
Machine learning from a
pure mathematician’s viewpoint

Roberto Rubio

Mathematical Foundations of Machine Learning:
PDEs, Probability, and Dynamics

8th January 2026



DISCLAIMER

Most of the characters and stories of this talk have appeared in the
literature before. This talk recounts my own way of making sense of them.

They are based on the supervision of final-year projects at the
Autonomous University of Barcelona and especially on the graduate course
‘Mathematics of machine learnings and machine learning for mathematics’

that I am currently teaching while visiting the Weizmann Institute.

Take this talk as a naive and biased overview.



DISCLAIMER

Most of the characters and stories of this talk have appeared in the
literature before. This talk recounts my own way of making sense of them.

They are based on the supervision of final-year projects at the
Autonomous University of Barcelona and especially on the graduate course
‘Mathematics of machine learnings and machine learning for mathematics’

that I am currently teaching while visiting the Weizmann Institute.

Take this talk as a naive and biased overview.



Before the story, let me open a book...

The Advertising data set consists of the sales
of that product in 200 different markets,
along with advertising budgets for the prod-
uct in each of those markets for three differ-
ent media: TV, radio, and newspaper.

The input variables are typically denoted us-
ing the output variable symbol X , with a
subscript to distinguish them. So X1 might
be the TV budget, X2 the radio budget,
and X3 the newspaper budget.

The output variable—in this case, sales—



...and review 2000–2021

GPA 5/10 to study maths

No interest in predicting sales.
Nor machine learning until... 2021



...and review 2000–2021

GPA 5/10 to study maths

No interest in predicting sales.
Nor machine learning until... 2021



...and review 2000–2021

GPA 5/10 to study maths

No interest in predicting sales.
Nor machine learning until... 2021



...and review 2000–2021

GPA 5/10 to study maths

No interest in predicting sales.
Nor machine learning until... 2021



...and review 2000–2021

GPA 5/10 to study maths

No interest in predicting sales.

Nor machine learning until... 2021



...and review 2000–2021

GPA 5/10 to study maths

No interest in predicting sales.
Nor machine learning until...

2021



...and review 2000–2021

GPA 5/10 to study maths

No interest in predicting sales.
Nor machine learning until... 2021



A subtle difference in the viewpoint matters

In the book we opened:

investment in ads lives in X = R3,

sales output lives in Y = R,
we would like to learn a distribution p(X × Y ) or p(Y |X ).

Instead, tell a pure mathematician:

YOU: it is better to talk about distributions, but let us say for today that
we have samples (x , g(x)) of a function g : X → Y and want to learn g .
THE MATHEMATICIAN: do you mean interpolating the samples?
YOU: rather approximating, let us use neural networks.
For computability and access to tools, regard X ⊆ Rn, Y ⊆ Rm and learn

g : Rn → Rm.

THE MATHEMATICIAN: what is a neural network?



A subtle difference in the viewpoint matters

In the book we opened:

investment in ads lives in X = R3,

sales output lives in Y = R,
we would like to learn a distribution p(X × Y ) or p(Y |X ).

Instead, tell a pure mathematician:

YOU: it is better to talk about distributions, but let us say for today that
we have samples (x , g(x)) of a function g : X → Y and want to learn g .

THE MATHEMATICIAN: do you mean interpolating the samples?
YOU: rather approximating, let us use neural networks.
For computability and access to tools, regard X ⊆ Rn, Y ⊆ Rm and learn

g : Rn → Rm.

THE MATHEMATICIAN: what is a neural network?



A subtle difference in the viewpoint matters

In the book we opened:

investment in ads lives in X = R3,

sales output lives in Y = R,
we would like to learn a distribution p(X × Y ) or p(Y |X ).

Instead, tell a pure mathematician:

YOU: it is better to talk about distributions, but let us say for today that
we have samples (x , g(x)) of a function g : X → Y and want to learn g .
THE MATHEMATICIAN: do you mean interpolating the samples?
YOU: rather approximating, let us use neural networks.
For computability and access to tools, regard X ⊆ Rn, Y ⊆ Rm and learn

g : Rn → Rm.

THE MATHEMATICIAN: what is a neural network?



A subtle difference in the viewpoint matters

In the book we opened:

investment in ads lives in X = R3,

sales output lives in Y = R,
we would like to learn a distribution p(X × Y ) or p(Y |X ).

