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English: Generalized geometry is a recent framework for geometric structures that naturally contains B-fields
appearing in bosonic sectors of superstring theories. We explain how the notion of generalized complex sub-
manifold extends the well-known A-type and B-type branes in topological string theories, thus suggesting the
existence of other types of branes for even-dimensional manifolds. On the other hand, Bn-generalized geometry
offers an extension of generalized geometry to manifolds of any dimension. In this work, we define a new notion
of Bn-generalized submanifolds and we discuss the conditions that arise in Bn-generalized complex submanifolds.
Català: La geometria generalitzada és un formalisme recent per estructures geomètriques que conté naturalment
els B-camps presents als sectors bosònics de teories de supercordes. Expliquem com la idea de subvarietats
generalitzades complexes estén la noció de branes de tipus A i de tipus B de les teories topològiques de cordes,
suggerint així l’existència d’altres tipus de branes en varietats de dimensió parella. Per una altra banda, la
geometria generalitzada de tipus Bn ofereix una extensió de la geometria generalitzada per a varietats de qualsevol
dimensió. En aquest treball, definim una nova noció de subvarietats generalitzades de tipus Bn i estudiem
l’estructura d’unes subvarietats complexes generalitzades de tipus Bn en particular.
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I. INTRODUCTION

Quantum Field Theory, which combines quantum me-
chanics with special relativity, is currently the best the-
ory describing particle physics. Its success relies on the
fact that, in most scenarios, the gravitational interaction,
not included in the classical Quantum Field Theory, is
extremely weak compared to the strong and electroweak
interactions. The addition of gravity makes it impos-
sible to have a static space-time background, which is
where Quantum Field Theories are built. Moreover, the
Coleman-Mandula theorem [1] states that in a relativis-
tic theory of interacting point-like particles, the Poincaré
and internal group symmetries cannot mix.

Branes in string theories

String theory allows to mix space-time symmetries
with internal ones because it is a quantum, interact-
ing and relativistic theory of, instead of point-like parti-
cles, one-dimensional objects (thus avoiding the hypothe-
sis of Coleman-Mandula theorem). These objects, called
strings, propagate through d+ 1-dimensional space-time
along world-sheets instead of the usual world-lines for
point-like particles. Closed strings are topologically a cir-
cle and their world-sheets are deformed cylinders, while
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the world-sheets of open strings are two-dimensional sur-
faces inside the background space-time. However, open
strings need boundary conditions that can be given in
terms of the derivatives of the position (Neumann bound-
ary conditions) or in terms of the position itself (Dirichlet
boundary conditions). When the boundary conditions for
d − p spatial coordinates are of Dirichlet type, the end-
points of open strings are fixed to some p+1-dimensional
submanifold, as represented in figure 1. These manifolds
are given the name of branes, or p-branes if we want
to specify its dimension. If all the coordinates have Neu-
mann boundary conditions, the endpoints of open strings
are free, which suggests the existence of space-filling d-
branes. Branes generalize point-like particle world-lines
and string world-sheets because the former is a 0-brane
and the latter a 1-branes.

Superstring theories are 10-dimensional supersymmet-
ric versions of string theories that prevent the appearance
of tachyonic particles otherwise present in other string
theories. In these supersymmetric theories, p-branes be-
come infinitely massive as the string coupling tends to 0,
with the only exception of fundamental strings, which
are 1-branes. This is why branes are not present at
the perturbative level, although they must be considered
when studying superstring theories non-perturbatively.
Different superstring theories have different bosonic and
fermionic fields, although they all contain the massless
bosonic fields Gµν , Bµν and ϕ. The first one is the met-
ric tensor, the second one is an antisymmetric 2-tensor
and the third one is the scalar dilaton (see, e.g., [2, Ch.
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Figure 1: Open and closed strings in presence of branes.

2]). The 2-tensor Bµν is also called the Kalb-Ramond
B-field and is the generalization of the electromagnetic
potential to the 2-dimensional world-sheet. Similarly
to how the electromagnetic field strength is defined by
F = dA, the field H = dB is the Neveu-Schwarz 3-form
field strength. Both the Neveu-Schwarz field strength H
and Kalb-Ramond B-fields arise naturally in the frame-
work offered by generalized geometry, a recent unifying
approach to geometric structures.

