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The Cantor set before Cantor

Abstract

This paper explores the historical and mathematical developments of the Cantor set,
focusing on the contributions of H.J.S. Smith, Vito Volterra, and Georg Cantor. Smith
independently discovered the Darboux integral before Darboux and constructed nowhere
dense sets which anticipate the Cantor set. Volterra, unaware of Smith’s work, created
a similar set while investigating functions with non-integrable derivatives. Later, when
Cantor was working on set theory, he rediscovered the classical ternary Cantor set. This
paper clarifies and extends details in their original works and introduces a method to
construct sets with nonnatural Cantor-Bendixson ranks that, to the best of our knowl-
edge, has not been previously documented in any mathematical literature. By connecting
historical context with rigorous proofs, this study highlights the independent evolution
of concepts in analysis and set theory and how they converged to the Cantor set.

Keywords: Cantor set, integration, history, set derivation, measure theory.
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The Cantor set before Cantor

1 Introduction and background

The concept of infinity has puzzled both mathematicians and philosophers for centuries.
Ever since Zeno’s paradox during the Greek time, the study of objects that are infinitely
small or infinitely large and their behaviors has played an important role in the develop-
ment of mathematics. One of the most significant advances in this area is Cantor’s set
theory, which is considered the cornerstone of modern mathematics. His studies led to
numerous counterintuitive results, challenging and even turning traditional mathemati-
cal beliefs. These discoveries include the famous Cantor set, a mathematical object with
many pathological properties. Surprisingly, this set wasn’t solely created by the hand
of Georg Cantor alone. H.J.S. Smith and Vito Volterra independently found an early
version of the Cantor set, but their work had little to no impact during their time.

This paper has three main goals:

1. To trace different origins of the Cantor set and explain the mathematical needs that
motivated each construction.

2. To provide a detailed reconstruction of Smith’s and Volterra’s work, highlighting
their anticipation of Cantor’s ideas.

3. To extend Cantor’s theory of set derivation by giving a novel method for construct-
ing sets with nonnatural Cantor-Bendixson rank.

In terms of methodology, this paper combines a historical analysis with a modern mathe-
matical exposition. Working from original sources such as Smith’s paper on the Riemann
integral and Volterra’s article on pathological functions, we not only clarify their original
arguments but also present them with contemporary mathematical rigor. This dual ap-
proach allows us to properly contextualize their discoveries while making them accessible
to modern readers. Key concepts like nowhere dense sets, set derivation, and perfect sets
are introduced along with key theorems such as the characterization theorem of Riemann
integrability and the Cantor-Bendixson theorem.

Beyond historical analysis, this work makes two original advances. One the one hand,
we give complete proofs for several important but often omitted details in classical pa-
pers, such as Riemann’s claim about his everywhere discontinuous yet integrable function
f(x) = ∑∞

n=1
Exc(nx)

n2 . On the other hand, and most significantly, we introduce an original
constructive method for generating sets with nonnatural Cantor-Bendixson rank, giving
an explicit example of what Cantor treated only abstractly.
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The Cantor set before Cantor

2 Smith’s path to the Cantor set

2.1 The integration problem

In the early 1800s, mathematicians discovered that functions could be decomposed into
simpler, more manageable components that, when combined, could reconstruct the initial
function. J. Fourier was the first to publish papers on this idea, which is why we now refer
to these decompositions as the “Fourier” series. His work was initially aimed at solving
partial differential equations. However, it opened a new field in mathematics, which we
call functional analysis.

There were many active analysis topics in the 19th century, like the definition of real
numbers or the ε − δ language for limits. One of the central problems of the early 19th
century was the convergence of the Fourier series.

Even today, different convergence problems in the space L1 still remain as a popular
topic. This space includes many pathological functions. For example, Kolmogorov found
an integrable function whose Fourier series is divergent almost everywhere [Ul’83].

The PDE that Fourier was trying to solve in his first paper on the topic was the 1-
dimensional heat equation. In one of these papers, he claimed that all functions, given
their explicit expression f(x) (original text: graphisch), can be represented as an infinite
sum of trigonometric functions. He asserted that these formulas could decompose the
function:

f(x) = a0

2 +
∞∑

n=1
(an cos(nx) + bn sin(nx)) .

where:
an = 1

π

∫ 2π

0
f(x) cos(nx) dx, n ≥ 1.

bn = 1
π

∫ 2π

0
f(x) sin(nx) dx, n ≥ 1.

However, many mathematicians found counterexample functions where this series does
not converge pointwise on some subset. Meaning that Fourier’s initial claim was incor-
rect. To have convergence, the function must follow some stronger conditions. Several
well-known mathematicians began investigating convergence conditions, including P.G.L.
Dirichlet, A.L. Cauchy, and N.H. Abel. Ultimately, Dirichlet (1805-1859) established the
first convergence theorem.

Theorem 2.1 ([Dir08] [Rie68]). Given a 2π-periodic real function f(x). If f(x) is:

1. Integrable over [0, 2π].

2. f(x) has a finite number of local extrema over [0, 2π].
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The Cantor set before Cantor 2.1 The integration problem

3. f(x) has a finite number of discontinuities, and they are all jump discontinuities.

If we denote f(x+), f(x−) as right and left side limits, respectively. Then the Fourier
series Sn(f, x) converges to:

lim
n→∞

Sn(f, x) =

f(x), if f(x) is continuous at x,

f(x+)+f(x−)
2 , if f(x) has a jump discontinuity at x.

Even though Dirichlet provided a sufficient condition for convergence, it revealed a deeper
issue: what does it mean to be integrable? Computing Fourier coefficients depends on
evaluating some integrals, and the convergence theorem also relies on integrability. How-
ever, during Fourier’s time, they lacked a clear and formal integration theory. Integration
was often carried out by intuition or geometric reasoning, leaving room for ambiguity, es-
pecially when dealing with irregular functions. This conceptual gap became increasingly
evident as mathematicians encountered functions whose Fourier series show unexpected
behavior, prompting a more rigorous examination of what it means for a function to be
integrable.

Recognizing the lack of a rigorous definition for integrals, G.F.B. Riemann (1822-1866)
tried to develop a systematic integration theory. In 1854, he introduced what is now
known as the Riemann integral [Rie68].

Its core idea is to divide the integration interval, say [a, b], into smaller ones, obtaining a
partition of the interval through separation nodes.

P = {xi ∈ [a, b] : a = x0 < x1 < x2 < · · · < xn = b}

∆xi = xi − xi−1, for i = 1, 2, . . . , n.

Then for each subinterval ∆xi we pick any point x∗
i ∈ ∆xi. Then sum up the product of

subinterval lengths with their corresponding f(x∗
i ). The resulting expression is known as

the Riemann Sum. In his paper, Riemann used x∗
i = xi + p

q
∆xi with p

q
∈ Q ∩ [0, 1].

SP =
n∑

i=1
f(x∗

i )∆xi.

Riemann defines that the function f(x) is integrable over [a, b] if and only if the limit of
its Riemann sum exists when the partitions get finer and finer. If the limit exists and is
finite, then we say it is the integral of f over [a, b]:∫ b

a
f(x) dx = lim

∥∆x∥→0

n∑
i=1

f(xi)∆xi, where ∥∆x∥ = max
1≤i≤n

∆xi.

This theory is considered the first commonly accepted integration framework, and it
has broadened mathematicians’ view on integrable functions. To show the generality
of his theory, Riemann gave an example of an integrable function with infinitely many
discontinuities with the following example.
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The Cantor set before Cantor very discontinuous but Riemann integrable function

2.2 An integrable function with infinitely many discontinuities

In [Rie68], Riemann sketched the proof of a Riemann integrable function with infinitely
many discontinuities in his work on integration theory. His argument had many gaps
in the rigorous justification of its properties. In this section, we provide a complete
and detailed proof of the function’s integrability and discontinuity region, which fills the
technical gaps left in Riemann’s original argument.

We start by considering the excess function:

Definition 2.2 ([Rie68]). The excess function Exc : R → R is defined as:

Exc(x) := x − round(x),

where round(x) denotes the nearest integer to x, with round(x) := 0 if x ∈ Z+ + 1
2 .

Using the excess function, Riemann defined the following series:

f(x) :=
∞∑

n=1

Exc(nx)
n2 =

∞∑
n=1

fn(x), where fn(x) := Exc(nx)
n2 .

Since |Exc(nx)| < 1
2 for all x ∈ R and n ∈ N, we have |fn(x)| < 1

2n2 .

Therefore, the series is absolutely convergent and uniformly by the Weierstrass M test:
∞∑

n=1

∣∣∣∣fn(x)
∣∣∣∣ <

∞∑
n=1

1
2n2 = 1

2

∞∑
n=1

1
n2 = π2

12 .

To study the continuity, we split the series into two parts: the first N terms with a
convenient N and the terms from N + 1 to infinity, called the tail.

Fix a point x0 ∈ R and let ε0 > 0, then there is a natural number N such that:∣∣∣∣∣∣
∞∑

n=N ′+1
fn(x0)

∣∣∣∣∣∣ ≤
∞∑

n=N ′+1

1/2
n2 < ε0 ∀N ′ ≥ N.