Instead, tell a pure mathematician:

YOU: it is better to talk about distributions, but let us say for today that
we have samples (x , g(x)) of a function g : X → Y and want to learn g .
THE MATHEMATICIAN: do you mean interpolating the samples?
YOU: rather approximating, let us use neural networks.
For computability and access to tools, regard X ⊆ Rn, Y ⊆ Rm and learn

g : Rn → Rm.

THE MATHEMATICIAN: what is a neural network?



What is a neural network

for a mathematician

“A neural network is a mas-
sively parallel distributed proces-
sor that has a natural propensity
for storing experimental knowledge
and making it available for use.”
(Haykin’94)

Definition

A neural network with activation function σ : R→ R is an alternating
composition of affine functions hi and component-wise σ.

Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rn2 σ−→ . . .
hL−1−−−→ RnL−1

σ−→ RnL−1
hL−→ Rm

Once σ is fixed, it depends on P :=
∑L

i=1(ni−1 + 1)ni parameters.



What is a neural network

for a mathematician

“A neural network is a mas-
sively parallel distributed proces-
sor that has a natural propensity
for storing experimental knowledge
and making it available for use.”
(Haykin’94)

Definition

A neural network with activation function σ : R→ R is an alternating
composition of affine functions hi and component-wise σ.

Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rn2 σ−→ . . .
hL−1−−−→ RnL−1

σ−→ RnL−1
hL−→ Rm

Once σ is fixed, it depends on P :=
∑L

i=1(ni−1 + 1)ni parameters.



What is a neural network for a mathematician

“A neural network is a mas-
sively parallel distributed proces-
sor that has a natural propensity
for storing experimental knowledge
and making it available for use.”
(Haykin’94)

Definition

A neural network with activation function σ : R→ R is an alternating
composition of affine functions hi and component-wise σ.

Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rn2 σ−→ . . .
hL−1−−−→ RnL−1

σ−→ RnL−1
hL−→ Rm

Once σ is fixed, it depends on P :=
∑L

i=1(ni−1 + 1)ni parameters.



What is a neural network for a mathematician

“A neural network is a mas-
sively parallel distributed proces-
sor that has a natural propensity
for storing experimental knowledge
and making it available for use.”
(Haykin’94)

Definition

A neural network with activation function σ : R→ R is an alternating
composition of affine functions hi and component-wise σ.

Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rn2 σ−→ . . .
hL−1−−−→ RnL−1

σ−→ RnL−1
hL−→ Rm

Once σ is fixed, it depends on P :=
∑L

i=1(ni−1 + 1)ni parameters.



How does σ look?



How does σ look?



How well does the class of neural networks approximate?

We focus on (C(K ), || ||∞) for compact K ⊂ Rn and specify σ.

Two layers, f : Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rm, is enough!

Cybenko’83: dense for σ continuous, lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

Hornik’91: dense for σ continuous, bounded and non-constant.

Theorem (Leshno-Lin-Pinkus-Shockem’93)

For σ ∈ L∞loc with null set of discontinuities, neural networks are dense in
C(K ) if and only if σ is a non-polynomial function almost everywhere.

But precisely polynomials can approximate any function (Weierstrass)!

Remarks: beautiful proof, also results for Lp(µ), citations · generality = k.



How well does the class of neural networks approximate?

We focus on (C(K ), || ||∞) for compact K ⊂ Rn and specify σ.

Two layers, f : Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rm, is enough!

Cybenko’83: dense for σ continuous, lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

Hornik’91: dense for σ continuous, bounded and non-constant.

Theorem (Leshno-Lin-Pinkus-Shockem’93)

For σ ∈ L∞loc with null set of discontinuities, neural networks are dense in
C(K ) if and only if σ is a non-polynomial function almost everywhere.

But precisely polynomials can approximate any function (Weierstrass)!

Remarks: beautiful proof, also results for Lp(µ), citations · generality = k.



How well does the class of neural networks approximate?

We focus on (C(K ), || ||∞) for compact K ⊂ Rn and specify σ.

Two layers, f : Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rm, is enough!

Cybenko’83: dense for σ continuous, lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

Hornik’91: dense for σ continuous, bounded and non-constant.

Theorem (Leshno-Lin-Pinkus-Shockem’93)

For σ ∈ L∞loc with null set of discontinuities, neural networks are dense in
C(K ) if and only if σ is a non-polynomial function almost everywhere.

But precisely polynomials can approximate any function (Weierstrass)!

Remarks: beautiful proof, also results for Lp(µ), citations · generality = k.



How well does the class of neural networks approximate?

We focus on (C(K ), || ||∞) for compact K ⊂ Rn and specify σ.

Two layers, f : Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rm, is enough!

