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Abstract

In 1946 it was proven that the canonical quantization procedure that identifies
the Poisson bracket with the commutator in Hilbert space gives rise to contradic-
tions in Quantum Mechanics. Our goal is to present a consistent and well defined
quantization scheme that accounts for the non-commutativity of observables. We
introduce Deformation Quantization as a consistent formalism to represent QM in
phase space with the use of the so-called star products. A quantization map is
provided by deriving a map that relates star products to the product of self-adjoint
operators in Hilbert space. Furthermore, in order to prescribe a meaning to spinors,
which correspond to phenomena with no classical analog, we introduce the so called
spinor bundles. Spinorial matter is not quantum mechanical in the sense of phase
space observables, but is rather dictated by the symmetries of the underlying man-
ifold. These results suggest many conjectures on the fundamental aspects of QM
and hint at the fact that the information of a Quantum Theory cannot be extracted
from a classical setting without adding extra mathematical structure.
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1 Introduction
Theoretical physics in the twentieth century witnessed an important paradigm shift re-
garding our fundamental understanding of microscopic matter. This scientific revolution
was spearheaded by the developments in the branch of Physics that came to be known as
Quantum Mechanics (QM). There are two features that distinguish QM from its prede-
cessor framework, Classical Mechanics: (i) the discrete spectrum of physical observables
and (ii) the Heisenberg uncertainty principle. Both phenomena were explained in the
1920s by non-commutative self-adjoint linear operators acting on elements of the Hilbert
space H = L2(R3). Dirac, Bohr and others noticed that many classical observables,
which are taken to be C∞ (smooth) functions in phase space could be represented in
Hilbert space via a map D : C∞(T ∗M) → Obs(H), where we identify phase space with
T ∗M and denote the space of linear self-adjoint operators in H as Obs(H). This map is
defined by the assignments q 7→ q̂ and p 7→ p̂, so that any phase space observable f(q, p)
is mapped to F̂ = f(q̂, p̂). This map D is called canonical quantization. Dirac [1]
also suggested that this map satisfied a Lie algebra homomorphism relation between the
algebra of smooth functions equipped with the Poisson bracket {·, ·} and the algebra of
linear operators in H with its associated commutator [·, ·]:

D({f, g}) = 1

iℏ
[D(f),D(g)] ∀f, g ∈ C∞(T ∗M) , or informally: {·, ·} → 1

iℏ
[·, ·] .

This quantization procedure has proved successful in many applications in QM. However,
it was already known in the late 1920s and early 1930s that it gives rise to inconsistencies
for observables involving high powers in position and momentum [2]. Furthermore, it
is rather obscure how the Hilbert space disappears as ℏ → 0 and gives rise to a totally
different object in a smooth manifold.

In fact, in 1946 Groenewold presented his no-go theorem [3], by virtue of which it is proved
that no map from classical to quantum observables, the former equipped with the Poisson
bracket, and the latter with the commutator, could satisfy the Lie algebra homomorphism
condition. In particular, canonical quantization is not a Lie algebra homomorphism, i.e.

∃ f, g ∈ C∞(T ∗M) : D({f, g}) ̸= 1

iℏ
[D(f),D(g)] .

Groenewold used as a counter example the fact that {q3, p3}, which classically equals
{{q2, p3}, {q3, p2}}/12, gives rise to an order ℏ2 contradiction in H. So the Lie algebra
generated by smooth functions on phase space using the Poisson bracket is not isomorphic
to linear operators on Hilbert space. A natural question arises.

Is there any other algebra defined over smooth functions in phase space C∞(T ∗M)

and a bijective map Ô : C∞(T ∗M)→ Obs(H) encoding a corresponding Lie algebra
homomorphism?

Whether a well-defined quantization procedure exists or not is of crucial importance in
modern fundamental physics, since all modern theoretical frameworks are stated in terms
of a classical principle of stationary action which yields a system of equations of motion
for some tensor or spinor field distributions. With canonical quantization, i.e. with a
Lie algebra homomorphism between {·, ·} and [·, ·] we can ensure that the equations of
motion of the quantum fields will coincide with those of the classical fields. Indeed, going
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from classical to quantum is a common procedure in Quantum Field Theory. However,
since this map is not a morphism, we will need further mathematical structure in order
to be able to reproduce the results of QM.

It turns out that in 1930 Hermann Weyl [4] had published a bijective quantization map,
which, without knowing, encoded a Lie algebra homomorphism. Which was then this Lie
algebra? Moyal [5] discovered it was a deformation of the commutative pointwise product
of functions that later became known as a star product. This star product, together
with the Weyl quantization map did satisfy the desired condition:

Ô(f ⋆ g − g ⋆ f) = 1

iℏ
[Ô(f), Ô(g)] . (1)

It was quickly acknowledged that the extra mathematical structure provided by this
quantization procedure, which came to be known as Deformation Quantization (DQ)
could be used to explain QM solely in phase space since the non-commutativity of ob-
servables is already taken care of by the star product. Nevertheless it was still unclear
how one could relate the classical Poisson bracket structure with this new star product
structure. It would not be until the late 1990s that Maxim Kontsevich1 [7], proved that
there is an isomorphism between certain equivalence classes of star products and Poisson
brackets. Kontsevich proved that there is a standardized procedure that allows one to
associate a specific star product structure with a given Poisson bracket on Rd.

A big part of our work will be devoted to understand star products, both from a formal
mathematical perspective and from a hands-on approach. Then, we will have constructed
a consistent quantization procedure that is able to deal with points (i) and (ii) of the
previous discussion without leaving classical phase space. However, we will have left a
third point out of the discussion: spin. Indeed, QM as formulated in all elementary
textbooks, explains that there are experiments in which purely quantum mechanical
phenomena are manifested. They typically concern spin and have no classical analogue.
Another question is then proposed:

Can the non-commutative nature of spinor operators be captured without a Hilbert
space description? How is it related to star products?

We will show how the metric tensor gµν and its symmetries over the manifold of study M
determine the behavior of spinorial matter. We will explain spinors and their properties
by constructing a geometrical framework around them. Spinorial operators will therefore
not be subjected to any quantization procedure.

We will also discuss the philosophical implications of the results presented, for we will
argue that the failure of canonical quantization to produce a consistent Quantum The-
ory lies in the fact that it does not preserve information, whereas DQ does preserve
information and therefore constitutes an isomorphism at the algebra level.

1Kontsevich actually won the 1998 Fields Medal “for his contributions to algebraic geometry, topology,
and mathematical physics, including the proof of Witten’s conjecture of intersection numbers in moduli
spaces of stable curves, construction of the universal Vassiliev invariant of knots, and formal quantization
of Poisson manifolds” [6]
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This dissertation is structured as follows. In section 2 we give a geometrical interpretation
of Classical Mechanics in phase space, since it is the background from which the formalism
of DQ is developed in section 3. We will investigate the key points of Kontsevich’s work,
and find a particular star product using his formalism that will serve useful when doing
quantum mechanics in phase space. We will understand Weyl’s quantization map O, and
how together with the star product, produces the desired Lie algebra homomorphism
in equation (1). In section 4, we will borrow techniques from Yang-Mills theory such
as principal fiber bundles, and we will construct the so-called spinor bundles. This
construction will bring to light the fact that the non-commutativity of spinorial operators
is fundamentally different from that of other quantum mechanical observables, since the
latter inherits its properties from a star product structure, and the former from a Clifford
algebra structure. Finally, in section 5 we will lay out the complete quantization scheme.
In Appendix A we give a brief summary of the essential mathematical concepts and
formulas utilized throughout the text.
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2 Mathematical Structure of Classical Mechanics
In this section we will give a geometrical framework of Classical Mechanics that will be
of use in our construction of the star product, as well as to contextualize some of the
results that will be obtained throughout the text. Throughout this section, let M be an
n-dimensional manifold (see A.1).

2.1 Symplectic Geometry

In Classical Mechanics, the possible states of a system of particles are determined by the
positions and momenta of such particles. That is, a physical state corresponds to a pair
x = (p, q) where each element corresponds to an n-dimensional vector (for simplicity the
case n = 1 will be the most used in this section). The space of all possible configurations
of such variables is known as phase space and is 2n-dimensional. One can think of
phase space as assigning to each point q ∈ M a “direction” given by p. The most apt
mathematical structure that we can construct with this information is the cotangent
bundle T ∗M (A.2) [8]. We also know that the directions at each point are not arbitrary,
for they obey a set of Equations of Motion (EOM) given a smooth function H(p, q):

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (2)

We recognize that the components of the one-form dH = ∂qH dq + ∂pH dp are featured
on the right hand side of the EOM. By a one-form we mean an object that given a vector
field produces a scalar, so we may write it as dH(·). Also, they are known as (0, 1)
tensors, where as vector fields are referred to as (1, 0) tensors. On the left-hand side, we
find the components of the tangent vector to x, which is indeed a vector. So we see that
on one side of the equations we have dH which is a (0, 1) tensor and on the other ẋ which
is of type (1, 0), both over T ∗M . This is not mathematically correct unless there is some
underlying object capable of transforming a vector into a one-form in such a way that
the EOM in (2) are satisfied.