In this way, we can dismiss the tail by taking ε0 → 0.

Lemma 2.3. The function f is continuous on the set A = {x ∈ R | nx /∈ N+ 1
2 , ∀n ∈ Z+}.

Proof. If x0 ∈ A, then for every n ∈ Z+, the corresponding term fn(x) would be con-
tinuous at x0 and, in particular, the first N terms have their own continuity subinter-
val around x0. In other words, for all 1 ≤ n ≤ N , there exists hn > 0 such that if
x ∈ (x0 − hn, x0 + hn), then | Exc(nx) − Exc(nx0)| < ε0. The finite intersection of these
open subsets gives an open subinterval IN where Exc(nx) is continuous for all n ≤ N :

IN =
⋂

1≤n≤N

(x0 − hn, x0 + hn)
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The Cantor set before Cantor very discontinuous but Riemann integrable function

Take x ∈ IN , we have:

|f(x) − f(x0)| <
∑

1≤n≤N

(
| Exc(nx) − Exc(nx0)|

n2

)
+ 2ε0

< ε0

 ∑
1≤n≤N

1
n2

+ 2ε0 <
(π2 + 12)ε0

6 .

Since this inequality holds for all ε0 > 0, f(x) must be continuous at x0. Which concludes
that f(x) is continuous on the set A.

On the other hand, we claim that f is discontinuous on Ac, the complement of A. The
following lemma allows us to express the elements of Ac in a simple form.

Lemma 2.4. We have Ac = { p
2q

∈ Q : p is odd, 2q relatively prime to p}.

Proof. ⊆) If x /∈ A, then there must exist a pair of natural numbers m, k such that
mx = k + 1

2 . Equivalently, x = 2k+1
2m

. The numerator 2k + 1 is odd, but the denominator
2m is not necessarily coprime to 2k + 1. If the gcd(2k + 1, 2m) = d ̸= 1, then 2k + 1 =
dp and 2m = d(2q), which yields x = p/2q. Since p is a divisor of the odd number
(2k + 1), p is also odd, and by construction, 2q is relatively prime to p. In the case that
gcd(2k + 1, 2m) = d = 1, 2m is already coprime to 2k + 1.

⊇) If x = p
2q

, where p is an odd integer and 2q is coprime to p, then

mx = mp

2q
= k + 1/2 ⇐⇒ mp

q
= 2k + 1 an odd integer.

Since p and 2q are coprime, p must also be coprime with q. But mp
q

∈ Z, so q divides m,
say m = qj with j ∈ Z+. On the other hand, 2k + 1 = mp

q
= jp is also odd; therefore, j

must also be odd because p is odd. In short, given x = p
2q

∈ Ac:

mx = mp

2q
∈ Z+ + 1

2 ⇔ m = qj where j is an odd integer.

Now we prove that the side limits of f exist for x ∈ Ac. For all N ∈ Z+:∣∣∣∣∣ lim
x→x±

0

N∑
n=1

fn(x)
∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=1
lim

x→x±
0

fn(x)
∣∣∣∣∣ = TN <

N∑
n=1

1/2
n2 .

Therefore, ∑N
n=1 fn(x) x→x0−−−→ TN ∈ R and ∑N

n=1 fn(x) N→∞−−−→ f(x) uniformly on R. By the
Moore-Osgood theorem (theorem A.7), the side limits of f exist and:

lim
x→x±

0

lim
N→∞

N∑
n=1

fn(x) = lim
N→∞

lim
x→x±

0

N∑
n=1

fn(x) ∈ R.

Finally, we can show that f is discontinuous on Ac
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The Cantor set before Cantor 2.3 Integrability and nowhere dense sets

Proposition 2.5. The function f is discontinuous on the set Ac.

Proof. Let x0 = p/2q ∈ Ac, then:

lim
x→x±

0

f(x) − f(x0) =
( ∞∑

n=1
lim

x→x±
0

Exc(nx)
n2

)
−

∞∑
n=1

Exc(nx0)
n2

=
 ∑

n∈N
nx0∈N+1/2

∓1/2
n2 +

∑
n∈N

nx0 /∈N+1/2

Exc(nx0)
n2

−
∞∑

n=1

Exc(nx0)
n2

=
 ∑

n∈N
nx0∈N+1/2

∓ 1/2 − 0
n2 +

∑
n∈N

nx0 /∈N+1/2

Exc(nx0) − Exc(nx0)
n2


=

∑
n∈N

nx0∈N+1/2

∓ 1
2n2 .

We have proved in lemma 2.4 that nx ∈ (Z+ + 1/2) if and only if n = qj where j is an
odd integer. Therefore:

lim
x→x±

0

f(x) − f(x0) =
∑
n∈N

nx0∈N+1/2

∓ 1
2n2 =

∑
odd j

∓1
2(qj)2 = ∓1

2q2

∑
odd j

1
j2

 = ∓π2

16q2 .

The side limits of f do not match on Ac, meaning that f is discontinuous on Ac.

This lemma proves that f has infinitely many discontinuities. On the other hand, for
any given interval [a, b] and n ∈ Z+, fn has only finitely many discontinuities, so the
partial sum ∑N

n=1 fn is Riemann integrable. Combined with the uniform convergence∑N
n=1 fn

N−→ f , we obtain the integrability of f .

Therefore, f is a Riemann integrable function with infinitely many discontinuities.

2.3 Integrability and nowhere dense sets

Riemann could not finish this theory during his lifetime. It was not until 1868, two years
after his death, that his colleague Richard Dedekind recognized the importance and pub-
lished Riemann’s manuscript. His incomplete work led to much confusion and incorrect
results based on his definition. H.J.S. Smith (1826-1883) criticized this misinterpretation
trend and made several clarifications for Riemann’s integral.

In his 1868 paper [Smi74], Smith discussed the core idea of the Riemann integral. He
addressed a common misconception: that the convergence of Riemann sums along a
particular family of partitions is sufficient to ensure Riemann integrability. However, this
is not generally true. For a function to be Riemann integrable, convergence must occur
over all partitions with sufficiently small diameters, not just over a certain subset. This
idea led him to discover the essence of the Darboux integral:

6



The Cantor set before Cantor 2.3 Integrability and nowhere dense sets

... the difference Θ between the greatest and the least values that S 1 can
acquire for a given norm ... that S converges to a definite limit, when d is
diminished without limit, we must be sure that Θ diminishes without limit.

Figure 1: H.J.S. Smith

In the same work, Smith also established that for any
given diameter, the upper sum is always bigger than
the lower sum, unless the function is a step function
and in which case these two sums are equal. On the
other hand, He also noticed that as the diameter gets
smaller, the upper sum decreases and the lower sum in-
creases. Since they are monotone and bounded by each
other, they must converge somewhere when the diam-
eter approaches zero. This is nearly everything about
the Darboux integrability. Since Darboux’s integral was
published in 1875, and Smith is unlikely to have ex-
changed letters with Darboux, Smith likely discovered
the Darboux integral independently before its publica-

tion.

Having clarified the integration problem, Smith turned his focus to exploring the bound-
ary of Riemann integrability. Smith aimed to find a Riemann integrable function, but
as discontinuous as possible. He followed Dr. H. Hankel’s idea that Riemann integra-
bility might be connected to what Hankel referred to as “loose order set”. In modern
mathematics, it is called nowhere dense.

Definition 2.6. Let X be a topological space. A subset N ⊆ X is said to be nowhere
dense in X if and only if for every nonempty open subset U , there is another nonempty
open subset V ⊆ U such that V ∩ N = ∅, i.e. N is not dense in any open subset of X.

Example 2.7. Z is nowhere dense in R with the standard topology: Given a non
empty open set U ⊆ R such that U ∩ Z ̸= ∅, and p ∈ U ∩ Z. Take I = (a, b) ⊂ U , an
open neighborhood of p in U with interval length b − a < 1. Then the only integer that
this interval contains is p. We can take V = (a, b) \ {p}.

Example 2.8. A convergent sequence is nowhere dense in a metric space: Let
us say that xn → x in a metric space M . Take an open set U , then U ∖ ({xn}n ∪{x}) is a
subset that does not contain any point of the sequence. It is open, since we are removing
a closed set ({xn}n ∪ {x}).

Smith observed that a function with discontinuities over a dense subset of its domain
cannot be Riemann integrable. Thus, Riemann integrability requires the set of discon-
tinuities to be at most nowhere-dense. To study the relation between integrability and

1S represents the Riemann sum
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The Cantor set before Cantor 2.3 Integrability and nowhere dense sets

the nowhere-dense property, he gave a relatively general method to construct a nowhere
dense sets as follows:

“Let m be any given integral number greater than 2. Divide the interval from
0 to 1 into m equal parts, and exempt the last segment from any subsequent
division. Divide each of the remaining m − 1 segments into m equal parts,
and exempt the last segment of each from any subsequent division. If this
operation is continued ad infinitum, we shall obtain an infinite number of
points of division P upon the line from 0 to 1.”