Cybenko’83: dense for σ continuous, lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

Hornik’91: dense for σ continuous, bounded and non-constant.

Theorem (Leshno-Lin-Pinkus-Shockem’93)

For σ ∈ L∞loc with null set of discontinuities, neural networks are dense in
C(K ) if and only if σ is a non-polynomial function almost everywhere.

But precisely polynomials can approximate any function (Weierstrass)!

Remarks: beautiful proof, also results for Lp(µ), citations · generality = k.



How well does the class of neural networks approximate?

We focus on (C(K ), || ||∞) for compact K ⊂ Rn and specify σ.

Two layers, f : Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rm, is enough!

Cybenko’83: dense for σ continuous, lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

Hornik’91: dense for σ continuous, bounded and non-constant.

Theorem (Leshno-Lin-Pinkus-Shockem’93)

For σ ∈ L∞loc with null set of discontinuities, neural networks are dense in
C(K ) if and only if σ is a non-polynomial function almost everywhere.

But precisely polynomials can approximate any function (Weierstrass)!

Remarks: beautiful proof, also results for Lp(µ), citations · generality = k.



How well does the class of neural networks approximate?

We focus on (C(K ), || ||∞) for compact K ⊂ Rn and specify σ.

Two layers, f : Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rm, is enough!

Cybenko’83: dense for σ continuous, lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

Hornik’91: dense for σ continuous, bounded and non-constant.

Theorem (Leshno-Lin-Pinkus-Shockem’93)

For σ ∈ L∞loc with null set of discontinuities, neural networks are dense in
C(K ) if and only if σ is a non-polynomial function almost everywhere.

But precisely polynomials can approximate any function (Weierstrass)!

Remarks: beautiful proof, also results for Lp(µ), citations · generality = k.



How well does the class of neural networks approximate?

We focus on (C(K ), || ||∞) for compact K ⊂ Rn and specify σ.

Two layers, f : Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rm, is enough!

Cybenko’83: dense for σ continuous, lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

Hornik’91: dense for σ continuous, bounded and non-constant.

Theorem (Leshno-Lin-Pinkus-Shockem’93)

For σ ∈ L∞loc with null set of discontinuities, neural networks are dense in
C(K ) if and only if σ is a non-polynomial function almost everywhere.

But precisely polynomials can approximate any function (Weierstrass)!

Remarks: beautiful proof, also results for Lp(µ), citations · generality = k.



How well does the class of neural networks approximate?

We focus on (C(K ), || ||∞) for compact K ⊂ Rn and specify σ.

Two layers, f : Rn h1−→ Rn1 σ−→ Rn1 h2−→ Rm, is enough!

Cybenko’83: dense for σ continuous, lim
t→−∞

σ(t) = 0, lim
t→+∞

σ(t) = 1.

Hornik’91: dense for σ continuous, bounded and non-constant.

Theorem (Leshno-Lin-Pinkus-Shockem’93)

For σ ∈ L∞loc with null set of discontinuities, neural networks are dense in
C(K ) if and only if σ is a non-polynomial function almost everywhere.

But precisely polynomials can approximate any function (Weierstrass)!

Remarks: beautiful proof, also results for Lp(µ), citations · generality = k.



Why deep learning?

Pinkus’99 (who, incidentally, cites Corominas, Sunyer i Balaguer’54):

Daniely’17: “with more layers we need fewer neurons”.

Theorem (Kidgers, Lyon’20)

Neural networks with ni ≤ n +m + 2 and σ a nonaffine continuous
function which is continuously differentiable with nonzero derivative at at
least one point are dense in (C(K ), || ||∞).



Why deep learning?

Pinkus’99 (who, incidentally, cites Corominas, Sunyer i Balaguer’54):

Daniely’17: “with more layers we need fewer neurons”.

Theorem (Kidgers, Lyon’20)

Neural networks with ni ≤ n +m + 2 and σ a nonaffine continuous
function which is continuously differentiable with nonzero derivative at at
least one point are dense in (C(K ), || ||∞).



Why deep learning?

Pinkus’99 (who, incidentally, cites Corominas, Sunyer i Balaguer’54):

Daniely’17: “with more layers we need fewer neurons”.

Theorem (Kidgers, Lyon’20)

Neural networks with ni ≤ n +m + 2 and σ a nonaffine continuous
function which is continuously differentiable with nonzero derivative at at
least one point are dense in (C(K ), || ||∞).



How to approximate? Let us start with (x , y) ∈ Rn × Rm.

fw : Rn → Rm depending on w ∈ RP , set

fx : RP → Rm

fx(w) := fw (x).