The sort of object that transforms a (1, 0) tensor into a (0, 1) tensor is a (0, 2) tensor. By
definition, a (0, 2) tensor field ω(·, ·) “takes” two vector fields to give a scalar field, i.e.
an object in C∞(T ∗M). Now, if we feed a single vector field X, then ω(X, ·) is a (0, 1)
tensor, because by construction transforms a vector into a scalar. So we want to find a
(0, 2) tensor field satisfying ω(ẋ, ·) = dH(·) that reproduces the laws of physics. This
translates to the following requirements [9]:

1. Non-degeneracy: if X is a vector field that is zero everywhere, then ω(X, Y ) = 0
for all vector fields Y over T ∗M . This will ensure that we can always solve for ẋ
given ω and H.

2. Skew-symmetry: in a system with no external forces the change in the Hamil-
tonian must be zero along its constant lines to enforce conservation of energy, so
dH(ẋ) = 0 ⇐⇒ ω(ẋ, ẋ) = 0, which is to say that ω is alternating and therefore a
two-form on T ∗M .

3. Closedeness: we require that ω should be invariant under the time evolution of
the system. This condition is enforced if the Lie derivative (A.3) of ω along the
direction of ẋ is zero, i.e. if Lẋ ω = 0. Using Cartan’s magic formula (37) one finds
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that necessarily dω = 0 if the EOM are to be invariant under time evolution. A
form with zero exterior derivative is called closed.

A bilinear non-degenerate, closed two-form is called a symplectic form. A manifold
together with a symplectic form is called a symplectic manifold. In particular, if we take
ω = dq ∧ dp, it is straightforward to check that the vector

ẋ ≡ XH =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p

satisfies ω(XH , ·) = dH(·).

2.2 Poisson Geometry

The construction of equations of motion given a symplectic form ω for a Hamiltonian H
can be mirrored for any smooth function f ∈ C∞(T ∗M). That is, we may define Xf in a
similar manner such that the symplectic form is preserved along its integral curves, and
such that ω(Xf , ·) = df(·). In general, if a vector field X preserves the symplectic form
in the sense that LXω = 0 it is called a symplectic vector field. For our canonical
symplectic form ω = dq ∧ dp it will be of the form:

Xf =
∂f

∂p

∂

∂q
− ∂f

∂q

∂

∂p
.

We see that if we consider a smooth function g then Xf (g) corresponds the classical
Poisson bracket. Since Xf (g) = df(Xg) = ω(Xf , Xg), then {f, g} := ω(Xf , Xg) and we
can always induce a Poisson bracket from a symplectic structure. One can verify that it
satisfies:

1. Leibniz identity: {f, gh} = g{f, h}+ {f, g}h. This means that the bracket is a
derivation with respect to the point-wise product of functions.

2. Jacobi identity: {f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0. This means that
the bracket is a derivation with respect to itself.

A Poisson structure on a manifold M consists of a (bilinear) Lie bracket {·, ·} on
the algebra of smooth functions C∞(M), which satisfies Leibniz and Jacobi. A Poisson
structure on a manifold generalizes the symplectic structure [10], and will be the most
useful concept to understand throughout the text. Poisson geometry is important because
of its connection with Deformation Quantization, which lies in the fact that a Poisson
manifold naturally gives rise to a precise Quantization procedure, as we will see.

Note that the Leibniz identity says that for any H ∈ C∞(M) the operation {H, ·} is a
derivation of the algebra C∞(M). Therefore, it can be used to define a vector field XH

on M via
{H, f} = LXH

(f) ∀f ∈ C∞(M) . (3)

A consequence of the Leibniz rule is that Poisson brackets are local in the sense that
they can be restricted to open subsets of the manifold. In a local chart (U, x) a Poisson
bracket takes the form:

{f, g}|U = πij ∂f

∂xi
∂g

∂xj
(4)

where πij := {xi, xj}|U are called the structure functions of the Poisson bracket with
respect to the chart. We will be using Einstein’s sum convention unless otherwise stated.
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This skew-symmetric functions determine the bracket locally. Indeed, the Jacobi identity
yields a system of partial differential equations for the structure constants:

πil ∂l π
jk + πjl ∂l π

ki + πkl ∂l π
ij = 0 (1 ≤ i < j < k ≤ n) . (5)

This system is an over-determined non-linear system of first-order PDEs. The space of
local solutions of this system is poorly understood. Furthermore, the local properties
of Poisson manifolds are encoded in the structure functions πij. This suggests that the
Poisson bracket can be understood via an expression of the form:

π = πij ∂

∂xi
∧ ∂

∂xj
.

Such an expression is an example of a skew-symmetric (2, 0) tensor field, which we will
call a bivector field, which is not the same as a two form (a skew-symmetric (0, 2) tensor
field). With a rewriting of the Jacobi identity specified in Appendix B in terms of the
bivector, we will also call the pair (M,π) a Poisson structure throughout the rest of the
work.

Finally, it will be useful for our later investigations to ask for a classification of different
Poisson manifolds. To do this, we will consider Poisson maps. If (M1, π1) and (M2, π2)
are two Poisson manifolds, then a smooth map ϕ : M1 → M2 is a Poisson map if
ϕ∗π1 = π2. That is, if f, g ∈ C∞(M2) then (ϕ∗π1)(f, g) = π1(f ◦ ϕ, g ◦ ϕ) and this
should equal π2(f, g). In this work we will consider two Poisson structures on a given
manifold to be equivalent if they can be related by a smooth map2 exp(X) where X is
a vector field over M . This maps form a Lie group (A.4) with the product given by the
Baker-Campbell-Hausdorff (BCH) [11, p. 89] formula

eXeY = eZ where Z = X + Y +
1

2
[X, Y ] + · · · (6)

and as stated above act on the bivector via the pushforward.

2actually it is a diffeomorphism
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3 Deformation Quantization
In this section we present the formalism of Deformation Quantization in detail. We will
begin by showing how from any given Poisson structure as presented in section 2, we can
construct a star product satisfying certain desired properties. We will use Kontsevich’s
construction to derive a star product on a manifold with a symplectic structure, which is
known as the Moyal product. We will then rederive the Moyal product by constructing
the Weyl quantization map from phase space to Hilbert space. Finally, we will present
the formalism of QM in phase space and outline the most interesting features.

3.1 Star Products

In mathematics we sometimes consider the so-called formal power series, defined by
infinite sums of the form a xn, considered independently from any notion of convergence.
Note that this series may no longer represent a function of x, as would be the case with
a power series, which within its radius of convergence does define a function. We can
consider the set of formal power series with power ℏ and coefficients being C∞(M). We
call this space C∞(M)JℏK. In particular: C∞(M) ⊂ C∞(M)JℏK. A star product on a
manifold is an RJℏK bilinear map ⋆ : C∞(M)JℏK× C∞(M)JℏK→ C∞(M)JℏK such that

1. f ⋆ g = fg +Bi(f, g) ℏi

2. (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h) for all f, g, h ∈ C∞(M)

3. 1 ⋆ f = f ⋆ 1 = f for all f ∈ C∞(M)

The coefficients Bi(f, g) are functions made up of derivatives of f and g, i.e. locally
they take the form bkl ∂kf ∂lg for some multi-indices k and l. The third condition on the
definition of the star product implies that the degree 0 term in the right-hand side of the
first condition has to be the usual product and also ensures that the Bi are bidifferential
operators in the sense that they have no term of order 0: Bi(1, f) = Bi(f, 1) = 0 for all i.
A further consequence of the previous requierements is the fact that the skew symmetric
part of the first coefficient, defined by B−1 (f, g) = (B1(f, g) − B1(g, f))/2 satisfies the
conditions for the definition of a Poisson bracket from section 2. Indeed, given a star
product ⋆ on C∞(M), we can define a Poisson structure on it by

{f, g} = f ⋆ g − g ⋆ f
ℏ

mod ℏ . (7)

The problem that we want to solve is the inverse: given a Poisson Manifold M can one
define an associative but non-commutative product ⋆ on C∞(M), which is a deformation
of the point-wise product such that all the stated conditions hold? This problem will be
thoroughly answered in the next section, but to end this section we would like to only
look at star products that are not equivalent given some linear operator that relates them.
Two star products ⋆ and ⋆′ on C∞(M) are said to be equivalent if there exists a linear
operator A : C∞(M)JℏK→ C∞(M)JℏK of the form

Af = f + Ai(f) ℏi such that f ⋆′ g = A−1 (Af ⋆ Ag) , (8)

where the Ai terms are differential operators. This should be read as in the Lie Algebra
homomorphism condition f(ab) = f(a)f(b).
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3.2 Kontsevich’s Construction

The main difficulty in Deformation Quantization comes when one has a Poisson structure
on Rd and one tries to find an associated star product. Kontsevich’s main result was to
find an indentification between the set of star products (or equivalently multidifferential
operators) modulo the action of the differential operators A in equation (8) and the set
of Poisson structures modulo the gauge group of diffeomorphisms mentioned in section 2.
So we need somehow to relate bivectors with bidifferential operators so that given a
bivector, we can readily find the associated bidifferential operator. This relationship
between bivectors and bidifferential operators, however, cannot be achieved at the Lie
algebra level and Kontsevich had to use the so called L∞ algebras. The details of the
proof are out of the scope of the text, and we leave them for the interested reader in
Appendix C.