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Figure 2: Construction of Smith’s set with m = 4 over 4 iterations.

Proposition 2.9. The Smith’s set Sm obtained from the previous construction is nowhere
dense.

Proof. Given an open interval J = (a, b), we aim to find an open subinterval J ′ ⊆ J such
that there is no element of Sm inside J ′.

Notice that we can interpret the Smith set in the following way: For stage k, we first divide
the entire unit interval into mk equal subintervals. Then, we remove those subintervals
that were the last part of some iteration before, i.e, subintervals of the form:(

nmk−j + (m − 1)
mk

,
nmk−j + m

mk

)
, 1 ≤ j ≤ k, 0 ≤ n ≤ mj−1 (1)

Knowing this, we may choose a big integer k such that

1
mk

<
b − a

2 .

This ensures that at stage k, the interval J contains at least one subinterval from the
family (1). Let us say I =

(
M
mk , M+1

mk

)
⊆ J for an integer M .

For our subinterval I, exactly one of these two scenarios is true:

8



The Cantor set before Cantor 2.3 Integrability and nowhere dense sets

• The subinterval I has already been excluded in a previous iteration, so it is sufficient
to take J ′ = J .

• I is not excluded for the first k stages, but the last 1/m part of it will be removed
for the next stage. Thus, we can take J ′ to be the removing part, that is

J ′ =
(

nm + (m − 1)
mk+1 ,

(n + 1)m
mk+1

)

This construction of the Smith set can be generalized. For instance, instead of removing
the last subintervals, one may remove a subinterval of the same length anywhere inside
the interval. It is also possible to remove various subintervals at the same time (removing
at most m − 2) or even eliminate a different proportion each time. The proof of the
nowhere dense property of these variations can be found, for instance, in [Val13].

As mentioned, Hankel conjectured in 1870 that integrability is characterized by having
nowhere dense discontinuity [Smi74, Han82]. According to the Lebesgue criterion for
Riemann integrability, a bounded function f on a closed interval is Riemann integrable
if and only if it is continuous almost everywhere.

Theorem 2.10. (Lebesgue criterion for Riemann integrability [Leb02]) Let f : [a, b] → R
be a bounded, real-valued function. Then:

f is Riemann integrable ⇐⇒ f is continuous almost everywhere.

This result is now well-known, but it was not formally proven until Lebesgue’s work in
1902. Earlier, mathematicians had partial versions of the criteria for Riemann integra-
bility. For instance, Riemann himself proposed an early form of the condition, though
his version lacked the rigor and detail that Lebesgue later provided. We will discuss and
prove this integrability condition in detail later through Volterra’s proof (theorem 3.3).

Using this condition, Smith noticed that even if a function has discontinuities on a
nowhere dense set, it might still not be Riemann integrable. In [Smi74], he constructed
examples of nowhere dense sets with positive measure. By applying Riemann’s condition,
he proved that any function discontinuous on such a set cannot be Riemann integrable.

The following is the set that Smith had constructed:

Definition 2.11. (Generalized Smith Set Im) Let m ≥ 3 be a fixed integer. We start
from the closed unit interval and denote it as Im,0 = [0, 1]. We divide this interval into
m1 = m subintervals of equal length and remove the last segment: (m−1

m
, 1). Call the

remaining set Im,1, now for further stages k ≥ 2 divide each of the remaining subintervals

9



The Cantor set before Cantor 2.3 Integrability and nowhere dense sets

into mk equal length parts and then remove the last segment to obtain Im,k. The limit
set is the generalized Smith set:

Im =
∞⋂

k=0
Im,k

Removing open or closed subintervals at each step does not affect the nowhere dense
property. Here, we take open subintervals because it makes calculations easier.

Proposition 2.12. Let µ be the Lebesgue measure, m ≥ 3. Then Im is measurable and
µ(Im) > 0.

Proof. First, Im is closed because it is the countable intersection of closed sets Im,k, and in
particular, this makes Im measurable. Secondly, we can apply the monotone convergence
theorem (theorem A.6) to get µ(Im) = limk→∞ µ(Im,k).

At stage 0, nothing is being eliminated yet. At stage 1 we have removed so far one
subinterval of length 1

m
, and then at stage 2 we remove (m − 1) segments of length 1

m3 ,
at stage 3 there is (m − 1)(m2 − 1) parts of length 1

m6 , inductively at stage k we remove∏k−1
i=1 (mi − 1) intervals of length 1

mΣk
where Σk is the sum of first k positive integers.

Thus, we can conclude:

µ(Im,k) = 1 −

 1
m

+
k∑

j=2

∏j−1
i=1 (mi − 1)

mΣj

 ≥ 1 −

 1
m

+
k∑

j=2

∏j−1
i=1 mi

mΣj


= 1 −

 1
m

+
k∑

j=2

mΣj−1

mΣj

 = 1 −

 1
m

+
k∑

j=2

1
mj


= 1 −

k∑
j=1

( 1
m

)j

= 1 −
1 − 1

mk+1

m − 1
k→∞−−−→ 1 − 1

m − 1 = m − 2
m − 1 > 0.

By the Lebesgue criteria of Riemann integrability, a function that is discontinuous on a
generalized Smith set is not Riemann integrable because it is discontinuous on a positive
measure set.

So far, we have seen that starting with the closed unit interval and inductively removing
part of it can give a big family of nowhere dense sets. This method, which is likely the
origin of Cantor set’s constructions, illustrates how topologically small sets can also be
large in terms of measure. As shown in the last proposition, a nowhere dense set can have
positive measure, meaning a set that is porous everywhere can occupy space. This subtle
distinction between topological sparseness and measure size represents the conceptual
breakthrough in integration theory. It also anticipates the idea of the Lebesgue integral
and modern measure theory.
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The Cantor set before Cantor 2.3 Integrability and nowhere dense sets

We now conclude this historical path to the Cantor set by introducing its first and most
common definition. The construction of the Cantor set C as a slightly modified Smith
set with m = 3 2.11. Instead of removing the last segment of a subinterval, the Cantor
set removes the middle segment in every iteration.

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 3: The firsts stages of Cantor set construction: Im,k for k ≤ 5

Definition 2.13 (Cantor set C). Let m=3 and D0 = [0, 1]. We delete the open middle
third open to gain D1 = [0, 1/3] ∪ [2/3, 1] and then inductively remove the open middle
third of every remaining subintervals to get Dk, k ≥ 2. This process can be written in
set operations as:

Dk := Dk−1

3 ∪ (2
3 + Dk−1

3 ).

Then we can define the Cantor set as the limit of this nested sequence of sets.

C :=
∞⋂

k=0
Dk.

The definition through set operation gives another way to define C. It is the invariant set
under the iterated function system (IFS) when you substitute the terms Dk−1 for x. We
will not delve into this approach, more details can be found in [Val13].

A final observation is that C is compact. This is because Dk is closed and bounded for
all k, and applying the Heine-Borel theorem (theorem A.2) gives the compactness of C.

11
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3 The Volterra function and the Cantor set

3.1 The fluctuation and continuity of a function

Riemann’s formulation of the integral marked a turning point in the history of analysis.
For the first time, studying integrals within a rigorous framework became possible. From
the era of Newton and Leibniz, mathematicians knew that integration and differentiation
are inverse operations, which is known as the fundamental theorem of calculus. However,
there was no formal proof since they did not have a commonly accepted integration
theory.

Figure 4: Vito Volterra

V. Volterra (1860-1940), known for his studies in dy-
namical systems, also explored the limits of Riemann’s
integration theory. His primary interest was the rela-
tionship between differentiation and integration under
Riemann’s framework. As noted earlier, the fundamen-
tal theorem of calculus states that any continuous func-
tion f over a closed interval [a, b] possesses a uniformly
continuous antiderivative F =

∫ x
a fdx for x ∈ [a, b]. This

means that if you integrate and then differentiate a con-
tinuous function, you get the initial function. A natural
question to ask is: what happens if we first differenti-
ate a function and then integrate the result? Do these
operations cancel each other out, recovering the original
function up to an additive constant?

Today, we know that Riemann integrability is characterized by Lebesgue’s criterion, which
links the Riemann integrability to the set of discontinuities of the function. One would
think that this is something discovered after the Lebesgue integral, which is around the
early 1900s. However, Riemann explicitly wrote a similar integrability condition in his
paper [Rie68] using the concept of fluctuation.

Definition 3.1. Let f : [a, b] → R be a real-valued function and a subinterval [c, d] ⊆
[a, b]. The fluctuation of f in [c, d] is defined as:

Wf [c, d] = sup{ |f(x) − f(x′)| : x, x′ ∈ [c, d]}.

We also define the fluctuation at a point x ∈ (a, b) as

ωf (x) = lim
h→0+

Wf [x − h, x + h].

The fluctuation of points in the boundary is defined analogously using their corresponding
side limit.

12



The Cantor set before Cantor 3.1 The fluctuation and continuity of a function

Lemma 3.2. Let f : [a, b] → R be a bounded function. Then the continuity of a point
x ∈ [a, b] is characterized by its fluctuation:

f is continuous at x if and only if ωf (x) = 0.

