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Before the story, let me open a book...

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

I An Introduction
to Statistical

Learning

Second Edition

The Advertising data set consists of the sales
of that product in 200 different markets,
along with advertising budgets for the prod-
uct in each of those markets for three differ-
ent media: TV, radio, and newspaper.

The input variables are typically denoted us-
ing the output variable symbol X, with a
subscript to distinguish them. So X; might
be the TV budget, X, the radio budget,
and X3 the newspaper budget.

The output variable—in this case, sales—
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What is a neural network for a mathematician

Input layer Hidden layers Output layer

“A neural network is a mas- i
sively parallel distributed proces-
sor that has a natural propensity
for storing experimental knowledge
and making it available for use."
(Haykin'94)

Definition

A neural network with activation function o : R — R is an alternating
composition of affine functions h; and component-wise o.

RY 2L Rm % g B e 2B gy 2 g L e

Once o is fixed, it depends on P := Z,-Lzl(n,-_l + 1)n; parameters.
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Neural Network Activation Functions

RoLy
Binary Step Function Linear
o é 3

Lesky ReLU

Sigmoid / Logistic

Parametric RolU

[

f=ay

ELU (a=1) + Dertvative
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We focus on (C(K), || ||«) for compact K C R" and specify o.
Two layers, f : R" l> RMm Zy RM E> R™, is enough!

Cybenko'83: dense for o continuous, lim o(t) =0, lim o(t)=1.
t——o0 t——+4o00

Hornik'91: dense for o continuous, bounded and non-constant.

Theorem (Leshno-Lin-Pinkus-Shockem’93)

For o € Ly with null set of discontinuities, neural networks are dense in
C(K) if and only if o is a non-polynomial function almost everywhere.

But precisely polynomials can approximate any function (Weierstrass)!

Remarks: beautiful proof, also results for LP(u), citations - generality = k.
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authors see little theoretical gain in considering more than one hidden layer
since a single hidden layer model suffices for density. Most authors, however,
do allow for the possibility of certain other benefits to be gained from using
more than one hidden layer. (See de Villiers and Barnard (1992) for a
comparison of these two models.)
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Pinkus'99 (who, incidentally, cites Corominas, Sunyer i Balaguer'54):

Relatively little is known concerning the advantages and disadvantages of
using a single hidden layer with many units (neurons) over many hidden
layers with fewer units. The mathematics and approximation theory of the
MLP model with more than one hidden layer is not well understood. Some
authors see little theoretical gain in considering more than one hidden layer
since a single hidden layer model suffices for density. Most authors, however,
do allow for the possibility of certain other benefits to be gained from using
more than one hidden layer. (See de Villiers and Barnard (1992) for a
comparison of these two models.)

Daniely'17: “with more layers we need fewer neurons”.

Theorem (Kidgers, Lyon'20)

Neural networks with n; < n-+ m + 2 and o a nonaffine continuous
function which is continuously differentiable with nonzero derivative at at
least one point are dense in (C(K),|| ||)-
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f,, : R" — R™ depending on w € RF, set

f. : RF - R™
f(w) := fu(x).
Measure how well we do by taking a semidistance to y, d,, : R™ — R.
Goal: adjust w € RF to minimize the loss / := d, o f, : RF — R.

How? Gradient descent, w' <— w — step - V{(w).

error

Global
Minima

P
Y
]

| ¢ o

—
minimum parameter Cost Function

(VO)(w) = d}(f(w)) - (Jac ) (w), so let us compute (Jac £, )(w)



“Backpropagation is the chain rule”
Wikipedia:
Given an input-output pair (x, y), the loss is:
Oly, FEWEF WL W 1 (Wha)) - )
To compute this, one starts with the input = and works forward; denote the weighted input of
each hidden layer as 2! and the output of hidden layer [ as the activation al. For

backpropagation, the activation a' as well as the derivatives (fl)/ (evaluated at zl) must be
cached for use during the backwards pass.

The derivative of the loss in terms of the inputs is given by the chain rule; note that each term is
a total derivative, evaluated at the value of the network (at each node) on the input z:

dC  da® dZ*  dat' d! da! 07
dat  dzf  dat! dzl! dat? T dzt 9z’
dal ) )
where —— is a diagonal matrix.
dzr

These terms are: the derivative of the loss function;[] the derivatives of the activation functions;
(el and the matrices of weights:!f

dC
~ o(fL)r.WLo(fL—l)r.WL—l O-~~O(f1)'-W1.
da
The gradient V is the transpose of the derivative of the output in terms of the input, so the

matrices are transposed and the order of multiplication is reversed, but the entries are the same:

V.0 = (W (f1Y 0.0 (WELYT - (FE1) o (WEYT - (£E) 0 Vi C.