Kontsevich was able to construct a so-called L∞ morphism U between multivectors mod-
ulo the gauge group of diffeomorphisms (see C) and multidifferential operators modulo
the gauge group of equivalent star products. For a Poisson bivector π:

f ⋆ g = fg+U(π) = fg+
∞∑
j=1

(iℏ)j

j!
Uj(π∧ · · · ∧π) = fg+ iℏU1(π)+ i

2ℏ2

2!
U2(π∧π)+ · · · .

What are these Uj terms that determine the multidifferential operator? Kontsevich
showed that U(π) can actually be calculated through a series of “Feynman rules” for
certain graphs. Given a Poisson structure π, over Rd, its corresponding star product ⋆ is
given by a formal sum of graphs:

f ⋆ g = + + + · · · (9)

where the first term refers to the usual commutative product. To qualify as a Kontsevich
diagram, we present the following rules and requirements.

Admissible graphs

Here we present the requirements that the graphs must satisfy:
1. 2

∑
j j +

∑
k k − 2 ≥ 0.

2. No loops for either type of edge.
3. All lines start from a type vertex.

Kontsevich Rules

For each graph, apply the following rules to calculate the corresponding star product term:
1. Associate to each vertex i with k outgoing lines a multivector field ξi ∈ Γ

(∧k Rd
)
.

2. In each vertex of the form we place a C∞(Rd) function.
3. The j-th arrow (from left to right) outgoing from a k-vertex corresponds to a partial

derivative with respect to the coordinate labeled by the j-th index of the multivector ξi
associated with the vertex.

4. Multiply such elements in the ordering prescribed by the arrows.

8



5. Divide by the symmetry factor:

1

(
∑

k k)!

(
iℏ

(
∑

i i)!

) ∑
k k

As an example, consider a graph of three functions and a trivector α and bivector β
associated to the vertices. Then:

f g h

α β

=
1

2

(
iℏ
6

)2

αabc(∂a∂df) (∂b g) (∂eh)(∂cβ
de) .

Now consider that our Poisson structure is that induced by the canonical symplectic
structure as in section 2. Then the corresponding graphs can only have two lower inputs

corresponding to f and g and all the colored nodes must only have two outgoing
arrows corresponding to π. The only diagrams satisfying such requirements are of the
form:

, , , · · ·

which are precisely those of equation (9). Note that in the symplectic case the πij are
constants so all diagrams with derivatives on the bivector will not contribute. We can
readily calculate its coefficients using Konsevich’s rules:

=
iℏ
2
πij∂if ∂jg =

iℏ
2
f
(
πij←−∂i

−→
∂j

)
g ,

=
1

2!

(
iℏ
2

)2

πijπkl(∂i∂kf)(∂j∂lg) =
1

2!

(
iℏ
2

)2

f
(
πij←−∂i

−→
∂j

)2
g ,

=
1

3!

(
iℏ
2

)3

πijπklπrs(∂i∂k∂rf)(∂j∂l∂sg) =
1

3!

(
iℏ
2

)3

f
(
πij←−∂i

−→
∂j

)3
g ,

and so on. We may then write our star product on our canonical symplectic structure as:

f ⋆ g = fg+
iℏ
2
f
(
πij←−∂i

−→
∂j

)
g+

1

2!

(
iℏ
2

)2

f
(
πij←−∂i

−→
∂j

)2
g+

1

3!

(
iℏ
2

)3

f
(
πij←−∂i

−→
∂j

)3
g+ · · ·

This is called the Moyal product and it is usually written as:

f ⋆ g = f exp

(
iℏ
2
πij←−∂ i

−→
∂ j

)
g (10)

which establishes a direct correspondence between the symplectic (and Poisson) structure
given by πij and the non-commutative structure provided by the star product.

To get used to the Moyal product we work out a couple of properties to get familiar with
the formalism.
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Proposition 1. The Moyal product of exponentials is non commutative in the Baker-
Campbell-Haussdorff sense (see equation(6)):

eα1x+β1p ⋆ eα2x+β2p = e(α1+α2)x+(β1+β2)p e
iℏ
2
(α1β2−α2β1) .

Proof. The first term in the right hand side of the BCH formula corresponds to the
commutative product. The first term in the Kontsevich expansion is:

iℏ
2
eα1x+β1p

(
πij←−∂i

−→
∂j

)
eα2x+β2p =

iℏ
2
{eα1x+β1p, eα2x+β2p} = iℏ

2
(α1β2 − α2β1)

The second term is proportional to

πijπkl(∂i∂kf)(∂j∂lg) = πij(πkl∂k(∂if)∂l(∂jg)) = πij{∂if, ∂jg}

which in our case is just:

πij{∂ieα1x+β1p, ∂je
α2x+β2p} = (α1β2 − α2β1){eα1x+β1p, eα2x+β2p} = (α1β2 − α2β1)

2

Continuing this procedure all successive powers will be touched.

Proposition 2. Lone Star Lemma:∫
dx dp f ⋆ g =

∫
dx dp fg =

∫
dx dp gf =

∫
dx dp g ⋆ f .

Proof. This result is a consequence of the skew-symmetry of the Poisson bracket. Indeed
the integral ∫

dp dq {f(p, q), g(p, q)}

must be zero because by a trivial canonical transformation p 7→ q, q 7→ p will switch the
sign of the Poisson bracket but not of the volume element dp dq. Therefore the integral
is zero. This is easily generalized to higher powers by separating in terms of smaller PB
as in the first example.

3.3 Recovering the Moyal Product Through Hilbert Space

We have already seen that given a Poisson structure on a manifold, there is a natural star
product defined on it that naturally gives rise to a non-commutative structure on phase
space. This was achieved in the 1990s, but the Moyal product was known since early
after the World War II. It was recovered through a quantization map from Hilbert space
used by Hermann Weyl around 1930. Then, during and after the war H. Groenewold in
the Netherlands and J. Moyal in England took Weyl and Wigner’s calculations seriously
enough to consider them as an alternative picture for quantum mechanics. To begin,
consider the Baker-Campbell-Hausdorff formula (6) applied to the p̂ and q̂ operators,
which, of course, satisfy [q̂, p̂] = iℏ:

e
i
ℏ (p̂+q̂) = e

i
ℏ p̂ e

i
ℏ q̂ e

i
ℏ [p̂,q̂] = e

i
ℏ p̂ e

i
ℏ q̂ e−

i
2ℏ .