Proof. ⇒) Let x ∈ [a, b]. The function f is continuous at x if and only if for any given
ε > 0, there is δ > 0 such that for all y ∈ (x−δ, x+δ)∩ [a, b], we have |f(x)−f(y)| < ε/2.
Then:

sup
y,z∈(x−δ,x+δ)∩[a,b]

|f(y) − f(z)| ≤ sup
y,z∈(x−δ,x+δ)∩[a,b]

(|f(y) − f(x)| + |f(x) − f(z)|) ≤ ε.

Hence, ωf (x) = 0.

⇐) Let x with ωf (x) = 0. For any given ε > 0, by definition, there is a h > 0 such that
supy,z∈(x−h,x+h)∩[a,b] |f(y) − f(z)| < ε. Choose δ = h, for any y ∈ (x − δ, x + δ) ∩ [a, b], we
have:

|f(x) − f(y)| < sup
t,s∈(x−h,x+h)∩[a,b]

|f(t) − f(s)| < ε.

Therefore, f is continuous at x.

Unfortunately, the notion of fluctuation can not be used to characterize discontinuity in
a given interval. The condition Wf [a, b] > 0 is necessary for having a discontinuity in an
interval [a, b], but not a sufficient condition.

Theorem 3.3 ([Rie68] [Vol81]). Let f : [a, b] → R be a bounded function. The function
f is Riemann integrable on [a, b] if and only for all ε, σ > 0, there exists δ > 0 such that
for any partition P = (a = x0 < x1 < ... < xn = b) with norm |P | < δ:

s(σ, P ) =
∑

0≤k≤n−1
Wf [xk,xk+1]>σ

xk+1 − xk < ϵ.

Proof. For simplicity, we use the Darboux integral instead of the Riemann integral, since
they are equivalent. We denote the upper sum and the lower sum of the function f for a
partition P as U(f, P ) and L(f, P ), respectively.

Let f be a bounded function over [a, b]. Note that:

s(σ, P ) = The total length of those subintervals of P with fluctuation bigger than σ .

We can classify the subintervals of any given partition by how big their fluctuation is.
The first class is formed by those subintervals with fluctuation bigger than σ, and the
intervals with fluctuation smaller than or equal to σ is called the second class.

13



The Cantor set before Cantor 3.2 A construction of non integrable derivative

⇒) By the definition of Darboux integrability, for every σ, ε > 0, there exists a δ > 0
such that any partition P with |P | < δ: U(f, P ) − L(f, P ) < εσ. We have

s(σ, P )σ ≤
∑

0≤k≤n−1
Wf [xk,xk+1]>σ

(xk+1 − xk)Wf [xk, xk+1]

≤
n−1∑
k=0

(xk+1 − xk)Wf [xk, xk+1]

= U(f, P ) − L(f, P ) < εσ.

Meaning that s(σ, P ) < ε.

⇐) Given ε > 0, and let σ = ε
2(b−a) > 0. By the hypothesis there exists δ > 0 such that

for every partition P = {a = x0, x1, ..., xn = b} such that |P | < δ, we have s(σ, P ) <

ε/2Wf [a, b], here we have assumed that f is not constant, since it is a trivial case. We
bound the sum of different classes individually. The first class has total length s(σ, P ),
and the fluctuation of any subinterval can be bounded by the global fluctuation Wf [a, b].
On the other hand, the second class, those subintervals with fluctuation smaller than or
equal to σ, has length (b − a − s(σ, P ) and the fluctuation can be bounded by σ. By
combining these bounds, we get:

U(f, P ) − L(f, P ) ≤ s(σ, P )Wf [a, b] + (b − a − s(σ, P ))σ < ε/2 + ε/2 = ε.

This theorem is a primitive version of Lebesgue’s criterion for the Riemann integral. The
condition that the total length of subintervals with large fluctuation is small corresponds
to requiring that the set of discontinuities has zero Lebesgue outer measure. However,
proving the fluctuation condition is technically difficult, so for practical purposes, we will
be using the Lebesgue criterion for simplicity.

3.2 The construction of a function with non-integrable deriva-
tive

Volterra’s goal was to construct a differentiable function whose derivative is not Rie-
mann integrable. According to Lebesgue’s criteria, we know it can be done by finding a
differentiable function such that its derivative is discontinuous at a positive measure set.

It is not hard to find a function that is differentiable everywhere, and its derivative
is discontinuous at one point. A classical example is the function x2sin(1/x). It is
continuous everywhere but not defined at x = 0. However, its side limits match, so we
can put the limit value when x = 0 to get the continuity.

f(x) =

x2sin(1/x) x ̸= 0,

0 x = 0.

14



The Cantor set before Cantor 3.2 A construction of non integrable derivative

The derivative of this function can be calculated through the chain rule at every point
but x = 0. So we plug in the definition to check the differentiability at zero:

f ′(0) = lim
h→0

f(0 + h) − f(0)
h

= lim
h→0

h2sin(1/h) − 0
h

= lim
h→0

hsin(1/h) = 0.

Thus, we have that the function f is differentiable everywhere and f ′ can be expressed
explicitly by the following piecewise function:

f ′(x) =

2x sin
(

1
x

)
− cos

(
1
x

)
x ̸= 0,

0 x = 0.

On the other hand, if we calculate the fluctuation of f ′ at 0:

ωf ′(0) = lim
h→0+

sup { |f ′(s) − f ′(t)| : s, t ∈ [−h, h] }

= lim
h→0+

sup
{ ∣∣∣cos

(
1
s

)
− cos

(
1
t

)∣∣∣ : s, t ∈ [−h, h]
}

= 2.

By the lemma 3.2, f ′ is discontinuous at the origin.

Figure 5: Graph of f(x) = x2sin(1/x) near the origin

Now the challenge is whether we can extend or not this behaviour to a positive measure
set. Volterra’s approach was to reproduce this discontinuous function on a specially
constructed set, now known as the Volterra set V . It is a slight modification of the
generalized Smith set with parameter m = 4. However, he never mentioned Smith’s article
in his paper [Vol81]. This is a sign that Volterra might have independently rediscovered
a Cantor set-like construction from a new perspective.

Volterra’s set V is defined iteratively and based on interval removal and subdivision in
the same style as the generalized Smith set.

Start with the closed unit interval [0, 1]. Remove 1/m = 1/4 portion of the rightmost
interval (0+3(1−0)/4, 1] = (3/4, 1]. Then, instead of splitting the remaining interval into

15



The Cantor set before Cantor 3.2 A construction of non integrable derivative

m − 1 = 3 equal parts, you split it into a countable disjoint union of intervals with length
smaller than 1/4. Furthermore, these intervals must accumulate at the left endpoint. This
process is equivalent to taking a partition of the interval through a decreasing sequence
{xn}n≥1 ⊂ [0, 1] such that:

1. xn → 0 as n → ∞

2. x1 − x2 = 1
4

3. xn − xn+1 <
1
4 for all n ≥ 2.

Call the remaining points V1 = [0, 3/4], where there is now the sequence: {xn}n≥2 ⊂ V1.
Every two consecutive numbers of this sequence define an interval In = (xn+1, xn). We
repeat the elimination and subdivision process inductively on each of these subintervals.
For every interval In, remove its rightmost quarter:(

xn − 1
4(xn − xn+1), xn

)
.

What remains is: (
xn+1, xn − 1

4(xn − xn+1)
)

.

Next, within each interval (xn+1, xn), take another decreasing sequence {xn,m}m≥1 ⊂
(xn+1, xn) such that:

1. xn,m → xn+1 as m → ∞

2. xn,1 − xn,2 = (xn − xn+1)
4

3. xn,m − xn,m+1 <
(xn − xn+1)

4 for all m ≥ 2.

This process yields another sequence of subintervals, to which we apply the same con-
struction recursively, ad infinitum. If we call the remaining points in the k-th iteration
as Vk, the Volterra set generated by these sequences is V = ∩k≥1Vk.

Although Volterra sets depend heavily on the specific choice of sequences used at each
step of the construction, any choice satisfying the given conditions will still lead to the
same results that we aim to prove.

Proposition 3.4. The Volterra set V is nowhere dense, measurable, and µ(V ) > 2/3
where µ is the Lebesgue measure.

Proof. For the nowhere dense property, it can be proved analogously to the Smith set.
Given an interval with length l > 0, there exists n such that 1/4n < l/2. This means
that in iteration n, either this subinterval has already been removed, or a portion of it
will get removed in the next iteration.
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The Cantor set before Cantor 3.2 A construction of non integrable derivative

For measurability, we have that for every k ≥ 1, V c
k is a finite union of open subintervals,

therefore open. Since V = ∩k≥1Vk = (∪kV c
k )c, V is the complement of an open set, hence

closed and Lebesgue measurable.

On the other hand, Vk ⊃ Vk+1 for all k. Applying the monotone convergence theorem
(theorem A.6) for sets yields:

µ(V ) = lim
k→∞

µ(Vk) = 1 − lim
k→∞

µ(V C
k ) > 1 − (1

4 + 1
42 + 1

43 + ...) = 2/3.