Backpropagation, an example
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of of

55 = b E*U(PU(EXJFb)JFQ))

of , of /
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of ’ / of / /
BT (po(ax + b)) + q)pc’(ax + b), 251 (po(ax + b) + q))pc’(ax + b)x



Backpropagation, an example

f(a,b,p,q,r,s) = ro(po(ax + b) + q) +s,

Denote f, by f:

of of _ of

gZL E—&U(pa(ax—i—b)—i—q))
of _ of of _ of

9g — 95" (Po(ax+ b)) +a), ap ~ 9g7(xtb)

of  of of  of
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...but of £ (a, b, p,q,r,s) and making use of affine functions.

rtd+s




(Jac f)(w) is an m x P matrix

Understanding Machine Learning: From Theory to Algorithms by
Shalev-Shwartz and Ben-David:

9t (Wi1) = bi(o) = le(o(ay)) = Li(0(Wi—10¢-1)).

It would be convenient to rewrite this as follows. Let wy_; € R*¥-1%¢ be the
column vector obtained by concatenating the rows of W;_; and then taking the
transpose of the resulting long vector. Define by O;_1 the k; X (ks—1k:) matrix

0;:1 0 . 0
0 o, -~ 0
04y = ) o e (20.2)
0 0 - o),

Then, Wi_104—1 = O;—1W_1, s0 we can also write
gt(Wi—1) = Le(0(O4—1 We—1)).
Therefore, applying the chain rule, we obtain that
a1 (9t) = T (0irwir) (be) diag(o’(Or_1wy_1)) Op_1.
Using our notation we have oy = o(O;—1w;—1) and a; = O;—1w;_1, which yiclds
Jwe_1(gt) = Jo, (&) diag(o”’(ar)) Or—1.
Let us also denote §; = Jo,(¢¢). Then, we can further rewrite the preceding as

Jwoi(96) = (Be10' (@) ol 1, .., Sew, 0 (ark,) ol q)- (20.3)



Backpropagation, we had

f(a,b,p,q,r,s) =ro(po(ax + b) + q) + s,

Denote 7, by f:

of of of

&—17 E—&a(pa(ax—i—b)—i—q))
of _ of of  of

9g 05" (po(ax + b)) + q), - aqa(aXJr b)

of _ of "(ax + b) g*gX

ab _ aqF’ : da _ 0b"



Backpropagation, we have

£(A, B,P,Q,R,S) = Ro(Po(Ax+B)+ Q) + S
Denote f, by f, now A, B, P, Q, R, S matrices:
Jacs f =1d, Jacg f = Jacs f - diagmo(Po(Ax + B) + Q))

Jacq f = Jacs f - R- o' (Po(Ax + B)) + Q), Jace f = Jacq f - diagn,(0(Ax + B)),
Jacg f = Jacq f - P-o'(Ax + B), Jaca f = Jacgf - diagn, (x).
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Backpropagation: embrace tensors

(A,B,P,Q,R,S) = Ro(Po(Ax+B)+ Q)+ S

Denote 7, by f, now A, B, P, Q, R, S matrices:

Jacs £ =1d, Jacg f = Jacs f - diagmo(Po(Ax + B) + Q))
Jacq f = Jacs f - R- o' (Po(Ax + B)) + Q), Jace f = Jacq f - diagn,(0(Ax + B)),
Jacg f = Jacq f - P-o'(Ax + B), Jaca f = Jacgf - diagn, (x).

Jacg fis a m x m x np tensor, product of m x m and m x m X n, tensors.

Two reasons: mathematically sound and matrix multiplication algorithms
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Attribution: understanding supervised learning

YOU: Now you can do this at many points (stochastically) and it works.
THE MATHEMATICIAN: The function only matches the sample, not even

YOU: Learn just 80 % of your sample, test the other 20%.
THE MATHEMATICIAN: Still, the function is hell, what do | get from it?

f:R" >R

n features, what is their relevance? If f were linear, look at the coefficients.
Attribution methods (quite new!).

2013 Saliency for images e
(Gradient-based methods)

2016 LIME (Local Interpretability
Model-Agnostic Explainability)

2017 SHAP (Shapley Additive exPlanation)
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Shapley values
Based on cooperative games for a set of players N = {1,... n},
v:2V SR
How to distribute the worth v(N)? With a value function ¢(v) : N — R

Shapley wanted ¢ : Games(N) — RN such that (with ¢;(v) := ¢(v)(i))

o > icnwilv) = v(N) (efficiency),

o if v(SU{i})=v(SU{j}) forall ST N\ {i,j}, then p;(v) = ¢;(v)
(symmetry),

o if v(S)=v(SU{i}) for every S C N\ {i}, then ¢i(v) =0 (null),

o p(u+v)=(u)+ p(v) for any u,v € Games(N) (additivity).