Now if we consider the transformation p̂→ xp̂+ yq̂, q̂ → x′p̂+ y′q̂, we may find that:

e
i
ℏ ((x+x′)p̂+(y+y′)q̂) = e

i
ℏ (xp̂+yq̂) e

i
ℏ (x

′p̂+y′q̂) e−
i
2ℏ (xy

′−yx′) (11)
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and, by applying BCH in the same fashion we obtain:

e−
i
ℏ (ξq̂+ηp̂) e

i
ℏ (xp̂+yq̂) e

i
ℏ (ξq̂+ηp̂) = e

i
ℏ (xp̂+yq̂) e

i
ℏ (xη−yξ) . (12)

Using this equation and the definition of the delta function Weyl wrote:

δ(x) δ(y) =
1

(2πℏ)2

∫
dξ dη e−

i
ℏ (ξq̂+ηp̂) e

i
ℏ (xp̂+yq̂) e

i
ℏ (ξq̂+ηp̂) . (13)

Now, any phase space function f(q, p) can be written using delta functions:

f(q, p) =
1

(2πℏ)2

∫
dx dy dp′ dq′ f(q′, p′) e−

i
ℏ (x(p

′−p)+y(q′−q))

which is elementary and we are not adding any new information. Indeed, this equation
just tells us that every normalizable function can be Fourier expanded:

f(q, p) =

∫
dx dyF [f ](x, y) ei(xp+yq) ⇐⇒ F [f ](x, y) =

1

2π

∫
dq dp f(q, p) e−i(xp+yq)

Weyl now proposes a quantum analogy for this integral identity:

F̂ =
1

(2πℏ)2

∫
dx dy dξ dη e−

i
ℏ (ξq̂+ηp̂) F̂ e−

i
ℏ (xp̂+yq̂) e

i
ℏ (ξq̂+ηp̂) e

i
ℏ (xp̂+yq̂)

That this is indeed an identity can be proven using (12) and (13). Continuing the analogy
in phase-space means that every operator F̂ can be expanded as

F̂ =

∫
dx dy f̂(x, y) e

i
ℏ (xp̂+yq̂) (14)

where f(x, y) corresponds to the middle term and can be reduced to

f(x, y) =
1

ℏ
tr
(
F̂ e−

i
ℏ (xp̂−yq̂)

)
where tr(Â) =

∫
dξ dη e−

i
ℏ (ξq̂+ηp̂) Â e

i
ℏ (ξq̂+ηp̂) . (15)

We are still missing our correspondence between f(p, q) and F̂ . To do this, we will need
to borrow some results a formalism long forgotten by theoretical physicists in the light of
Bell’s inequalities, namely that of hidden variable theories. At the time of Weyl and
even Groenewold, hidden variables were still a very serious contender to substitute the
Copenhagen interpretation. However in 1964 John Bell proved that local hidden variable
theories cannot accurately describe QM [12]. Indeed, QM under the DQ framework can be
interpreted as a hidden variable theory in the sense that quantum operators are associated
to phase space observables by the operator Ô of equation (1) and therefore are subject to
the evolution of the deterministic hidden variables p and q. However, we will argue in the
next section that Deformation Quantization yields a non-local hidden variable theory,
the non-locality coming from the global non-commutative structure provided from the
star product.

Back to our exploration of the relationship between Hilbert space and phase space, we will
need the so called known as Weyl correspondence principle of a hidden variable theory.
If a(q, p)↔ Â and b(q, p)↔ B̂ then ∃ ρ(p, q) such that

tr(ÂB̂) =

∫
dp dq ρ(p, q) a(p, q) b(p, q) .

11



This can be accomplished by choosing a kernel for the transformation:

a(p, q) = tr(k̂(p, q)Â) ⇐⇒ Â =

∫
dp dq ρ(q, p) k̂(q, p) a(q, p) (16)

satisfying certain properties (see sections 3 and 4 of [3]). Comparing (16) with (14) and
(15) we can solve for both ρ and k̂. The result is a direct correspondence between phase
space functions and Hilbert space operators:

Ô(f) ≡ F̂ =
1

2πℏ

∫
dx dyF [f ](x, y) e

i
ℏ (xp̂+yq̂) (17)

f(q, p) =
1

2πℏ

∫
dx dy tr

(
F̂ e−

i
ℏ (xp̂−yq̂)

)
(18)

which was already presented in section 1. Now we are in position to calculate the expres-
sion for the product of operators Ô(f) Ô(g) = F̂ Ĝ:

F̂ Ĝ =
1

(2πℏ)4

∫
dx dy dx′ dy′ dp dq dp′ dq′

(
e

i
ℏ ((x+x′)p̂+(y+y′)q̂) e

i
2ℏ (xy

′−yx′)

· e−
i
ℏ (xp+yq+x′p′+y′q′) f(p, q) g(p′, q′)

)
where we used (11) and the explicit Fourier expansions of f and g. Using a suitable
change of variables and evaluating the available delta functions:

F̂ Ĝ =
1

(2πℏ)2

∫
dx dy dp dq e

i
ℏ (xp̂+yq̂) e−

i
ℏ (xp+yq) f

(
p+

1

4
y, q − 1

4
x

)
g

(
p− 1

4
y, q +

1

4
x

)
.

Now by Taylor expanding we see that:

f

(
p+

1

4
y, q − 1

4
x

)
g

(
p− 1

4
y, q +

1

4
x

)
=
(
e

1
4
(y∂p−x∂q) f(p, q)

)(
e−

1
4
(y∂p−x∂q) g(p, q)

)
.

Finally, one can integrate by parts and find

F̂ Ĝ =
1

(2πℏ)2

∫
dx dy e

i
ℏ (xp̂+yq̂)

∫
dp dq e−

i
ℏ (xp+yq) f(q, p)

(
e

iℏ
2
(
←−
∂ q
−→
∂ p−

←−
∂ p
−→
∂ q)
)
g(q, p)

which reproduces the compatibility property of the Moyal product (10) with respect to
the Weyl quantization map (18):

Ô(f)Ô(g) = Ô(f ⋆ g) .

This in turn determines a well-defined Lie algebra homomorphism:

Ô(f ⋆ g − g ⋆ f) = 1

iℏ
[Ô(f), Ô(g)]

which, as was mentioned in section 1 allows for a consistent Quantization procedure.
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3.4 Quantum Mechanics in Phase Space

It was Wigner [5], together with Moyal and Groenewold, the ones who extended the
analogy of wave functions to classical phase space. In this section we will explore how
one would approach this subject, what changes, and what remains from the Copenhagen
interpretation in Hilbert space. We will throughout this section introduce the Dirac
notation in our formalism3. Our formula (17) for finding phase space variables in terms
of quantum operators is then

f(q, p) =
1

πℏ

∫
dξ ⟨q + ξ| F̂ |q − ξ⟩ e−2iξ p/ℏ . (19)

Let |Ψ⟩ define a pure state in Hilbert space. We define the Wigner Function W as the
operator associated to the density matrix ρ̂ = |Ψ⟩ ⟨Ψ|:

W (x, p) :=
1

πℏ

∫
dξ ⟨q + ξ| ρ̂ |q − ξ⟩ e−2iξ p/ℏ = 1

πℏ

∫
dξ ψ(x+ ξ)ψ∗(x− ξ) e−2iξ p/ℏ

where we used the expression of the wave function in terms of brackets ψ(x) = ⟨x| Ψ⟩.
Wigner actually used this expression in the midst of finding quantum corrections for sta-
tistical mechanical processes. He sought an expression that captured QM in phase space.
Supposing that our quantum states are normalized, the Cauchy-Schwartz inequality gives

|W (x, p)| ≤ 1

πℏ

∫
dξ |ψ(ξ)|2 ⇐⇒ − 1

πℏ
≤ W (x, p) ≤ 1

πℏ
.

We can see that Wigner functions can only give localized distributions (i.e. Dirac deltas)
in the classical ℏ → 0 limit. Table 1 shows how one can recover basic properties of
QM in terms of Wigner functions, namely the normalization condition, orthonormality,
eigenvalue equations, time evolution, etc.

It can be shown that in phase space one can define uncertainty relations for real star-
square observables G(x, p) = g(x, p)∗ ⋆ g(x, p) [5]. Also, the harmonic oscillator is thor-
oughly worked in this framework in [13]. As expected, a discrete set of eigenfunctions is
obtained, but this time in terms of the Laguerre polynomials instead of Hermite.

To close this first part of our Quantization procedure, let us say a few words about the
hidden variables that we used in the previous section. It was John Bell [12] who in 1964
proved that Quantum Mechanics cannot be described by a local hidden variable theory.
By non-local, we mean that there exists a finite causal chain between events, and that the
causes and effects propagate at most at the speed of light. Our construction throughout
the text, on the other hand, is nothing more than a reformulation of QM, giving an origin
to the non-commutativity of physical observables. This non-commutativity would be as
fundamental as, for instance, the Riemann curvature tensor is in General Relativity. Both
objects capture the non-local effects of their respective theoretical frameworks. Indeed,
the non-commutativity of physical observables being endowed on our manifold globally,
makes itself manifest even at cosmological distances, in exactly the same way as ordinary
QM predicts.

3There are reasons to believe that over-relying on the Dirac notation can be mathematically obscure
as exposed in this lecture by Frederic P. Schuller. Nevertheless we shall make our notation as simple as
possible.
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Table 1: Equivalence between Deformation Quantization and other formulations of QM.