As mentioned before, when setting the parameter m = 4 to the generalized Smith set,
it is related to the Volterra sets. Nevertheless, the set I4 is not a possible Volterra set
because in every iteration during the construction, the removal part is a finite union of
intervals. In contrast, the elimination part in a Volterra set is a countable union except
for the first iteration. If we enable the construction of the Volterra set to remove at most
countably many, then the Smith set would be a special case of the Volterra set.

Recall that our final goal was to mimic the discontinuous derivative of the function
f(x) = x2sin(x) on more points instead of just at the origin. We start by copying the
behaviour of x = 0 to a second point. An easy way is to take the symmetrical extension
of f(x).

Suppose we want to duplicate the discontinuity at the endpoints of an interval [a, b]. We
can copy the function f(x) for the first half of the interval, and if x ∈ [a+ b−a

2 , b], we take
its symmetrical extension. Call it ga,b : [a, b] → R.

ga,b(x) =

f(x − a) x ∈ [a, a + b−a
2 ],

f(b − (x − a)) x ∈ [a + b−a
2 , b].

However, this extension does not guarantee differentiability at the middle point, where
two parts of the function meet. To ensure smoothness, take f not until the midpoint,
but x1, the maximal value of f in [a, a + b−a

2 ]. Prolong this maximal value until reaching
the middle point, and then take the symmetrical extension.

Let x1 be the abscissa of the maximum of f in the first half interval:

x1 = max
{

x ∈
[
a, a + b − a

2

]
: f(x) ≥ f(y) ∀ y ∈

[
a, a + b − a

2

]}
.

Then define fa,b : [a, b] → R by

fa,b(x) =



f(x − a) for x ∈ [a, x1],

f(x1 − a) for x ∈ [x1, b − x1],

f(b − x) for x ∈ [b − (x1 − a), b].
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The Cantor set before Cantor 3.3 The Volterra function

This piecewise definition ensures that fa,b is differentiable on [a, b]. In the outer region
x ∈ [a, x1] ∪ [b − (x1 − a), b], fa,b is either a copy of f or its mirror version. While for the
inner region x ∈ [x1, b − x1], f is constant, so its derivative is identically zero.

The same result could be obtained using any local maxima or minima, and the result
would be as good as taking the maximal value. All these possible candidates have deriva-
tive 0 at the junction points.

Figure 6: An ilustration of the symmetrical extension of x sin(1/x).

3.3 The Volterra function

Now, consider the Volterra function defined below [PCMA15]:

F (x) =

fa,b(x), if x ∈ (a, b) for some maximal subinterval (a, b) ⊂ [0, 1] \ V,

0, if x ∈ V.

Note that [0, 1]\V = ⊔
n∈N In, where {In}n∈N is a enumeration of removed intervals during

its construction. Since this is the complement of a closed nowhere dense set, [0, 1] \ V is
open and dense.

Theorem 3.5. The Volterra function F is continuous in [0, 1] and differentiable in (0, 1).
Its derivative is bounded but not Riemann integrable.

Proof. If the function is differentiable, then it must be continuous. Thus, we can directly
prove differentiability. Given a point x ∈ (0, 1) and h ∈ R.

1. Both x and x + h are in V :

F (x + h) − F (x)
h

= 0 − 0
h

= 0.
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2. If x ∈ V and x + h ∈ [0, 1] \ V , say x + h ∈ (a, b):∣∣∣∣∣F (x + h) − F (x)
h

∣∣∣∣∣ =
∣∣∣∣∣fa,b(x + h)

h

∣∣∣∣∣ ≤
∣∣∣∣∣(x + h − a)2

x + h − a

∣∣∣∣∣ ≤ h
h→0−−→ 0.

3. If x ∈ [0, 1] \ V , by definition there exists a open interval In = (c, d) where x ∈ In.
Then, by construction, F is differentiable at x. We also have:

|F ′(x)| = |f ′
c,d(x)| ≤ sup

x∈(0,1]
2xsin(1/x) − cos(1/x) ≤ 3.

If x ∈ {a, b}, the bound is also valid, but within their corresponding side limit.

Through these inequalities, we can say that |F ′(x)| ≤ 3. The derivative of F is bounded.

On the other hand, F ′ is discontinuous on V . Given x ∈ V , if x is an endpoint of a
removed subinterval Im = (c, d), let us say that x = c. By construction:

ωF ′(x) = ωfc,d
(c) = 2.

If x is not an endpoint, then for all h > 0, (x − h, x + h) ∩ ([0, 1] ∖ V ) ̸= ∅ because
[0, 1]\V is dense. By the construction of V , there exists a maximal subinterval (ah, bh) ⊂
(x − h, x + h) ∩ ([0, 1] ∖ V ). In particular, the fluctuation at x is bigger than 2:

WF ′ [x − h, x + h] = sup { |F ′(y) − F ′(z)| : y, z ∈ [x − h, x + h] }

≥ ωF ′(xh) = 2 ∀h > 0

=⇒ lim
h→0+

WF ′ [x − h, x + h] = ωF ′(x) ≥ 2.

Therefore, every point x ∈ V has positive fluctuation. By the lemma 3.2, F ′ is discon-
tinuous on V , which has positive measure.

This construction can be generalized to any nowhere-dense set with positive measure. The
proof is analogous to the one presented above. However, replicating such construction on
the classical Cantor set does not give a function with nonintegrable derivative because
the Cantor set has measure zero.
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4 Cantor’s set derivation and the continuum

4.1 Set derivation and perfect set

Figure 7: Georg Cantor

In Section 2, we mentioned that Dirichlet provided a
sufficient condition for the Fourier series to converge.
However, other desirable properties, such as uniqueness
or uniform convergence, were also studied throughout
the 19th century.

In the late 1860s, E. Heine (1821-1881), a close colleague
of Cantor, presented to him the uniqueness problem of
trigonometric representation [BBT08]: under what con-
ditions is a trigonometric series that converges to zero
necessarily the zero series?

Cantor published his solution to the problem in 1870
with the following theorem:

Theorem 4.1 ([Can70]). Let {an}n∈N and {bn}n∈N be two sequences of complex numbers.
Consider the formal trigonometric series

f(x) :=
∑
n∈N

ancos(nx) + bnsin(nx).

If the series converges to zero for all real numbers x ∈ R, then all the coefficients are
zero:

an, bn = 0 for all n ∈ Z.

Instead of relying on a typical analytic argument, which was common at that time, Cantor
used a topological and set-theoretic method to prove this theorem. His approach focuses
on the concept of set derivation, which links the set and its accumulation points. Cantor
noticed that this method was not limited to this particular problem. It offers a topological
way to investigate the properties of sets based on how their elements accumulate. This
discovery marked a shift from the classical analysis method based on inequalities to a
more abstract, topological understanding of functions and sets.

Definition 4.2. (Accumulation points and derived set) Let X be a topological space and
N ⊆ X. Given x ∈ X, we say that x is an accumulation point of N if and only if for any
subset U ⊆ X, neighborhood of x, we have:

(U ∖ {x}) ∩ N ̸= ∅.

The set of all accumulation points of N is called the derived set of N , and it is commonly
denoted as N ′.

N ′ := {x ∈ X | x is an accumulation point of N}.
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Proposition 4.3. Let (M, d) be a metric space, N is a subset of M , and x ∈ M . Then
the following are equivalent:

1. x is an accumulation point of N .

2. There is a sequence (xi)i∈N ∈ (N ∖ {x})N that converges to x.

3. x is a nonisolated limit point of N .

Proof. (1) ⇒ (2): Suppose x is an accumulation point of N . We construct a sequence
(xk)k∈N ∈ (N ∖ {x})N in this way: for each k, consider the open ball with radius 1/k

centered at x, this is an open neighborhood of x and by definition of accumulation point
we can pick a point xk ̸= x in this ball. The resulting sequence {xk}k ≥ 1 converges to x.

(2) ⇒ (3): Suppose x is the limit of (xi)i∈N ∈ (N ∖ {x})N, it is obvious that x is a limit
point of N . Now given U , an open neighborhood of x, by definition there exists a positive
number r > 0 such that B(x, r) ⊆ U . By the definition of a convergent sequence, there
exists m ∈ N such that for all m ≥ m0 we have d(xm, x) < r; thus xm ∈ U ∀m ≥ m0.

(3) ⇒ (1): Contrapositive proof: Suppose x is not an accumulation point. This means
that there is a subset U , neighborhood of x, such that U ∩ N = {x}, thus x is isolated.

Example 4.4. Consider the set formed by the elements of the sequence (xn)n = ( 1
n
)n

n−→
0. This sequence converges to zero, hence, 0 is the only accumulation point.