Measure how well we do by taking a semidistance to y , dy : Rm → R.

Goal: adjust w ∈ RP to minimize the loss ℓ := dy ◦ fx : RP → R.

How? Gradient descent, w ′ ← w − step · ∇ℓ(w).

(∇ℓ)(w) = d ′
y (fx(w)) · (Jac fx)(w), so let us compute (Jac fx)(w)



How to approximate? Let us start with (x , y) ∈ Rn × Rm.
fw : Rn → Rm depending on w ∈ RP , set

fx : RP → Rm

fx(w) := fw (x).

Measure how well we do by taking a semidistance to y , dy : Rm → R.

Goal: adjust w ∈ RP to minimize the loss ℓ := dy ◦ fx : RP → R.

How? Gradient descent, w ′ ← w − step · ∇ℓ(w).

(∇ℓ)(w) = d ′
y (fx(w)) · (Jac fx)(w), so let us compute (Jac fx)(w)



How to approximate? Let us start with (x , y) ∈ Rn × Rm.
fw : Rn → Rm depending on w ∈ RP , set

fx : RP → Rm

fx(w) := fw (x).

Measure how well we do by taking a semidistance to y , dy : Rm → R.

Goal: adjust w ∈ RP to minimize the loss ℓ := dy ◦ fx : RP → R.

How? Gradient descent, w ′ ← w − step · ∇ℓ(w).

(∇ℓ)(w) = d ′
y (fx(w)) · (Jac fx)(w), so let us compute (Jac fx)(w)



How to approximate? Let us start with (x , y) ∈ Rn × Rm.
fw : Rn → Rm depending on w ∈ RP , set

fx : RP → Rm

fx(w) := fw (x).

Measure how well we do by taking a semidistance to y , dy : Rm → R.

Goal: adjust w ∈ RP to minimize the loss ℓ := dy ◦ fx : RP → R.

How? Gradient descent, w ′ ← w − step · ∇ℓ(w).

(∇ℓ)(w) = d ′
y (fx(w)) · (Jac fx)(w), so let us compute (Jac fx)(w)



“Backpropagation is the chain rule”
Wikipedia:



Backpropagation, an example

fx(a, b, p, q, r , s) = rσ(pσ(ax + b) + q) + s,

Denote fx by f :

∂f

∂s
= 1,

∂f

∂r
= σ(pσ(ax + b) + q))

∂f

∂q
= rσ′(pσ(ax + b)) + q),

∂f

∂p
= rσ′(pσ(ax + b) + q))σ(ax + b)

∂f

∂b
= rσ′(pσ(ax + b)) + q)pσ′(ax + b),

∂f

∂a
= rσ′(pσ(ax + b) + q))pσ′(ax + b)x



Backpropagation, an example

fx(a, b, p, q, r , s) = rσ(pσ(ax + b) + q) + s,

Denote fx by f :

∂f

∂s
= 1,

∂f

∂r
=

∂f

∂s
σ(pσ(ax + b) + q))

∂f

∂q
=

∂f

∂s
rσ′(pσ(ax + b)) + q),

∂f

∂p
=

∂f

∂q
σ(ax + b)

∂f

∂b
=

∂f

∂q
pσ′(ax + b),

∂f

∂a
=

∂f

∂b
x .



Backpropagation is the chain rule...

...but of fx(a, b, p, q, r , s) and making use of affine functions.

x

a

b

m

n

r

s

σ(a□+ b)

m

n

r

s

σ(m□+ n)

r

s

r□+ s



Backpropagation is the chain rule...

...but of fx(a, b, p, q, r , s) and making use of affine functions.

x

a

b

m

n

r

s

σ(a□+ b)

m

n

r

s

σ(m□+ n)

r

s

r□+ s



(Jac fx)(w) is an m × P matrix
Understanding Machine Learning: From Theory to Algorithms by
Shalev-Shwartz and Ben-David:



Backpropagation, we had

fx(a, b, p, q, r , s) = rσ(pσ(ax + b) + q) + s,

Denote fx by f :

∂f

∂s
= 1,

∂f

∂r
=

∂f

∂s
σ(pσ(ax + b) + q))

∂f

∂q
=

∂f

∂s
rσ′(pσ(ax + b)) + q),

∂f

∂p
=

∂f

∂q
σ(ax + b)

∂f

∂b
=

∂f

∂q
pσ′(ax + b),

∂f

∂a
=

∂f

∂b
x .

JacR f is a m×m× n2 tensor, product of m×m and m×m× n2 tensors.