Phase Space Density Matrix Dirac Kets

1

2πℏ

∫
W (q, p) dqdp = 1 Tr(|ψ⟩ ⟨ψ|) = 1 ⟨ψ| ψ⟩ = 1

WE ⋆ WE′ = δE,E′WE |ϕi⟩ ⟨ϕi| ϕj⟩ ⟨ϕj | = δij |ϕi⟩ ⟨ϕi| ⟨ϕi| ϕj⟩ = δij

H ⋆WE = EWE − H |ϕE⟩ = E |ϕE⟩

H =
∑
E

EWE H =
∑
j

Ej |ϕj⟩ ⟨ϕj | −

iℏ
d

dt
Exp(Ht) = H ⋆ Exp(Ht) iℏ

dU

dt
= HU iℏ

d |ψ⟩
dt

= H |ψ⟩
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4 Spinors
We have seen how the Weyl map, toghether with Kontsevich’s construction give a well
defined mathematical framework for the quantization of a classical system. However,
there is still one big QM character that we have not put in the spotlight: spin. In this
section we shall show that the non-commutativity of, say, the Pauli matrices do not
correspond to a Hilbert space operator structure, nor to a star product, but to a Clifford
Algebra structure. At the level of Quantum Mechanics, spinors are geometrical objects
that are defined on Riemannian manifolds.

4.1 Review of Spinorial Matter

Talking about spin is talking about the representations (see A.4) of the group SO(3) on
finite dimensional complex vector spaces. Let Rϕ,n ∈ SO(3) be a rotation of an angle ϕ
around the n axis. Then RT

ϕ,n = Rϕ,n. What are the requirements that we wish to impose
on the representation U(Rϕ,n) that we seek? Firstly, it should be a linear and unitary
representation so that the norm of U(Rϕ,n) |ψ⟩ is equal to that of |ψ⟩, in complete analogy
with the natural R3 representation. Therefore, we require that U †(Rϕ,n) = U−1(Rϕ,n).
The remaining requirements we can obtain by investigating infinitesimal rotations:

(Rε,n)ij = δij + ωij where ωij = −ωji is of O(ε) .

Then this can be represented in C2 by

(U(Rε,n))a a′ = δa a′ +
i

2
ωij(J

ij)a a′ where (J ij)† = J ij.

We see that there are three independent coefficients ωij and therefore there must be
three generators of rotations in both R3 and Cn. Note that each J ij is itself a matrix.
Indeed, let J = (J23, J31, J12) = (J1, J2, J3), then it is a known result from elementary
QM [11] that [J i, J j] = iℏϵijkJk. This in turn yields the so called “quantization of
angular momentum”, by virtue of which there exist a non-negative half integer j such
that the operators J act on a 2j + 1 dimensional complex vector space. Each value of j,
corresponding to the eigenvalue of J2, furnishes an irreducible and unitary representation
of the rotation group in 2j +1 dimensions. Each representation will then be constructed
from the eigenstates of, say, J3, which span from −j to +j as their eigenvalue in integer
steps.

We see that the origin of the quantization of spin comes from the fact that we are trying
to represent the rotation group in a finite-dimensional complex vector space. We can go
back even further and recognize that SO(3) can be understood as the metric-preserving
transformations in euclidean space. Therefore, if we want to thoroughly describe spinors
at the level of the original manifold M we will have to incorporate some kind of structure
that uses the metric tensor g as a fundamental object in their understanding. Further-
more, when we perform a change of reference frame in our manifold, the value of the
spin (or the value of its 3-direction component) will change. This must be accounted for
in our picture if it is to yield a physical model. This is accomplished with the Clifford
algebra structure, which we will implement at the manifold level using a spinor bundle.
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4.2 Clifford Algebras

We start our journey defining the algebra that will account for the non-commutativity of
observables. For a deep dive on Clifford algebras from the physicist viewpoint, see [14,
15]. Let V be a vector space and let g : V ×V → R be a simetric bilinear form. Consider
the tensor algebra

T (V ) = R⊕
∞⊕
n=1

V ⊗n .

Then the Clifford algebra Cl(V, g) is defined as the quotient algebra

Cl(V, g) =
T (V )

⟨u⊗ v + v ⊗ u− 2g(u, v)⟩
. (20)

In particular, given an orthonormal basis {eα} with respect to the metric g, we can easily
check that ei ⊗ ei = gii and ei ⊗ ej = −ej ⊗ ei at the level of the Clifford algebra. With
this in mind we can define the so called plurivectors on V as elements of the form:

α 1 +
∑
i

aiei +
∑
i<j

αijei ej + · · ·+
∑

i1<···<is

αi1···isei1 · · · eis + · · ·+ α12···ne1 · · · en

where we understand the products e1 · · · ek as tensor products modulo the identification
in (20). Elements of the form αiei are called vectors, elements of the form αijeiej are
called 2-vectors, and so on. Note that the Clifford product respects a Z2 grading: even
products and odd products give even plurivectors, and even with odd (and vice-versa)
give odd elements. For instance, a plurivector in 3 dimensions has the form:

a0 + a1e1 + a2e2 + a3e3 + a12e1e2 + a13e1e3 + a23e2e3 + a123e1e2e3

where we identify i with the pseudoscalar component e1e2e3, since (e1e2e3)
2 = −1. Now

it is easy to check that eiej = δij + iϵijkek. This is a property satisfied by the Pauli
matrices σi. In other words, the Pauli matrices can be understood to represent a basis of
the Clifford Algebra of R3 equipped with the identity metric. Also:

(e1e2)
2 = (e2e3)

2 = (e1e3)
2 = (e1e2)(e2e3)(e1e3) = −1 . (21)

This is precisely the equation that describes quaternion multiplication. So we can identify
a scalar plus a 2-vector as a quaternion. Let’s now look at three-dimensional rotations of
vectors. For example, let v = a1e1+a2e2+a3e3. When rotated by 90 degrees around the z
axis the new components are v′ = −a2e1+a1e2+a3e3. By a straightforward computation
we see that

v e1e2 = −a2e1 + a1e2 + e1e2e3 ,

e2e1 v = −a2e1 + a1e2 − e1e2e3 .

If we apply both operations sequentially, we get e2e1ve1e2 = −a1e1 − a2e2 + a3e3. That
is, we obtain a rotation by 180 degrees! To fix this, remember that e1e2 corresponds to
a 90 degree rotation in the e1e2 plane, so it can be written as exp(e1e2 π/2). It can be
shown that when using exp(e1e2 π/4), that is, a half rotation instead of the original one,
we obtain the correct result. In general, to rotate a vector v an angle θ in the plane Î:

v′ = e−Î
θ
2 v eÎ

θ
2 .
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This equation actually works in any dimension. Note that the rotor eÎ
θ
2 rotates half as

fast as the vector, reminiscing of spinor rotations in Quantum Mechanics. Let us now
explain what just happened in Group Theory language. In our formalism of the Clifford
Algebras we wished to rotate vectors, which is accomplished via the action of the Lie
Group SO(3). We accomplished this by concatenating SU(2) rotations and therefore
constructing a group homomorphism between the two. As has been pointed out, the map
is not injective because the same rotation (0 and 360 degrees) in SO(3) yields different
rotations in SU(2). We say that SU(2) is the double cover of SO(3).

To be more mathematically precise, we define Pin(V ) to be the group generated by all the
unit vectors in V . Every element of Pin(V ) is of the form u1 · · ·ur with g(ui, ui) = ±1.
There is a well defined action Pin(V )× V −→ V given by

(p, x) 7→ −pxp−1 = 1

g(p, p)
pxp = x− 2

g(x, p)

g(p, p)
p . (22)

This is nothing more than a reflection on the hyperplane perpendicular to p. Since every
element of the orthogonal group is a product of a finite number of reflections, this yields
a group homomorphism Pin(V ) → O(V ). Then the spin group of V is the subgroup
Spin(V ) ⊂ Pin(V ), which is defined as the pre-image of SO(V ) under the above group
homomorphism. It follows that every element of Spin(V ) can be written as an even
number of unit vectors in V , because only an even number of reflections in equation (22)
will preserve the determinant of the transformation. Therefore, every element of Spin(V )
is of the form u1 · · ·u2p with g(ui, ui) = ±1. Moreover, it can be proven [16, 17] that the
spin group is a double cover of the special orthogonal group, because there is a two to
one correspondence between elements of Spin(V ) and elements of SO(V ) .

In conclusion, we have found that given a Clifford algebra structure we can construct
a corresponding spin group, which is inside the Clifford algebra. In the case of R3, we
heuristically obtained that the spin group must be SU(2). Now that the spin group is
defined, we have to incorporate it to a 3-dimensional manifold M with its metric tensor
such that it acts on C2 the most natural way and behaves “covariantly” under changes of
reference frame.

4.3 Principal and Associated Bundles

As we have mentioned, spinors are geometrical objects that arise from the geometry of
the manifold at hand. That is why we need to first be more aware of how to incorporate
symmetries in the context of fiber bundles.

