^{*}\right)$. For which $a, b \in \mathbb{R}$ does the subbundle

$$
L=\operatorname{span}(u, v, w) \subset T+T^{*}
$$

define a maximally isotropic subbundle of $T+T^{*}$? On the other hand, for which $a, b \in \mathbb{R}$ is L involutive? Finally, for which $a, b \in \mathbb{R}$ does L define a Dirac structure?

Problem 3. Prove that symplectic structures $\omega \in \Omega^{2}(M)$ on a manifold M are in one-to-one correspondence with real Dirac structures L such that $L \cap T=L \cap T^{*}=\{0\}$.

Problem 4. Let $J: T \rightarrow T$ be a complex structure, and $B: T \rightarrow T^{*}$ be a linear bundle map covering the identity map on M. When does

$$
\mathcal{J}:=\left(\begin{array}{cc}
J & 0 \\
B J+J^{*} B & -J^{*}
\end{array}\right)
$$

define a generalized almost complex structure? Assume now that $B \in \Omega^{2}(M)$, when does \mathcal{J} define a generalized complex structure?

Problem 5. Consider the real manifold \mathbb{C}^{2} with complex coordinates $\left(z_{1}, z_{2}\right)$. Does

$$
\varphi=z_{1} z_{2}+d z_{1} \wedge d z_{2}
$$

define a generalized almost complex structure? Does it define a generalized complex structure? In any case, what is the type of φ ?

Problem 6. Consider the real manifold \mathbb{C}^{3} with complex coordinates $\left(z_{1}, z_{2}, z_{3}\right)$. Let $f\left(z_{1}, z_{2}, z_{3}\right)$ be a complex function $f: \mathbb{C}^{3} \rightarrow \mathbb{C}$. When does

$$
\psi=f\left(z_{1}, z_{2}, z_{3}\right) d z_{1}+d z_{1} \wedge d z_{2} \wedge d z_{3}
$$

define a generalized almost complex structure? When does it define a generalized complex structure? In any case, what is the type of ψ ?