Two reasons: mathematically sound and matrix multiplication algorithms



Backpropagation, we have

fx(A,B,P,Q,R,S) = Rσ(Pσ(Ax + B) + Q) + S

Denote fx by f , now A,B,P,Q,R, S matrices:

JacS f = Id, JacR f = JacS f · diagmσ(Pσ(Ax + B) + Q)),

JacQ f = JacS f · R · σ′(Pσ(Ax + B)) + Q), JacP f = JacQ f · diagn2(σ(Ax + B)),

JacB f = JacQ f · P · σ′(Ax + B), JacA f = JacB f · diagn1(x).

JacR f is a m×m× n2 tensor, product of m×m and m×m× n2 tensors.

Two reasons: mathematically sound and matrix multiplication algorithms



Backpropagation: embrace tensors

fx(A,B,P,Q,R,S) = Rσ(Pσ(Ax + B) + Q) + S

Denote fx by f , now A,B,P,Q,R, S matrices:

JacS f = Id, JacR f = JacS f · diagmσ(Pσ(Ax + B) + Q)),

JacQ f = JacS f · R · σ′(Pσ(Ax + B)) + Q), JacP f = JacQ f · diagn2(σ(Ax + B)),

JacB f = JacQ f · P · σ′(Ax + B), JacA f = JacB f · diagn1(x).

JacR f is a m×m× n2 tensor, product of m×m and m×m× n2 tensors.

Two reasons: mathematically sound and matrix multiplication algorithms



Backpropagation: embrace tensors

fx(A,B,P,Q,R,S) = Rσ(Pσ(Ax + B) + Q) + S

Denote fx by f , now A,B,P,Q,R, S matrices:

JacS f = Id, JacR f = JacS f · diagmσ(Pσ(Ax + B) + Q)),

JacQ f = JacS f · R · σ′(Pσ(Ax + B)) + Q), JacP f = JacQ f · diagn2(σ(Ax + B)),

JacB f = JacQ f · P · σ′(Ax + B), JacA f = JacB f · diagn1(x).

JacR f is a m×m× n2 tensor, product of m×m and m×m× n2 tensors.

Two reasons: mathematically sound and matrix multiplication algorithms



Attribution: understanding supervised learning

YOU: Now you can do this at many points (stochastically) and it works.
THE MATHEMATICIAN: The function only matches the sample, not even

YOU: Learn just 80 % of your sample, test the other 20%.
THE MATHEMATICIAN: Still, the function is hell, what do I get from it?

f : Rn → R

n features, what is their relevance? If f were linear, look at the coefficients.

Attribution methods (quite new!).

2013 Saliency for images
(Gradient-based methods)

2016 LIME (Local Interpretability
Model-Agnostic Explainability)

2017 SHAP (Shapley Additive exPlanation)



Attribution: understanding supervised learning

YOU: Now you can do this at many points (stochastically) and it works.
THE MATHEMATICIAN: The function only matches the sample, not even

YOU: Learn just 80 % of your sample, test the other 20%.
THE MATHEMATICIAN: Still, the function is hell, what do I get from it?

f : Rn → R

n features, what is their relevance? If f were linear, look at the coefficients.

Attribution methods (quite new!).

2013 Saliency for images
(Gradient-based methods)

2016 LIME (Local Interpretability
Model-Agnostic Explainability)

2017 SHAP (Shapley Additive exPlanation)



Attribution: understanding supervised learning

YOU: Now you can do this at many points (stochastically) and it works.
THE MATHEMATICIAN: The function only matches the sample, not even

YOU: Learn just 80 % of your sample, test the other 20%.
THE MATHEMATICIAN: Still, the function is hell, what do I get from it?

f : Rn → R

n features, what is their relevance? If f were linear, look at the coefficients.

Attribution methods (quite new!).

2013 Saliency for images
(Gradient-based methods)

2016 LIME (Local Interpretability
Model-Agnostic Explainability)

2017 SHAP (Shapley Additive exPlanation)



Attribution: understanding supervised learning
YOU: Now you can do this at many points (stochastically) and it works.
THE MATHEMATICIAN: The function only matches the sample, not even

YOU: Learn just 80 % of your sample, test the other 20%.
THE MATHEMATICIAN: Still, the function is hell, what do I get from it?

f : Rn → R

n features, what is their relevance? If f were linear, look at the coefficients.

Attribution methods (quite new!).

2013 Saliency for images
(Gradient-based methods)

2016 LIME (Local Interpretability
Model-Agnostic Explainability)

2017 SHAP (Shapley Additive exPlanation)



Shapley values

Based on cooperative games for a set of players N = {1, . . . , n},

v : 2N → R.