Example 4.5. Consider the set A = { 1
k1

+ 1
k2

| k1, k2 ∈ Z+}. For all n ∈ Z+ we can do
1
n

+ 1
m

m→∞−−−→ 1
n
, so the set { 1

n
}n ⊆ A′. The point 0 is also an accumulation point, since

it is the limit of limit points. We claim that there are no more accumulation points of
A. Let us say that x is an accumulation point of A and 1

k1(n) + 1
k2(n)

n→∞−−−→ x, then by the
pigeonhole principle, at least one of the denominator goes to infinity as n grows. Without
loss of generality, we can assume that k2(n) n→∞−−−→ ∞. Hence, we can only choose freely
at most one of the denominators, concluding the claim.

Note that in example 4.5 the set of accumulation points A′ has its own accumulation
points:

{ 1
n

| n ∈ N} ⊆ A′ =⇒ 0 ∈ (A′)′.

We denote the A(2) as doing set derivations twice on the set A, similarly we can define A(n)

for n ∈ Z+. This allows us to iterate the set derivation infinitely many times. A natural
question would be: Will it converge in some sense? Does some property characterize
convergence?
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Example 4.6. Take an interval (a, b) where a < b. Its derived set is [a, b], and then it
remains invariant under the operation of set derivation. Similarly, having a dense subset
of an interval, its derived set would be the whole interval, and it would stay fixed under
set derivation.

Cantor noticed that there are subsets that remain fixed under set derivation and others
that change endlessly. He tried to label sets with their minimal stabilizing iteration,
which is now called their Cantor-Bendixson Rank.

Definition 4.7. (Cantor-Bendixson Rank) Let X be a topological space and N a subset
of it. We denote N (n) for the set obtained from deriving n times from the set N . Consider
the following number called the Cantor-Bendixson rank of N :

k = min{n ∈ N | N (n) = N (n+1)}.

If N ′ = N , we say that the set is perfect. If the set N does not stabilize after any finite
derivation, then we say it has nonnatural ordinal Cantor-Bendixson rank. For brevity,
we refer to this simply as the rank of the set N whenever the context makes the meaning
clear.

4.2 A method to construct sets of nonnatural ordinal rank

At first, it seems like all sets will stabilize after enough derivations. This is true only if
we extend the definition of set derivation to any ordinal number by transfinite induction.
In such case, every subset of real numbers stabilizes with some ordinal number, which is
not necessarily a natural number. However, if we only consider the natural numbers, it
is possible to find sets that never stabilize in a finite number of set derivations.

In this section, we present a novel constructive method for generating sets whose rank is
a nonnatural ordinal. Any set obtained from this method changes with each application
of the set derivation. We have searched both Google Scholar and MathSciNet using the
keyword "set derivation" and reviewed the most relevant and closely matched results.
Even though these works primarily address sets with nonnatural rank, none appear to
explicitly construct sets with nonnatural rank via a concrete iterative method. To the
best of our knowledge, this construction is original.

First of all, we can construct sets that become empty after exactly n steps for any given
positive integer n. In example 4.5, we were in some sense rescuing example 4.4 from being
eliminated by set derivation. We did it by adding a sequence that goes to zero to each
element of example 4.4. We have also seen that the resulting set becomes empty after
exactly 3 derivations. We can reproduce this technique in the example 4.5 again and get
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a set that vanishes exactly after 4 derivations. We can repeat this process to get a set
that stabilizes exactly after n set derivations for any given n ∈ N.

To make this iterative construction more general, two objects are needed: a point x ∈ R
and a sequence that converges to zero: (xn)n≥1.

We define a family of sets depending on x and the sequence (xn)n as follows:

A0 = {x},

and for each m ≥ 1,

Am = Am−1 + {xn}n≥1 =
{

x +
m∑

i=1
xni

: xni
∈ {xn}n≥1

}
. (2)

To prove that any member of this family has the rank we want, we have to first prove
this lemma that allows us to change the operation of set derivation and finite union.

Lemma 4.8. Let N ∈ Z+ and Xi ⊆ R for i = 1, 2, 3, ..., N , then ⋃N
k=1 X ′

k = (⋃N
k=1 Xk)′.

Proof. We first prove the case N = 2: X ′
1 ∪ X ′

2 = (X1 ∪ X2)′. Then apply induction.

(⊆) Let (xn)n ⊂ X1 be a convergent sequence with xn → x, then {xn}n ⊆ X1 ⊆ X1 ∪ X2,
which means x ∈ (X1 ∪ X2)′. Therefore, X ′

1 ⊆ (X1 ∪ X2)′. Analogously, X ′
2 ⊆ (X1 ∪ X2)′.

(⊇) If (zn)n ⊂ X1 ∪ X2 and zn → z, then by the pigeonhole principle (theorem A.1),
it must happen that |{zn}n ∩ X1| = ∞ or |{zn}n ∩ X2| = ∞. By symmetry, assume
|{zn}n ∩ X1| = ∞, which means that there is a subsequence (znk

)k ⊂ X1. Since every
subsequence of a convergent sequence is also convergent, we have (znk

)k
k−→ z, hence

X ′
1 ∪ X ′

2 ⊇ (X1 ∪ X2)′.

By induction, we have:
N⋃

k=1
X ′

k =
(

N⋃
k=1

Xk

)′

∀N ∈ N.

Theorem 4.9. Let Am be the family of sets defined in (2). For all m ≥ 0, Am is
countable, has rank = m + 1 and (Am)′ = ⋃m−1

i=0 Ai.

Proof. For any given m ∈ Z+:

1) Am is countable.

A1 = {x + xn}n, which is obviously countable and A′
1 = {x} = A0. Now suppose that

Am−1 is countable. Since Am = Am−1 + {xn}n, the set Am has at most the cardinality of
Am−1 × {xn}n, which is countable.

2) (Am)′ = ⋃m−1
i=0 Ai.
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The Cantor set before Cantor construction of nonnatural C.B rank set

⊆) By the pigeonhole principle, for every convergent sequence {x + ∑m
i=1 xni(j)}j ⊂ Am,

there are some indexes I ⊆ {1, 2, ...m} that go to infinity i ∈ I : ni(j) j−→ ∞. This means
that limj x + ∑m

i=1 xni(j) ∈ {x + ∑m−|I|
i=1 xki

} = Am−|I|. Since I can be any non-empty
subset of {1, 2, ..., m}, (Am)′ ⊆ A0 ∪ A1 ∪ ... ∪ Am−1.

⊇) Given a point y ∈ ⋃m−1
i=0 Ai, let us say y = x+∑k

i=1 xni
∈ Ak where k ∈ {1, 2, ..., m−1}.

Then the sequence {x +∑k
i=1 xni

+∑m
i=k+1 xj}j ∈ (Am)N and:

{x +
k∑

i=1
xni

+
m∑

i=k+1
xj}j

j→∞−−−→ x +
k∑

i=1
xni

= y.

3) Am has rank = m + 1.

For all M ≤ m, by lemma 4.8, we have:

A(M)
m = (A′

m)(M−1) =
(

m−1⋃
k=0

Ak

)(M−1)

=
(

m−1⋃
k=0

A′
k

)(M−2)

=
(

m−1⋃
k=0

k−1⋃
l=0

Al

)(M−2)

=
(

m−2⋃
k=0

Ak

)(M−2)

= ... =
(

m−M⋃
k=0

Ak

)(M−M)

=
m−M⋃
k=0

Ak.

Hence, A(M)
m = ⋃m−M

k=0 Ak = A0 = {x} ⇐⇒ M = m, meaning that the rank is exactly
m + 1.

Having defined these sets, which allow us to determine when a set vanishes Having defined
these sets, which allow us to decide when a set vanishes, what we want to do now is to
make a bigger set from these smaller ones that does not become empty after finitely many
derivations. Since all of these sets have finite rank, the easiest idea is to take their union:
A = ⋃

m≥0 Am. This ensures that A does not fade away, but it also makes it a perfect
set. Given an element a ∈ A, it must belong to Am for some natural number m, which is
a limit point of Am+1. To avoid this from happening, we can place sets of different ranks
disjointedly. This way, there will always be some sets being dropped off while deriving.
For instance:

B0 = A0,

Bm = max(Bm−1) + 1 +
⋃

k≤m

Ak for m ≥ 1,

B =
⊔

m∈N
Bm.

This is rather an abstract description, we present an example to see the philosophy.

Consider the sequence {xn}n≥1 := { 1
2n }n≥1, which converges to zero, and the largest term

is 1
2 . Let A0 = {x} = {0}, and define

Am = Am−1 +
{ 1

2n

}
n≥1

for m ≥ 1.
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We can rewrite Am in the following form:

Am =


m∑
j=1

1
2kj

: kj ∈ Z+

 .

Note that the maximal element of Am is

sup Am =
m∑

j=1

1
2 = m

2 = sup Am+1 − 1/2.

We now define B0 = A0, and for m ≥ 1, set

Bm = sup Bm−1 + 1
2 +

⋃
k≤m

Ak.

Described in words: we begin at the origin and place A0 = {0} there. Then, from the
rightmost point of the previous set (sup Bm−1), we move 1

2 to the right (+1/2) and place
the rank-(m + 1) set ⋃k≤m Ak.