Currently, superstring theory has some problems to de-
scribe reality because, for instance, supersymmetry has
not yet been found in LHC experiments despite the ex-
pectation to discover it at the beginning. However, su-
perstring theories (and branes therein) seem to be good
candidates to help relating different fields in theoreti-
cal physics. In fact, AdS/CFT duality provides a link
between superstring theories in AdS background geome-
tries and (quantum) conformal field theories [3, Ch. 1].
An example of this duality is that N overlapping 3-
branes and the open strings that end there in the 10-
dimensional type IIB superstring theory are related to
the 4-dimensional SU(N) Yang-Mills conformal theory
with N = 4 supersymmetry [4]. This example links the
formalism of quantum conformal field theories to a pos-
sible description of quantum gravity in terms of super-
string theories in AdS backgrounds. For instance, black
hole and solitonic solutions for the background geome-
try metric on N overlapping 4-branes allow to explain
the transition between confined and deconfined states of
a 5-dimensional SU(N) supersymmetric Yang-Mills the-
ory. A similar transition has been observed in nature,
although the Standard Model is neither 5-dimensional
nor supersymmetric. However, some analogous relation
between the strong sector of the Standard Model and
geometric solutions of the metric on branes might help
understanding the phase transition.

On the other hand, topological string theories are a
type of string theories obtained from a topological twist
of a Calabi-Yau manifold, which is the target space of
these types of string theories. This topological twist can
be done in two different ways, leading to the A-model
and the B-model. The former is related to the symplec-
tic structure of the Calabi-Yau manifold and the latter
to its complex structure. Therefore, boundary conditions
for open strings that are consistent with the topological
twist give rise to A-type and B-type branes (see, e.g., [5,
Ch. 2]). In the topological B-model, branes turn out to be
complex submanifolds of the target Calabi-Yau manifold.
In the A-model, branes were initially considered to be La-
grangian submanifolds of the target manifold. However,
A. Kapustin and D. Orlov showed in [6] that more gen-
eral co-isotropic A-branes must be allowed in order for
the mirror symmetry conjecture to be true. Again, sym-
plectic and complex structures arise naturally in general-
ized geometry as particular cases of generalized complex
structures, and in a way that generalized submanifolds
allow to describe both A- and B-type branes.

Aim of this work

In this work we introduce the framework of general-
ized geometry, first introduced in [7] and developed in
[8]. It turns out that B-fields arise naturally in this
framework as orthogonal symmetries, and H-fields as a
twisted analog of the Lie bracket. Using structures that
generalize complex and symplectic structures, we focus
on submanifolds [8, Ch. 7] that allow us to describe A-
type and B-type branes of topological string theories. It
turns out that these generalized structures can only ex-
ist in even-dimensional manifolds. Therefore, general-
ized geometry does not allow us to build an analogous
notion of a brane in 11-dimensional M-theory. Due to
this fact, we present an extension of generalized geome-
try that does not have this restriction on the dimension.
This extension is called Bn-generalized geometry and was
first developed in [9]. Finally, we propose, as an origi-
nal contribution, a Bn version of the submanifolds that
describe topological branes, and discuss the conditions
arising from some Bn-generalized complex submanifolds.

Structure

Sections II and III are a brief summary of generalized
geometry. First, section II deals with the linear structure
on each generalized tangent space [10, Ch. 2]. Then, sec-
tion III extends the previous point-wise linear structures
to the corresponding global ones [10, Ch. 4]. Generalized
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submanifolds [8, Ch. 7] are defined in section IV and sec-
tion V introduces Bn-generalized geometry [9]. Finally,
section VI presents a proposal for the Bn-generalized ver-
sion of the submanifolds introduced in section IV. Finally,
we also include an appendix describing an alternative de-
scription of generalized complex structures that invokes
spinors. We give some proofs in the text, with no proof
environment, in order to keep the text lighter.

Notation and conventions

We work on the smooth category and assume famil-
iarity with basic differential geometry (see, e.g., [11] or
[12, Ch. 5]). Throughout the work M will denote a real
n-dimensional smooth manifold, x ∈ M a point on the
manifold, TM its tangent bundle and T ∗M its cotangent
bundle. Tangent vectors (elements of TM) and vector
fields (sections of TM) will be denoted by X or Y . Sim-
ilarly, ξ or η will denote elements or sections of T ∗M .
Real numbers or real-valued functions over M will be de-
noted by λ or µ. The interior product or contraction by
X will be denoted by ιX , and d will denote the exterior
derivative. The inclusion of a subspace U ⊆ W in W

will be denoted by ı : U → W . The dual or pull-back
map of a linear or smooth map h will be denoted by h∗,
and the push-forward or differential map by h∗. Finally,
sections of a bundle E will be denoted by Γ(E) and for
a shorthand notation, Ωr(M) = Γ(∧r(TM)).

II. GENERALIZED LINEAR ALGEBRA

Differential geometry is the study of geometric struc-
tures on M such as metrics, symplectic or complex struc-
tures. These structures are studied via the tangent bun-
dle. Generalized geometry, instead, studies structures on
its tangent plus cotangent bundle TM := TM ⊕ T ∗M .
Elements or sections of TM are of the form X = X + ξ

or Y = Y + η. In this section we study the linear algebra
on the generalized tangent space TxM at x ∈M .