How to distribute the worth v(N)? With a value function φ(v) : N → R

Shapley wanted φ : Games(N)→ RN such that (with φi (v) := φ(v)(i))

•
∑

i∈N φi (v) = v(N) (efficiency),

• if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i , j}, then φi (v) = φj(v)
(symmetry),

• if v(S) = v(S ∪ {i}) for every S ⊆ N \ {i}, then φi (v) = 0 (null),

• φ(u + v) = φ(u) + φ(v) for any u, v ∈ Games(N) (additivity).

Theorem (Shapley’53)

There is only one such function.



Shapley values

Based on cooperative games for a set of players N = {1, . . . , n},

v : 2N → R.

How to distribute the worth v(N)? With a value function φ(v) : N → R

Shapley wanted φ : Games(N)→ RN such that (with φi (v) := φ(v)(i))

•
∑

i∈N φi (v) = v(N) (efficiency),

• if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i , j}, then φi (v) = φj(v)
(symmetry),

• if v(S) = v(S ∪ {i}) for every S ⊆ N \ {i}, then φi (v) = 0 (null),

• φ(u + v) = φ(u) + φ(v) for any u, v ∈ Games(N) (additivity).

Theorem (Shapley’53)

There is only one such function.



Denote the permutations of the set N by Π(N) and define

Nπ
i := {j ∈ N | π(j) < π(i).}

The only solution is

φi (v) =
1

n!

∑
π∈Π(N)

(v(Nπ
i ∪ {i})− v(Nπ

i )).

What game do we play? Just at a point:

vx(S) := E[f (xS)],

Additivity can be replaced by strong monotonicity (Young’85),

v(S ∪ {i})− v(S) ≥ w(S ∪ {i})− w(S) for all S ⇒ φi (v) ≥ φi (w),

Better? Determined by the game potential (Hart,Mas-Colell’88)



Denote the permutations of the set N by Π(N) and define

Nπ
i := {j ∈ N | π(j) < π(i).}

The only solution is

φi (v) =
1

n!

∑
π∈Π(N)

(v(Nπ
i ∪ {i})− v(Nπ

i )).

What game do we play? Just at a point:

vx(S) := E[f (xS)],

Additivity can be replaced by strong monotonicity (Young’85),

v(S ∪ {i})− v(S) ≥ w(S ∪ {i})− w(S) for all S ⇒ φi (v) ≥ φi (w),

Better? Determined by the game potential (Hart,Mas-Colell’88)



Denote the permutations of the set N by Π(N) and define

Nπ
i := {j ∈ N | π(j) < π(i).}

The only solution is

φi (v) =
1

n!

∑
π∈Π(N)

(v(Nπ
i ∪ {i})− v(Nπ

i )).

What game do we play? Just at a point:

vx(S) := E[f (xS)],

Additivity can be replaced by strong monotonicity (Young’85),

v(S ∪ {i})− v(S) ≥ w(S ∪ {i})− w(S) for all S ⇒ φi (v) ≥ φi (w),

Better? Determined by the game potential (Hart,Mas-Colell’88)



But everyone uses reinforcement learning!

That is just:

• a set S, of states
• a set A, of actions
• for each s ∈ S and a ∈ A, a probability distribution on S × R ,
of new state and (bounded) reward.

p(s ′, r |s, a).

PROBLEM: choose a probability distribution on A for each S
π(a|s),

such that if the Ai follow π

s
A0−→ R1, S1

A1−→ R2,S2
A3−→ . . .Rk ,Sk

Ak−→ Rk+1,Sk+1
Ak+1−−−→ . . .

has maximum expected return (discount rate 0 < γ < 1), for every s,

E

(
+∞∑
i=1

γ iRi

)
.



But everyone uses reinforcement learning!
That is just:

• a set S, of states
• a set A, of actions
• for each s ∈ S and a ∈ A, a probability distribution on S × R ,
of new state and (bounded) reward.

p(s ′, r |s, a).

PROBLEM: choose a probability distribution on A for each S
π(a|s),

such that if the Ai follow π

s
A0−→ R1, S1

A1−→ R2,S2
A3−→ . . .Rk ,Sk

Ak−→ Rk+1,Sk+1
Ak+1−−−→ . . .

has maximum expected return (discount rate 0 < γ < 1), for every s,

E

(
+∞∑
i=1

γ iRi

)
.