In this case, we can compute an explicit formula for sup Bm:

sup Bm = sup
⋃

k≤m

Ak + 1
2 + sup Bm−1

= m

2 + 1
2 + sup Bm−1

=
(

m

2 + 1
2

)
+
(

m − 1
2 + 1

2 + sup Bm−2

)
= · · ·

=
m∑

j=1

(
j

2 + 1
2

)
+ sup B0

= 1
2

 m∑
j=1

j +
m∑

j=1
1


= 1
2

(
m(m + 1)

2 + m

)
= m(m + 1) + 2m

4 = m(m + 3)
4 .

Hence,

Bm =
⋃

k≤m

Ak +
(

sup Bm−1 + 1
2

)
=

⋃
k≤m

Ak +
(

(m − 1)(m + 2)
4 + 1

2

)
=

⋃
k≤m

Ak + cm.

The family {Bm : m ∈ N} consists of pairwise disjoint sets, each at least 1
2 apart from

the others. Furthermore, Bm has rank m + 1, so their union

B =
⊔

m∈N
Bm

never stabilizes and for every m ∈ N, we have B(m) ̸= B(m+1). In fact,

B(m) = B +
(

(m − 1)(m + 2)
4 + 1

2

)
= B + cm ∀m ≥ 2.
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The Cantor set before Cantor 4.3 The Grundlagen and the ternary Cantor set

This can be interpreted as every time we derive, we are removing the rank 0 part. For
other members ∪k≤mAk + cm, their rank gets lowered by 1, and they become ∪k≤m−1Ak +
cm−1. Since the sets are ordered by their rank, we are always removing the leftmost set.
In order to match the original set B, we move (m−1)(m+2)

4 + 1
2 to the right, since it is where

Bm begins.

4.3 The Grundlagen and the ternary Cantor set

In the previous part, we discussed the possible behaviour when iterating set derivations.
Cantor noticed that through different natures of iterated set derivations, a set could
be separated into different parts based on their convergence. His first intuition was to
split the set into two components. The first part is those points that will eventually
disappear after finitely many set derivations, like the examples 4.4 and 4.5, and then the
second part is the subset that does not vanish in finite steps. This core idea was later
improved and formalized by I. Bendixson (1861-1935), and the result is now known as
the Cantor-Bendixson theorem.

Before diving into the theorem, we need a lemma that characterizes perfect sets:

Lemma 4.10. Let (M, d) be a metric space and A is a subset of M . Then A is perfect
if and only if A is closed and has no isolated points.

Proof. =⇒ ) Suppose that A = A′. Let x ∈ A′ = A, by the proposition 4.3, x is a
nonisolated limit point.

⇐=) Suppose that A is closed and has no isolated point. By proposition 4.3, all accu-
mulation points are limit points, so A′ ⊆ A = A where A is the topological closure of A.
As A has no isolated point, all elements x ∈ A admits a sequence (xn)n ⊆ A such that
xn → x, hence A ⊆ A′ and therefore, A = A′.

Theorem 4.11. (Cantor-Bendixson theorem) Given a closed subset A ⊆ R with the
standard Euclidean topology, it can be partitioned into two components, the first one P is
a perfect set and the second one N is countable: A = P

⊔
N .

The hypothesis of A being a closed set is to avoid adding points in the first derivative
like an open interval does: (a, b)′ = [a, b].

Proof. We know that the set of open intervals with rational endpoints forms a countable
basis for the Euclidean topology in R. Let (I1, I2, I3, ...) be an enumeration of the induced
countable basis in A.

We define the following set M as a candidate for N :

M := {x ∈ A | ∃ Ux, an open and countable neighborhood of x}.
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Given x ∈ M , by definition, there is an open, countable neighborhood Ux. Since we
have an induced basis, we can represent Ux as a union of basic open sets. In particular,
there will be a basic open set Bx such that x ∈ Bx ⊆ Ux. Notice that Bx ⊆ M since
any point in Bx admits Bx itself as an open countable neighborhood; thus, we have that
M = ∪x∈MBx. This means that M is open by being the union of open sets. Since there
are only countably many basic open subsets and for all given x, Bx is a basic open subset,
M is at most a countable union of countable sets, which is countable.

Now we consider the complement space Q = A ∖ M . We aim to prove that it is perfect
(i.e, Q′ = Q). If Q = ∅, then it is trivially perfect, so we can suppose that Q ̸= ∅.
Since Q is the complement of an open set, by definition, it is closed. Given x ∈ Q,
if x is isolated in Q, there exists an open subset V , a neighborhood of x such that
V ∩ Q = {x}. Consequently, V ∩ A ⊆ M

⊔{x}, which is a countable open neighborhood
of x, contradicting that x /∈ M . So M is a closed set with no isolated point, by lemma
4.10, M is perfect.

In fact, we can also prove that if Q is nonempty, then any relatively open set of Q is
not countable. Suppose that there is an open set V such that V ∩ Q is nonempty and
countable, then V = (V ∩ M)⊔(V ∩ Q) is a union of two at most countable sets, thus at
most countable. Since V is open and can be considered as a neighborhood of its element,
V ⊆ M . This leads to the contradiction that V ∩ Q ̸= ∅. Therefore, all nonempty
relatively open subsets of Q are uncountable.

Within the theorem 4.11, Cantor believed that he had found the fundamental property of
what he called the “continuum”. By the 1880s, there were already many definitions of the
real numbers. All of these constructions are based on arithmetical operations like sums
and products. Cantor was searching for a more general and purely conceptual definition
of the concept of the “continuum”. By conceptual, Cantor meant to refer to what we
nowadays call topological or set-theoretic. He asked himself:

When is a set A ⊆ Rn considered as a “continuum” body?

According to Dedekind [Ded05], a set is a “continuum” if and only if it is perfect. However,
Cantor pointed out that this is not necessarily true, as there exist perfect sets that are not
conceptually considered as a continuous body. In [Can83], Cantor gave a counterexample,
which today is known as the ternary Cantor set.

Proposition 4.12. The following set S is the Cantor set, and the ternary representation
of C is unique.

S =
{

x ∈ [0, 1]
∣∣∣∣∣ x =

∞∑
n=1

an

3n
, an ∈ {0, 2}

}
.
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Proof. We will use a double inclusion to prove C = S.

⊆) Let x ∈ C, with ternary expansion x = ∑∞
n=1

bn

3n .Consider the following inequalities:

0 ≤
∞∑

n=N

an

3n
≤

∞∑
n=N

2
3n

= 2
3N

∞∑
n=0

1
3n

= 2
3N

· 3
2 = 1

3N−1 ∀N ≥ 1.

If x ∈ [0, 1/3] ∪ [2/3, 1] ⊂ D1, then by the inequality, b1 must be 0 in the first segment
and 2 in the second one, because the tail of the series (n ≥ 2) adds up to a maximum of
1/3. By induction, if bk ∈ {0, 2} then bk+1 ∈ {0, 2} because the tail (n ≥ k + 1) adds up
to a maximum of 1/3k−1.

⊇) Take a point x ∈ S, x = ∑∞
n=1

an

3n . Since a1 ∈ {0, 2}, we have x ∈ D1. Now
we suppose x is in one of the subintervals of stage n, by the inequality chain (the one
before), an+1 ∈ {0, 2} =⇒ x ∈ Dn+1.

Now for the uniqueness, given a given point x = ∑∞
n=1

an

3n ∈ C. Let ∑∞
n=1

bn

3n be another
representation, and let k be the minimal integer such that ak ̸= bk and we assume that
ak = 2, bk = 0. Then:

0 =
∞∑

n=k

an − bn

3n
≥ 2/3k −

∞∑
n=k+1

2
3n

= 1/3k.

This contradiction yields the uniqueness of the ternary representation of C.

Note that the ternary representation is generally NOT unique since:

1/3k =
∞∑

n=k+1

2
3n

=⇒
k−1∑
n=1

an

3n
+ 1

3k
=

k−1∑
n=1

an

3n
+

∞∑
n=k+1

2
3n

.

The ternary representation of C can be understood as every point in the Cantor set is
equivalent to an infinite sequence of 0s and 2s: (an)n∈N. We may visualize it in this way:
at stage 1, there are two subintervals (divided from the initial interval). If a1 = 0, then
you “move t” the subinterval that is on the left-hand side, and if it is 2, the one that is on
the right-hand side. At stage 2, you are in an identical situation but being in a smaller
subinterval decided by a1, you repeat: if a2 = 0, left subintervals, otherwise, to the right.

Proposition 4.13. The Cantor set C is perfect and uncountable.

Proof. Given x = ∑∞
n=1

an

3n ∈ C, and ε > 0, there exists N such that ∑∞
n=N

an

3n ≤ ε, thus
we can choose the point xε = ∑N−1

n=1
an

3n +∑∞
n=N

0
3n , which is at most ε distance away from

x. Now for every n ≥ 1, we can define x1/n by choosing ε = 1/n and the sequence x1/n

converges to x. Hence C is perfect.