Both the tangent and the cotangent bundle are examples of fiber bundles (see A.2). A
fiber bundle with typical fiber F , is a triple (E, π,M) where E is called the total
space and E the base space. Here, E,F and M are smooth manifolds. The projection
π : E −→ M is a smooth map between manifolds. The projection π must obey the
following property: there exist an open covering {Ui} of M and diffeomorphisms ϕi :
π−1(Ui) −→ Ui × F and a map π1 : Ui × F −→ Ui such that π1(m, f) = m ∀m ∈
M, f ∈ F . An intuitive drawing of this situation is depicted in Figure 1. Without loss
of generality, one can identify F as a fiber over each point. Such ϕi maps are called
trivializations. Now, if two open sets Ui , Uj cover a same point m ∈ M , is there a
concrete way in which we switch from a fiber point fi(m) associated to ϕi to a point
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fj(m) associated to ϕj in the fiber? The answer is that there exist transition maps
ρij : Ui ∩ Uj −→ Diff(F ) that assign to each point a certain transformation:

ϕj ◦ ϕ−1i (m, f) = (m, (ρij(m))f) . (23)

Figure 1: Intuitive image of fiber bundles.

A section of the fiber bundle E
π−−→ M is a smooth map σ : M −→ E such that

π ◦ σ = idM . We have already encountered sections since vector fields are sections of the
tangent bundle. Indeed the tangent bundle is an example of a vector bundle, where
the fiber F is just RdimM as a vector space.

A particular case of interest in theoretical physics arises when the typical fiber has the
structure of a group. A principal G-bundle is a fiber bundle (P, π,M) whose fiber is
the so-called structure group G. The trivializations ϕ : π−1(U) −→ U ×G depicted in
Figure 1 yield transition functions given by the left multiplication of A.4. More precisely,
let ρij : Ui ∩ Uj −→ G, then ρij acts on G by left multiplication and in the form of
equation (23). Also, from the trivializations we can construct a right action � (A.4)
such that:

p� g = ϕ−1i (ϕi(p) · g) where ϕi(p) · g = (p, h) · g = (p, h · g) (24)

for some h ∈ G. The right action is well defined since it is independent of the trivialization
that we choose. We see from equation (24) that this right action moves a point always
in the same fiber. That is to say, the fiber over a point is its orbit under the right action.
Since we defined the fiber to be G, then the orbit is homeomorphic to the group. This
implies that the action is free (see A.4 for definitions of orbit and free action). The key
idea of a principal bundle is that it encodes a locally trivial fibration of the total space
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P over the base space M, where the fibers are homeomorphic to the group G. In other
words, the structure of the total space is like a bunch of copies of the group G. The action
of G on these fibers will eventually represent the symmetries of the bundle.

Our principal bundle of interest from which we will construct the spinor bundle is the
orthonormal frame bundle, which we define at each point p ∈M to be homeomorphic
to the group of proper rotations.We write the fiber over each point as LpM . An intuitive
picture is the following: imagine that we attach at each point p in M a reference frame,
which is just a basis of TpM . It is convenient to import such reference frame from Rn:

LpM := {φ : Rdim(M) → TpM |φ orientation preserving diffeomorphism4} . (25)

Intuitively, we can think of φ as the matrix whose columns are the basis vectors of Rdim(M).
That way, one can also import a right SO(dim(M),R)−action given by φ � R = φ ◦ R
for R ∈ SO(dim(M),R). We typically write SO(3) ⟲ LpM . The reference frames can be
rotated but we will still be talking about the same point in our manifold. All the possible
rotations that one can choose live on the fiber above the point p. The frame bundle is
defined as:

LM =
⊔
p∈M

LpM . (26)

Just as with TM , one can equip LM with a smooth atlas inherited from M . We can also
establish a projection map: π : LM −→ M such that a basis {eα} of TxM is mapped to
x ∈M .

We would now like to associate a vector bundle to a principal bundle in a very specific
fashion, such that the changes in frames on the principal bundle affect the “vectors” on
the vector bundle. This is exactly what we want to do with a C2 vector bundle.

To do this, we will use the so called associated bundles (with respect to a principal
bundle). Given a G-principal bundle G ⟲ P

π−−→ M and a smooth manifold F on which
we have a left G-action � : G×F → F , we define the associated bundle P (F ) πF−−→M
as follows:

1. Let ∼G be the relation on P × F : (p, f) ∼ (p� g, g−1 � f) for some g ∈ G. Thus
consider the quotient space P (F ) := (P × F )/∼G

.

2. Define πF : P (F ) −→M by [(p, f)] 7→ π(p).

The sections σ : M −→ P (F ) of an associated bundle are in one to one correspondence
to F -valued functions ϕσ : P −→ F on the underlying principal bundle. This is of capital
importance to us because we will define spinors as sections of a F = C2 associated bundle,
which we are now sure that they will be C2- valued. In an abuse of notation, we represent
associated bundles with the diagram

F LM (F )

M

(27)

4.4 Spinor Bundles

Constructing spinor bundles from frame bundles and Clifford algebras is immediate. Let
M be an 3−dimensional Riemannian manifold endowed with a positive definite metric,
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and consider the orthonormal frame bundle LM
π−−→ M . This is a principal bundle

with structure group SO(3), the rotation group, which has a double covering spin group
Spin(3) = SU(2) contained in the Clifford algebra Cl(R3), as we obtained in subsec-
tion 4.2. A spin structure on M consists of a double covering

SU(2) ⟲ LMSpin SO(3) ⟲ LM

M

(2−1)

π (28)

such that LMSpin −→M is a principal bundle over M . Now let F = C2 be a vector space
on which we represent Cl(R3) via the Pauli matrices. This restricts to a representation
of the Spin Group ρ : Spin(3) = SU(2) −→ Aut(C2) (automorphisms, i.e. invertible
endomorphisms) such that this yields an associated vector bundle LM(C2), in the sense
of equation (27) with typical fiber C2, called the spinor bundle. An intuitive drawing
of a spin structure over a manifold is depicted in Figure 2. The fibers of this bundle is
what physicists call the internal space. Spinors are sections of the associated bundle, i.e.
complex 2-tuples that transform under SU(2) transformations, as we learn in elementary
QM textbooks. Note that in our formalism the non commutativity of the Pauli matrices
is of a fundamentally different nature from that of position and momentum.

Figure 2: Intuitive image of a spin structure.

That spinorial behaviour is intrinsically related to the symmetries of the underlying space-
time is a well known fact in modern fundamental physics. It was Wigner [18] who
developed a procedure to characterize elementary particles by how the Lorentz group acts
on some complex Hilbert space. Indeed, Quantum Field theory uses this exact scheme
to account for spinorial degrees of freedom but with the Lorentz group as the fiber of the
principal bundle. Yang-Mills theories are also based on this formalism. Indeed, to each
point we can associate a U(1)× SU(2)× SU(3) principal bundle [16].5

5For more information on the subject, see the notes available here.
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5 The Quantization Scheme
Over the course of the text, we have come up with a consistent quantization procedure
that captures the non commutativity of QM so that this feature can be traced back to
two different mathematical structures:

1. The non-commutativity of position, momentum, etc. can be explained by a non-
commutative star product structure (10) that, toghether with the Weyl quantization
maps (17) and (18) provide a Lie algebra homomorphism between the star product
algebra and the algebra of linear self-adjoint operators in Hilbert space.

2. The non-commutativity of spinorial operators can be explained by equipping our
manifold with a spinor bundle (27) inherited from a Clifford algebra structure and
from the metric preserving transformations of the manifold as in (28).

The situation is best represented by the following diagram:

Figure 3: Intuitive image of the quantization procedure.

We see that our manifold is equipped with a Poisson bracket {·, ·} and an SO(3) symme-
try in the form of a principal bundle with structure group inherited from a Riemannian
metric. The bivector is equivalent to a Poisson structure which by Kontsevich’s construc-
tion will define a star product ⋆ on the cotangent bundle. It is this star product which
gives rise to a Lie algebra homomorphism to a Hilbert space H. On the other hand, the
SO(3) symmetry, toghether with a Clifford algebra structure gives rise to a spin structure
mediated by the group SU(2) and represented on C2.

We can also extract some epistemological conjectures out of our work. The first one is that
a manifold with a symplectic/Poisson structure cannot by itself contain the information
necessary to describe quantum mechanical phenomena. In other words:

The information of a Quantum Theory cannot be extracted from Classical Mechanics
unless some mathematical structure is added.
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In order to make a consistent quantization procedure, we had to develop a non-commutative
star product, which carries the information of QM to phase space. This could be worse
because Kontsevich tells us that this extra structure is very closely related to the one we
already have.