Theorem (Shapley'53)

There is only one such function.
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Denote the permutations of the set N by (/) and define
N = {j € N | 7() < 7(i).)
The only solution is

V)= 3 (NF UIY) — v(ND))

" wen(N)

What game do we play? Just at a point:
vx(S) = E[f(xs)],

0 E[f(2)] Elf(2) | 21 = =] f(z) Elf(2) | 212 = 212] E[f(2) | 21,25 = 71,23]
L l L
—;T’ @3

o) @2

b4
Additivity can be replaced by strong monotonicity (Young'85),
v(SU{i}) = v(S) > w(SU{i}) — w(S) for all S = pi(v) > ¢i(w),

Better? Determined by the game potential (Hart,Mas-Colell’88)
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But everyone uses reinforcement learning!
That is just:
e aset S, of states
e aset A, of actions
e for each s € S and a € A, a probability distribution on § x R,
of new state and (bounded) reward.

p(s', rls, a).

PROBLEM: choose a probability distribution on A for each &
m(als),
such that if the A; follow 7
s A% RS AN Ry S ARG Sk M R, Sian

has maximum expected return (discount rate 0 < v < 1), for every s,

+o0
E (Z ~f R,-) .
i=1



Theory and opening another book
Assume S and A to be finite. Define

+oo
vr(s) =E (Z V' RSy = s) )
i=1

We aim for 7* such that, for every 7 and any s,
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Theory and opening another book
Assume S and A to be finite. Define

+oo
ve(s) =E (Z YRSy = s) .

i=1

We aim for 7* such that, for every 7 and any s,

Ve (8) > v ().

There is always at least one policy that is
better than or equal to all other policies
(page 62 of 524).

Reinforcement
Learning The existence and uniqueness of v are guar-
anteed as long as either < 1 or eventual ter-
mination is guaranteed from all states under

the policy (page 74).

-f"j';?// Essentially, only two theorems in 524 pages.
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For a mathematician
Two-line deduction: Bellman's equation.

ve(s) = S w(als) S p(s', rls, a)(r + yva(s)-
acA s',r
It is a linear system of equations that computes the values of a policy.
If the optimal policy exists, it must satisfy Bellman's optimality equation
() = max [ 37 p(s' rls, )(r + 7w (s)

acA

s’.r
For an arbitrary ‘state-value’ function f : & — R, define the operator:

(T1)(s) = gﬁgz p(s', rls,a)(r +~f(s)).

Theorem (Banach'’s fixed point theorem)

A contractive operator on a complete metric space has a fixed point,
which is unique and can be computed iteratively.




But a neural network may be able to learn the policy!

WARNING: The optimal policy is actually deterministic (go to
highest-valued state) but 7 allows us to explore options.



But a neural network may be able to learn the policy!

WARNING: The optimal policy is actually deterministic (go to
highest-valued state) but 7 allows us to explore options.

So we also want to learn a function
S — Dist(A)

YOU: | told you that the probabilistic approach is better!



But a neural network may be able to learn the policy!

WARNING: The optimal policy is actually deterministic (go to
highest-valued state) but 7 allows us to explore options.

So we also want to learn a function
S — Dist(A)
YOU: | told you that the probabilistic approach is better!
TM: Regard Dist(A) as almost R4 via softmax : R™ — Dist({1,..., m})

1
D e

and | can understand reinforcement learning as supervised learning where
the samples are evolving while playing the game.

softmax(yi,...,¥Ym) = (e,...,em).



But a neural network may be able to learn the policy!

WARNING: The optimal policy is actually deterministic (go to
highest-valued state) but 7 allows us to explore options.

So we also want to learn a function
S — Dist(A)
YOU: | told you that the probabilistic approach is better!
TM: Regard Dist(A) as almost R4 via softmax : R™ — Dist({1,..., m})

1
D e

and | can understand reinforcement learning as supervised learning where
the samples are evolving while playing the game.

softmax(yi,...,¥Ym) = (e,...,em).

YOU: you'd better use cross-entropy here...
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%((1 - p)2 +(0—-(1- p))z) =(1- P)2~
Instead do

—1-logp —0log(l— p) = —log p.
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—1-logp —0log(l— p) = —log p.

This way we punish confidently wrong predictions:
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Cross-entropy << 101
Say (1,0) € Dist(Y) is approximated by (p,1 — p).
The Mean-Squared Error gives
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Instead do
—1-logp —0log(l— p) = —log p.
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Simplifications and toy models help us understand each other.
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Thank you for your attention!

MINISTERIO

DE CIENCIA

EINNOVACION
i

RYC2020-030114-I
PID2022-137667NA-100
CNS2024-154695

1

Slides may become available at
mat.uab.cat/~rubio


mat.uab.cat/~rubio