On the other hand, since the Cantor set is in bijection to the set of all sequences with
entries 0 or 2, it has cardinality 2N, which is not a countable cardinal. A more detailed
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explanation would be using Cantor’s diagonal argument as follows. Consider the bijection:

T : C∑∞
n=1

an

3n

{0, 2}N

(an)n≥1

Suppose we can enumerate {0, 2}N = (am
n )n,m = ((a1

n)n, (a2
n)n, (a3

n)n, ...). Since 2 − 0 =
2and2 − 2 = 0, the sequence (2 − an

n)n≥1 ∈ {0, 2}N is different to every sequence in the
enumeration. Therefore, C is uncountable.

4.4 The “continuum” of Cantor

As we can see, a perfect set does not need to be continuous. Intuitively, a “continuum”
cannot have holes in it, but a perfect set admits infinitely many pores, in the sense of
having countably many open subsets between any two elements. Hence, there must exist
more properties that define the “continuum”. Cantor thought that the missing key was
the idea of connectedness. If a subset is considered as a continuum, it must be connected.

Definition 4.14. A set A ⊆ Rn is said to be Cantor connected (or C-connected, for
short) if for every ε > 0 and every pair of points p, q ∈ A, there exists a finite sequence

T = (t0 = p, t1, t2, . . . , tn = q),

where {tj : j = 0, 1, . . . , n} ⊆ A, such that

d(tk, tk+1) < ε for all k = 0, 1, . . . , n − 1.

Here, d denotes the Euclidean distance in Rn. Any such sequence is called an ε-chain
between p and q.

The definition of C-connectedness is different than the usual connectedness definitions.
For instance, a disconnected space can be C-connected:

Example 4.15. The set A = (−1, 0) ∪ (0, 1) is disconnected but C-connected. Given
ε > 0, for any pair of points x, y ∈ A and x < y, we can take n such that (y−x)/n < ε and
choose the sequence formed by {x+k(y−x)/n : k = 0, 1, 2, ..., n} = {tk : k = 0, 1, 2, ..., n}.
If 0 = x + k′(y − x)/n ∈ T , then replace this point by the pair of points 0 ± ε/2.

On the other hand, path-connected spaces are also C-connected, meaning that the C-
connectedness is a weaker condition compared to the path-connectedness.

Proposition 4.16. If A ⊆ Rn is path-connected, then it is also C-connected.

29



The Cantor set before Cantor 4.4 The “continuum” of Cantor

Proof. Let ε > 0 and p, q ∈ A be a pair of different points of A. By being a path-
connected set, there exists a continuous map γ(t) from [0, 1] into A such that γ(0) = p

and γ(1) = q. By the Heine-Cantor theorem (theorem A.3), γ is uniformly continuous,
which means that there exists a δ > 0 such that d(x, y) < δ =⇒ d(γ(x), γ(y)) < ε. Now,
by taking the sequence formed by {γ(kδ) : k = 0, 1, 2, ..., ⌊1/δ⌋} ∪ {γ(1)}, we have that
A is C-connected.

Cantor believed that a continuous body is a set that is both perfect and C-connected.
However, his main argument was that other people’s theories were incorrect. In [Can83],
Cantor explicitly criticized definitions proposed by Dedekind and Bolzano.

On the one hand, Bolzano claimed that a continuous body must be such that between
any two elements, another element of the body can always be found, which is an early
version of what we call density. On the other hand, Dedekind’s definition was that
the “continuum” is equivalent to being perfect. However, the Cantor set satisfies both
definitions, but conceptually speaking, the object is not a continuous body. So he argued
that both Dedekind and Bolzano’s definition of the “continuum” were incomplete.

Even now, there is still no widely accepted definition of the “continuum”. One of the
most cited sources for the concept is [Mal69]:

Continuity. “A material is continuous if it completely fills the space that it
occupies, leaving no pores or empty spaces, and if furthermore its properties
are describable by continuous functions.”

We can see it is a conceptual or philosophical definition rather than a mathematical one.
If we try to interpret this definition in purely mathematical terms, the part of being
describable by continuous functions would mean purely topological. On the other hand,
the idea of filling the space that it occupies, without any pores, would be asking the set
to be open (filling), bounded (the occupied space), and simply connected (without any
pores).

However, all these topological concepts were formalized in the early 20th century, as part
of the broader effort to axiomatize mathematics, like the ZFC set theory. Thus, when
Cantor originally introduced the idea of being perfect, he likely referred to an intuitive
notion of an open set. That is, for any element x in the set, anything “surrounding” x

is also inside the set. On the other hand, the part of C-connected is a primitive idea
of topological connectedness, that the body is all linked together. However, Cantor’s
definition lacked the boundedness part, which was later added with the compactness
condition.

It can be shown that in a compact metric space, C-connectedness is equivalent to usual
connectedness.
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Theorem 4.17. Let (X, d) be a nonempty compact metric space. Then X is connected
if and only if it is C-connected.

Proof. =⇒ ) Let X be connected. Fix a ∈ X and ε > 0. Define the set:

Aε := {x ∈ X | ∃ an ε-chain from a to x} .

1. Aε ̸= ∅: the trivial chain generated by {a} connects a to itself.

2. Aε is open: For any x ∈ Aε, choose δ = ε/2. If d(x, y) < δ < ε, then the sequence
of 2 elements, formed by {x, y} is an ε-chain from x to y, therefore, Aε is open.

3. Aε is closed: Let {xn}∞
n=1 ⊂ Aε converge to x ∈ X. There exists N such that

d(xN , x) < ε. Hence, we can take an ε-chain from a to xN and concatenate with x.
The resulting sequence is an ε-chain from a to x, so x ∈ Aε.

Therefore, Aε is clopen and non-empty in a connected space, meaning that Aε = X.

⇐=) Suppose X is disconnected but C-connected. Then X = U
⊔

V where U and V are
disjoint open sets that intersect X. Since U = X \V and V is open, U is closed; similarly,
V is closed. Let δ := d(U, V ). If δ = 0, then there exists a pair of sequences (un)n ⊂ U ,
(vn)n ⊂ V such that:

lim
n→∞

d(un, vn) = 0.

By the compactness of the space X, there exists a pair of convergent subsequences
(unj

)j → α, (vnj
)j → β. Since U, V are both closed, α ∈ U and β ∈ V . On the

other hand, by the continuity of the distance function,

lim
j→∞

d(unj
, vnj

) = d(α, β) = 0,

which yields α = β ∈ U ∩ V , contradicting that U, V are disjoint. Therefore, δ > 0.

Choose u ∈ U , v ∈ V and set ε = δ/2 > 0. By C-connectedness, there exists an ε-chain
(u = t0, t1, . . . , tn = v). Let k be the smallest index such that tk ∈ U and tk+1 /∈ U . Then
tk+1 ∈ V , and we have:

d(tk, tk+1) < ε = δ

2 < δ = d(U, V ),

contradicting the definition of d(U, V ). Thus, X is connected.

This theorem allows one to define the “continuum” without using any distance function.

Today, the most common mathematical definition of a continuous body is a compact,
connected, metrizable space [Nad17]. Sometimes, less frequently but more abstractly, a
compact connected Hausdorff space [Wil12]. Nevertheless, while mathematicians were
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trying to axiomatize mathematics during the early 20th century, quantum physics re-
vealed a world governed by probabilistic behavior and discrete scales, namely the Planck
length ℏ ≈ 1.616×10−35. This fundamental granularity challenges the classical paradigm
of smooth, deterministic continua. The mathematical continuum, for all its elegance and
utility in modeling, may thus represent an overly idealized approximation of a physical
reality.
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A Some Basic Theorems and Definitions

In this appendix, we collect some theorems and definitions used throughout the main
text.

Theorem A.1. (Pigeonhole principle) Let A be a finite set of n elements, and A is
divided into m disjoint subsets A = ⊔

k≤m Ak. If m > n, then there exists a member of
the partition, say Ak1, with at least 2 elements.

Theorem A.2. (Heine-Borel theorem) Consider the space Rn with the standard Eu-
clidean topology and T ⊆ R⋉. Then T is compact if and only if it is closed and bounded.

Theorem A.3. (Heine-Cantor theorem) If f : X → Y is a continuous map between
metric spaces and X is compact, then f is uniformly continuous.

Theorem A.4. (Baire Category theorem) Let (M, d) be a complete metric space and
{Ui}i≥1 be a countable collection of dense open sets. Then ∩i≥0Ui is also dense.

Definition A.5. (Measure) Let A be a set. A function µ : P(A) → [0, ∞] is a measure
over A if and only if:

1. µ(∅) = 0,

2. If {Ei}i∈N is a countable collection of pairwise disjoint subsets of A, then

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei).

Theorem A.6. (Monotone convergence theorem for sets) Let A be a set and µ a measure
over A. If {An}n≥1 is an increasing sequence of subsets of A. Then

µ(∪n≥1An) = lim
n→∞

µ(An)

Theorem A.7. (Moore-Osgood theorem) Let (X, d) be a metric space, E is a subset of
X, and x is a limit point of E. Let fn : X → R and f : X → R be functions over X.

If fn(x) n−→ f(x) uniformly on E and fn(x) x→x0−−−→ an ∈ R for all n. Then the following
limits exist, and they match:

lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x) = lim
n→∞

an = a.
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