Consistent quantizations require that the information of the theory is conserved. In other
words, a quantization map in which information is generated or lost will result in logical
contradictions. A consistent quantization procedure requires the classical theory to have
an equal amount of information on each space. This would be reasonable to expect of a
consistent mathematical formalism because the defect or excess of information in a map
will mean that it is not isomorphic.

A potential explanation given by Edward Witten in [19] would hinge of the fact that
the symmetry groups of Classical Mechanics and Quantum Mechanics are different. In
classical mechanics with a phase space T ∗M , the group of symmetries is the group of
canonical transformations of M . In quantum mechanics, the corresponding group is the
group of unitary transformations of a Hilbert space H. Since a classical system and its
quantization have different symmetry groups, there cannot be an entirely natural passage
from classical to Quantum Mechanics.

With regards with spinorial degrees of freedom, we have borrowed modern tools in mathe-
matical physics to understand these quantum internal degrees of freedom. We have found
that:

The non-commutativity of spinorial operators traces back to a Clifford algebra struc-
ture, while the non-commutativity of phase space operators trace back to a star prod-
uct. They are fundamentally different.
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6 Conclusion
In this work we provided a complete quantization procedure that allows for a reformu-
lation of classical mechanics without leaving the physical manifold of study, using novel
mathematical structures like star products, Clifford algebras, and fiber bundles, each of
which occupies its place in a consistent fashion. We have seen that consistent quanti-
zations necessarily require that we add extra structure on the manifold, and that the
structure for phase space observables like position and momentum is fundamentally dif-
ferent from that of spinorial observables like the Pauli matrices.

A promising topic for future research is whether there exists a consistent quantization
procedure using Deformation Quantization in Field Theory [20], which would spark ap-
plications in the quantization of curved-space time geometries [21] and eventually of the
gravitational field [22].

As a result of this work, we are left with a better understanding Quantum Theory and
its relationship with Classical Mechanics, enriching our comprehension of their intricacies
and paving the way for further investigation in the applications of our results to other
areas in Theoretical Physics.
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A Basic Concepts of Differential Geometry
We present basic concepts of Differential Geometry used throughout the text.

A.1 Manifolds and Tangent Space

Intuitively, a manifold M is a set that locally looks like Rd for some d, which is defined
as the dimension of the manifold. This correspondence between the M and Rd is ac-
complished by choosing a coordinate system. More precisely, ∀ p ∈ U ⊆ M there exists
a homeomorphism x : U → Rd. By doing this, the concepts like differentiability and
smoothness, which are well known for euclidean spaces, can be lifted up to a general
manifold. This homeomorphism x is called the coordinate chart map. The pair (U, x)
is called a chart.

Let M be a smooth manifold. Let γ : R −→M be a smooth curve through a point p ∈M .
Without loss of generality suppose p = γ(0). Then the tangent vector at the point p
along the curve γ is the linear map Xγ,p : C

∞(M) → R defined by Xγ,pf := (f ◦ γ)′(0).
Intuitively, it represents the velocity of the curve at a point. The tangent vector space
at a point p ∈M is defined as:

TpM := {Xγ,p | γ smooth through p} (29)

together with a point wise addition and s-multiplication. A fundamental theorem in
Differential Geometry states that the dimension of TpM , treated as a vector space, is the
same as that of M , treated as a manifold. A proof of this theorem can be found in [23,
24]. Since this is a vector space, it can be shown that every vector Xp in TpM can be
written in the form

Xp = Xa

(
∂

∂xa

)
p

a = 1 , . . . , n (30)

where the basis vectors depend on the choice of coordinates x that represent the manifold
on a chart, hence the name chart induced vector basis.

A.2 Tangent and Cotangent Bundles

Let M be a smooth manifold. Then the cotangent space is defined as T ∗pM := (TpM)∗.
That is, the elements of the cotangent space are linear maps from TpM to R. Similarly,
one can construct the set of all (r, s) tensors at p by creating copies of the tangent and
cotangent bundles. The cotangent bundle is the set

T ∗M :=
⊔
p∈M

T ∗pM =
⋃
p∈M

{p} × T ∗pM (31)

equipped with the projection π : T ∗M −→ M such that ωp 7→ p. We can define the
tangent bundle analogously. It can be shown that the (co)tangent bundle has indeed
the structure of a smooth manifold, so one can assign charts and coordinates to it. In
particular dim(T ∗M) = dim(TM) = 2dim(M). A vector field is a map σ : M → TM .
The set of all vector fields on TM is called

Γ(TM) := {σ :M −→ TM | π ◦ σ = idM} (32)
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on the other hand, a one form is an element of Γ(T ∗M). Let ϕ : M −→ M be a
smooth map between smooth manifolds. Then the push-forward ϕ∗ of the map ϕ is
ϕ∗ : TM → TN defined by ϕ∗(X)f := X(f ◦ ϕ). Intuitively, if X is tangent to a curve
γ, then ϕ∗(X) is tangent to ϕ ◦ γ. Similarly, the pull-back ϕ∗ of the map ϕ is the linear
map ϕ∗ : T ∗N −→ T ∗M defined by ϕ∗(ω)X := ω(ϕ∗(X))for some X ∈ Γ(TM).

One can generalize this concept to construct the tensor bundle T r
s (M) with the cor-

responding vector fields being the so called (r, s) tensor fields. Once this is constructed,
we clearly can identify T 1

0 (M) and T 0
1 (M) as TM and T ∗M , respectively.

A.3 Differential Forms and de Rham Cohomology

A (differential) k-form is a (0, k) tensor field that is totally anti-symmetric. Here 0 ≤
k ≤ n. We will write the set of all k-forms as Ωk(M) ∈ T 0

k . Also Ωk(M) = Γ(
∧k T ∗M).

Wehre the
∧k sign precisely meand rank k antisymmetric. The exterior product ∧ :

Ωk(M)× Ωm(M) −→ Ωk+m(M) is defined by:

(ω ∧ σ)(X1, . . . , Xk+m) :=
1

k!

1

m!

∑
π∈Perm(k+m)

sgn(π)(ω ⊗ σ)(Xπ(1), . . . , Xπ(k+m)) (33)

where Xi are vector fields on on M . For example, for k = m = 1 we have ω ∧ σ =
ω⊗ σ− σ⊗ ω. If ω ∈ Ωk(M) and σ ∈ Ωm(M) then ω ∧ σ = (−1)kmσ ∧ ω. The exterior
derivative operator transforms k-forms into (k + 1)-forms in the following manner:

(dω)(X1, . . . , Xk+1) :=
k+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , X̂i, . . . , Xk))+

+
∑
i<j

(−1)i+jω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j . . . , Xk) (34)

where the hat sign means the element is omitted. To give some meaning to this expression,
consider a one-form ω. Then exterior differentiation amounts to: dω(X, Y ) = X(ω(Y ))−
Y (ω(X)) − ω([X, Y ]). An important property of the exterior derivative is its behaviour
when differentiating a wedge product. If ω ∈ Ωk(M) and σ ∈ Ωm(M) then d(ω ∧ σ) =
dω ∧ σ + (−1)nω ∧ dσ.

LetM be a smooth manifold with or without boundary, and let p be a nonnegative integer.
Because d : Ωp(M) → Ωp+1(M) is linear, its kernel and image are linear subspaces. We
define:

Zp (M) = ker
(
d : Ωp(M)→ Ωp+1(M)

)
= {closed p-forms on M}

Bp (M) = im
(
d : Ωp−1(M)→ Ωp(M)

)
= {exact p-forms on M}

The fact that every exact form is closed can be written as Zp (M) ⊆ Bp (M). The de
Rham cohomology group in degree p of M is the quotient vector space:

Hp(M) =
Zp (M)

Bp (M)
(35)

The elements of Hp(M) are equivalence classes of forms [ω], called cohomology classes.
Two p-forms ω and ω′ are said to be equivalent if they differ by an exact form. The more
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elements in Hp(M), the more different forms that can’t be related by exact ones, so there
are many closed forms that are not exact. However, if all forms are exact, then they
are all related to one another by an exact form, so the cohomology group has only one
element, which we may call 0. An unexprected property of de Rham groups is that they
are topological invariants. This is rather remarkable because the De Rham cohomology
groups arise from the construction of the exterior derivative, which is an operator defined
locally. We find, however, that its properties when acting on forms on a given manifold
depend on the global features of the manifold itself.

A.4 Lie Groups

A Lie Group, (G, ·) is a group with a group operation · satisfying associative, neutral
element, and inverse properties, and where G has the structure of a smooth manifold.
Furthermore, the multiplication and inverse maps are smooth. For every g ∈ G we define
the left translation with respect to g as a map lg : G −→ G such that lg(h) := g · h.