But everyone uses reinforcement learning!
That is just:

• a set S, of states
• a set A, of actions
• for each s ∈ S and a ∈ A, a probability distribution on S × R ,
of new state and (bounded) reward.

p(s ′, r |s, a).

PROBLEM: choose a probability distribution on A for each S
π(a|s),

such that if the Ai follow π

s
A0−→ R1, S1

A1−→ R2,S2
A3−→ . . .Rk ,Sk

Ak−→ Rk+1, Sk+1
Ak+1−−−→ . . .

has maximum expected return (discount rate 0 < γ < 1), for every s,

E

(
+∞∑
i=1

γ iRi

)
.



Theory and opening another book
Assume S and A to be finite. Define

vπ(s) := E

(
+∞∑
i=1

γ iRiS0 = s

)
.

We aim for π∗ such that, for every π and any s,

vπ∗(s) ≥ vπ(s).

There is always at least one policy that is
better than or equal to all other policies
(page 62 of 524).

The existence and uniqueness of v are guar-
anteed as long as either < 1 or eventual ter-
mination is guaranteed from all states under
the policy (page 74).

Essentially, only two theorems in 524 pages.



Theory and opening another book
Assume S and A to be finite. Define

vπ(s) := E

(
+∞∑
i=1

γ iRiS0 = s

)
.

We aim for π∗ such that, for every π and any s,

vπ∗(s) ≥ vπ(s).

There is always at least one policy that is
better than or equal to all other policies
(page 62 of 524).

The existence and uniqueness of v are guar-
anteed as long as either < 1 or eventual ter-
mination is guaranteed from all states under
the policy (page 74).

Essentially, only two theorems in 524 pages.



For a mathematician
Two-line deduction: Bellman’s equation.

vπ(s) =
∑
a∈A

π(a|s)
∑
s′,r

p(s ′, r |s, a)(r + γvπ(s
′)).

It is a linear system of equations that computes the values of a policy.

If the optimal policy exists, it must satisfy Bellman’s optimality equation

v∗(s) = max
a∈A

∑
s′,r

p(s ′, r |s, a)(r + γv∗(s
′))

 .

For an arbitrary ‘state-value’ function f : S → R, define the operator:

(T f )(s) = max
a∈A

∑
s′,r

p(s ′, r |s, a)(r + γf (s ′)).

Theorem (Banach’s fixed point theorem)

A contractive operator on a complete metric space has a fixed point,
which is unique and can be computed iteratively.



For a mathematician
Two-line deduction: Bellman’s equation.

vπ(s) =
∑
a∈A

π(a|s)
∑
s′,r

p(s ′, r |s, a)(r + γvπ(s
′)).

It is a linear system of equations that computes the values of a policy.

If the optimal policy exists, it must satisfy Bellman’s optimality equation

v∗(s) = max
a∈A

∑
s′,r

p(s ′, r |s, a)(r + γv∗(s
′))

 .

For an arbitrary ‘state-value’ function f : S → R, define the operator:

(T f )(s) = max
a∈A

∑
s′,r

p(s ′, r |s, a)(r + γf (s ′)).

Theorem (Banach’s fixed point theorem)

A contractive operator on a complete metric space has a fixed point,
which is unique and can be computed iteratively.



For a mathematician
Two-line deduction: Bellman’s equation.

vπ(s) =
∑
a∈A

π(a|s)
∑
s′,r

p(s ′, r |s, a)(r + γvπ(s
′)).

It is a linear system of equations that computes the values of a policy.

If the optimal policy exists, it must satisfy Bellman’s optimality equation

v∗(s) = max
a∈A

∑
s′,r

p(s ′, r |s, a)(r + γv∗(s
′))

 .

For an arbitrary ‘state-value’ function f : S → R, define the operator:

(T f )(s) = max
a∈A

∑
s′,r

p(s ′, r |s, a)(r + γf (s ′)).

Theorem (Banach’s fixed point theorem)

A contractive operator on a complete metric space has a fixed point,
which is unique and can be computed iteratively.



For a mathematician
Two-line deduction: Bellman’s equation.

vπ(s) =
∑
a∈A

π(a|s)
∑
s′,r

p(s ′, r |s, a)(r + γvπ(s
′)).

It is a linear system of equations that computes the values of a policy.

If the optimal policy exists, it must satisfy Bellman’s optimality equation

v∗(s) = max
a∈A

∑
s′,r

p(s ′, r |s, a)(r + γv∗(s
′))

 .

For an arbitrary ‘state-value’ function f : S → R, define the operator:

(T f )(s) = max
a∈A

∑
s′,r

p(s ′, r |s, a)(r + γf (s ′)).

Theorem (Banach’s fixed point theorem)

A contractive operator on a complete metric space has a fixed point,
which is unique and can be computed iteratively.



But a neural network may be able to learn the policy!

WARNING: The optimal policy is actually deterministic (go to
highest-valued state) but π allows us to explore options.

So we also want to learn a function

S → Dist(A)

YOU: I told you that the probabilistic approach is better!

TM: Regard Dist(A) as almost R|A| via softmax : Rm → Dist({1, . . . ,m})

softmax(y1, . . . , ym) =
1∑n

i=1 e
yi
(ey1 , . . . , eym) .

and I can understand reinforcement learning as supervised learning where
the samples are evolving while playing the game.

YOU: you’d better use cross-entropy here...



But a neural network may be able to learn the policy!

WARNING: The optimal policy is actually deterministic (go to
highest-valued state) but π allows us to explore options.

So we also want to learn a function

S → Dist(A)

YOU: I told you that the probabilistic approach is better!

TM: Regard Dist(A) as almost R|A| via softmax : Rm → Dist({1, . . . ,m})

softmax(y1, . . . , ym) =
1∑n

i=1 e
yi
(ey1 , . . . , eym) .

and I can understand reinforcement learning as supervised learning where
the samples are evolving while playing the game.

YOU: you’d better use cross-entropy here...



But a neural network may be able to learn the policy!

WARNING: The optimal policy is actually deterministic (go to
highest-valued state) but π allows us to explore options.

So we also want to learn a function

S → Dist(A)

YOU: I told you that the probabilistic approach is better!

TM: Regard Dist(A) as almost R|A| via softmax : Rm → Dist({1, . . . ,m})

softmax(y1, . . . , ym) =
1∑n

i=1 e
yi
(ey1 , . . . , eym) .

and I can understand reinforcement learning as supervised learning where
the samples are evolving while playing the game.

YOU: you’d better use cross-entropy here...



But a neural network may be able to learn the policy!

WARNING: The optimal policy is actually deterministic (go to
highest-valued state) but π allows us to explore options.

So we also want to learn a function

S → Dist(A)

YOU: I told you that the probabilistic approach is better!

TM: Regard Dist(A) as almost R|A| via softmax : Rm → Dist({1, . . . ,m})

softmax(y1, . . . , ym) =
1∑n

i=1 e
yi
(ey1 , . . . , eym) .

and I can understand reinforcement learning as supervised learning where
the samples are evolving while playing the game.

YOU: you’d better use cross-entropy here...



Cross-entropy << 101
Say (1, 0) ∈ Dist(Y ) is approximated by (p, 1− p).

The Mean-Squared Error gives

1

2
((1− p)2 + (0− (1− p))2) = (1− p)2.

Instead do
−1 · log p − 0 log(1− p) = − log p.

This way we punish confidently wrong predictions:

Simplifications and toy models help us understand each other.



Cross-entropy << 101
Say (1, 0) ∈ Dist(Y ) is approximated by (p, 1− p).

The Mean-Squared Error gives

1

2
((1− p)2 + (0− (1− p))2) = (1− p)2.

Instead do
−1 · log p − 0 log(1− p) = − log p.

This way we punish confidently wrong predictions:

Simplifications and toy models help us understand each other.



Cross-entropy << 101
Say (1, 0) ∈ Dist(Y ) is approximated by (p, 1− p).

The Mean-Squared Error gives

1

2
((1− p)2 + (0− (1− p))2) = (1− p)2.

Instead do
−1 · log p − 0 log(1− p) = − log p.

This way we punish confidently wrong predictions:

Simplifications and toy models help us understand each other.



Cross-entropy << 101
Say (1, 0) ∈ Dist(Y ) is approximated by (p, 1− p).

The Mean-Squared Error gives

1

2
((1− p)2 + (0− (1− p))2) = (1− p)2.

Instead do
−1 · log p − 0 log(1− p) = − log p.

This way we punish confidently wrong predictions:

Simplifications and toy models help us understand each other.



Mathematical understanding as a bridge to join forces

Join us at mat.uab.cat/bM2L

https://mat.uab.cat/bM2L
mat.uab.cat/bM2L


Mathematical understanding as a bridge to join forces

Join us at mat.uab.cat/bM2L

https://mat.uab.cat/bM2L
mat.uab.cat/bM2L


Thank you for your attention!

RYC2020-030114-I

PID2022-137667NA-I00

CNS2024-154695

Slides may become available at

mat.uab.cat/~rubio

mat.uab.cat/~rubio