Let (G, ·) be a Lie Group and let M be a smooth manifold. then a smooth map � :
G ×M −→ M such that: (i) e � p = p ∀ p ∈ M , where e is the neutral element in G;
and (ii) g2� (g1�p) = (g1 ·g2)�p ∀g1, g2 ∈ G is called a left G-action on the manifold
M . One can define a right G−action � :M ×G→M in an analogous manner. Also,
given a left action � one can induce a right action acting on p ∈M as p� g = g−1 � p.

• The orbit of p ∈M is defined as Op := {q ∈M | ∃ p ∈M, g ∈ G : q = g � p}

• For p, q ∈ M , let p ∼ q if ∃ g ∈ G : q = g � p. So points on the same orbit are
identified. Then we can define the orbit space as M/∼. Tipically one writes M/G.

• The stabilizer at a point p ∈M is defined as Sp := {g ∈ G |g � p = p} ⊆ G.

• An action is called free if ∀ p ∈ M : Sp = {e}. For a free G-action, each orbit Op

is a smooth manifold and can be homeomorphically identified with G.

Consider the one parameter subgroup {φt} of local transformations on M generated by a
vector field X. That is, take a point p in M and consider X at that point. Then there is a
unique integral curve to X at p. Then the function φt is a local transformation that acts
on p by φt(p) = q where q is another point of the integral curve with associated parameter
value t. It is easy to check that these operations form a one parameter subgroup. With
this notion of flow along an integral curve of a vector field, we can define the Lie
Derivative of a differential form as:

LXω = lim
t→0

φ∗tω − ω
t

(36)

Here we will only present two useful properties of the Lie derivative. One is Cartan’s
magic formula:

LXη = d(iX η) + iX(dη) ∀η ∈ Ωk(M) (37)

where the operator iX : Ωk(M) −→ Ωk−1(M) is defined by

(iXω)(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk−1) .
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B Rewriting of the Jacobi Identity for π
Throughout this section, let X i(M) denote the set of multivector fields over M .

In the same way that a vector field X ∈ X (M) can be identified with a derivation
dX : C∞(M) → C∞(M) on the algebra of smooth functions, a bivector field can be
identified with a multiderivation operation:

Lπ = {·, ·}π : C∞(M)× C∞(M) −→ C∞(M) such that {f, g}π = π(df, dg)

which is R-bilinear, skewsymmetric, and satisfies the Leibniz identity. Actually, one can
identify multivectors of degree k with k-multiderivations in the same fashion. Thus, this
{·, ·}π satisfies all the Poisson bracket conditions except the Jacobi identity. In order to
enforce this last condition we need to generalize the notion of Lie bracket of vector fields
to bivector fields, in a similar way in which the exterior derivative is a generalization
of the gradient for differential forms. This generalization is provided by the Schouten
bracket, which is the unique bilinear operation J· , ·K : X k+1 × X l+1 −→ X k+l+1 such
that it reduces to the Lie bracket for k = l = 0 and to the Lie derivative for k = 0, l = −1,
is graded skew-symmetric and satisfies the graded Leibniz identity and the graded Jacobi
identity. For bivector fields the Schouten bracket takes the following form:

JX0 ∧X1, Y0 ∧ Y1K = [X0, Y0] ∧X1 ∧ Y1 − [X0, Y1] ∧X1 ∧ Y0−
− [X1, Y0] ∧X0 ∧ Y1 + [X1, Y1] ∧X0 ∧ Y0 (38)

which is a trivector field. In the same way that we can calculate the Lie derivative of
a Lie bracket in terms of the commutator of Lie derivatives (??), the multiderivation
associated to the Schouten bracket Jπ, πK turns out to be:

LJπ,πK(f, g, h) = 2(Lπ(f, Lπ(g, h)) + Lπ(h, Lπ(f, g)) + Lπ(g, Lπ(h, f))) =

= 2({f, {g, h}π}π + {h, {f, g}π}π + {g, {h, f}π}π)

for all f, g, h ∈ C∞(M). So if we want our multiderivation Lπ = {·, ·}π to be a Poisson
manifold in its own right for all C∞(M) smooth functions we would want to require that
Jπ, πK = 0. Actually, on any manifold M , the relation π(df, dg) = {f, g} induces a one-
to-one correspondence between Poisson brackets on M and bivector fields π ∈ X 2(M)
satisfying Jπ, πK = 0. A bivector field π ∈ X 2(M) such that Jπ, πK = 0 is also called a
Poisson structure on M .
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C Details of Kontsevich Construction
In this section we try to explain how a bijection between multidifferential operators and
multivectors was constructed by Kontsevich.

Since from basic Differential Geometry a vector field X can be thought of as a differ-
ential operator we might guess that we can construct a map U

(0)
n by just applying the

multivectors:

X0 ∧ · · · ∧Xn(f0, . . . fn) 7→
∑

σ∈Sn+1

sgn(σ)Xσ(0)(f0) · · ·Xσ(n)(fn) (39)

To understand why this guess is wrong we need to first generalize the concept of Lie
algebra so that it can apply to our objects of study. For example, multivector fields,
which we may write as

V(M) =
⊕
i=−1

Γ

(
i+1∧

TM

)
=
⊕
i=−1

X i+1(M)

equipped with the Schouten bracket presented back in Appendix B, present a simple
example of a Graded Lie Algebra (GLA). If we wish to add a derivation d : V i → V i+1

such that d2 = 0, then we have a Differential Graded Lie Algebra (DGLA). In our case,
we will choose the d = 0 differential. Our bivector field π ∈ V1 then satisfies a Maurer
(MC) equation:

dπ +
1

2
Jπ, πK = 0

This equation is important because it is invariant under DGLA morphisms, and also
under gauge transformations of the diffeomorphism group that we mentioned back in
section 2. When creating a map between this space and that of the multidifferential
operators, we should be able to preserve the structure of this equation, and translate it
into a similar expression in the target.

We can proceed analogously and construct the GLA D of multidifferential operators,
which come from a restriction of the GLA of multilinear operators:

C =
∞∑

i=−1

HomK(C
∞(M)⊗(i+1), C∞(M))

with product structure induced by

ϕ ◦ ψ =
m∑
i=0

(−1)n·iϕ ◦i ψ for ϕ ∈ Cm+1 and ψ ∈ Cn+1

with induced Lie bracket [ϕ, ψ]C = ϕ ◦ ψ − (−1)mnψ ◦ ϕ6. It can be turned into a DGLA
by considering the multiplication operator m ∈ C1 defined by m(f, g) = f · g where
we use the commutative point-wise product in C∞(M). Note that the associativity of
m can be expressed as [m,m]C = 0. Then we can define the Hochschild differential
dm : Ci → Ci+1 as dmψ = [m, ψ]C . Thanks to the Jacobi identity it is easy to check that
dm◦dm = 0. Now consider a bidifferential operator B ∈ D1. Then we can consider m+B

6◦i is to be understood as having the ith entry of ϕ to be ψ(·).
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as a deformation of the original product. Note that since this product is to be associative
[m + B,m + B]C = 0, and since [m, B]C = [B,m]C = dmB then we have another MC
equation

dmB +
1

2
[B,B]C = 0

This should be invariant under DGLA morphism and under gauge transformations like
(8). Finally, we are ready to discuss what is wrong with (39), namely the fact that it
does not preserve the DGLA structure. For the n = 1 case we have that in general

U
(0)
1 J(X0 ∧X1), (Y0 ∧ Y1)K ̸= [U

(0)
1 (X0 ∧X1), U

(0)
1 (Y0 ∧ Y1)]C

which can be checked explicitly. This is a problem because it may happen that the MC
equation may fail to be satisfied and therefore we may break the symmetries that we
constructed for star products. However, the extra term we get in the right hand side is
exact in the cohomology of D (subsection A.3). This is crucial because there must be
some way of controlling this defect by treating the problem at the level of cohomologies.
We know that multivector fields are isomorphic to their own cohomology because d = 0.
If we can somehow relate them to multidifferential operators, then we can work with them
at the level of cohomology and the problem would be solved. The details of this final
part are out of the scope of this work, but the key point is that Kontsevich knew that
there was am isomorphism at the cohomology level between multidifferential operators
and multivectors. This result was already partially known, but by working at the DGLA
level nothing guarantees that there exist an quasi-inverse. By a quasi-inverse we mean
another map which at the cohomology level is precisely the inverse of the above mentioned
isomorphism.

However, a quasi-inverse can be constructed by equipping our DGLAs with the so called
L∞ structure. L∞ algebras are a generalization of DGLAs that have the ideal property
that their quasi-isomorphisms always have a quasi-inverse [25].

Finally, it can be shown that in the first equation in Appendix C the U1 term actually
corresponded to (39), so it can be interpreted as a first order approximation of the true
correspondence between algebras.
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