A. Symmetric pairing and isotropic subspaces

At TxM there is a natural symmetric pairing ⟨·, ·⟩ given
by

⟨X + ξ, Y + η⟩ = 1

2
(ιXη + ιY ξ) .

This pairing has signature (n, n) and allows us to define
the orthogonal complement of a subspace W ⊆ TxM by

W⊥ = {X ∈ TxM : ⟨X,Y⟩ = 0 for all Y ∈W} .

The subspace W is called isotropic if W ⊆ W⊥, and
co-isotropic if W⊥ ⊆ W .An isotropic subspace is said to
be maximally isotropic if it is not strictly contained in
another isotropic subspace.

It can be shown that for a non-degenerate symmet-
ric bilinear form of signature (m1,m2), all maximally
isotropic subspaces have dimension min {m1,m2}, which
in the case of TxM implies that W is maximally isotropic
if and only if it is isotropic and dimW = n.

In fact, given a subspace W ⊆ TxM and an antisym-
metric 2-form ω ∈ ∧2W ,

L(W,ω) = {X + ξ ∈ TxM : X ∈W

and ξ|W = ιXω} (1)

is maximally isotropic and any maximally isotropic sub-
space of TxM is of this form [8, Prop. 2.6].

B. Orthogonal symmetries and B-transforms

Orthogonal symmetries of TxM are defined as linear
automorphisms of TxM that preserve the pairing, sim-
ilarly to how Lorentz symmetries of spacetime preserve
the Minkowski metric at each point. A type of these
symmetries extends the usual symmetries of TxM , and
are given by X + ξ 7→ A−1X +A∗ξ for A−1 ∈ GL(TxM).
Indeed, in this case

⟨A−1X +A∗ξ, A−1X +A∗ξ⟩ = ιA−1X(A∗ξ)

= ξ(AA−1X) = ξ(X)

= ⟨X + ξ,X + ξ⟩ .

These are the only symmetries that preserve the com-
ponents TxM and T ∗

xM . However, there are other sym-
metries that mix these components and therefore are
a new feature of the generalized setup. Letting B ∈
∧2(T ∗

xM) an antisymmetric 2-form and β ∈ ∧2(TxM) an
antisymmetric 2-vector, the linear automorphisms that
send X + ξ to X + ξ + ιXB and to X + ιξβ + ξ are also
symmetries of TxM . Indeed, for the first case,

⟨X + ξ + ιXB,X + ξ + ιXB⟩ = ιX(ξ + ιXB)

= ιXξ = ⟨X + ξ,X + ξ⟩
by antisymmetry of B, and similarly for the β case.
These types of symmetries are called B-transforms and
β-transforms, respectively, and are denoted by eB and
eβ .

Note that the image of a maximally isotropic subspace
of TxM under a symmetry is again maximally isotropic
because the pairing is preserved and the dimension is still
n. In fact, one gets that

eBL(W,ω) = L(W,ω + ı∗B) .
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C. Generalized linear complex structures

By analogy with complex structures, a generalized lin-
ear complex structure on TxM is defined as an endo-
morphism J ∈ End(TxM) such that J2 = − 11 and
⟨JX,X⟩ = 0 for all X ∈ TxM . A necessary and suf-
ficient condition for a generalized linear complex struc-
ture on TxM to exist is that n is even [8, Prop. 4.5].
In an even-dimensional vector space one can also con-
sider a usual complex structure J ∈ End(TxM) with
J2 = − 11, which gives the generalized complex structure
JJ on TxM that sends X + ξ to −JX + J∗ξ. Even-
dimensional vector spaces also admit a symplectic struc-
ture, i.e., a non-degenerate ω ∈ ∧2(T ∗

xM), and it gives
the generalized complex structure Jω on TxM that sends
X + ξ to −ιξω−1 + ιXω. Here, ω−1 is the 2-vector de-
fined by ιξω

−1 = X whenever ιXω = ξ, which always
exists due to the non-degeneracy of ω. Thus, generalized
complex structures put on the same footing complex and
symplectic structures in TxM .

Generalized linear complex structures can be for-
mulated in terms of the isotropic subspaces intro-
duced above. Indeed, the fact that J2 = − 11 yields
an eigenspace decomposition of the complexification
TxMC := {X+ iY : X,Y ∈ TxM}. Its ±i-eigenspaces
are

L = {X− iJX : X ∈ TxM}
L̄ = {X+ iJX : X ∈ TxM} .

Since J is a real endomorphism, L ∩ L̄ = {0} and, by
dimension, L and L̄ are maximally isotropic subspaces
of TxMC. Conversely, a maximally isotropic subspace
L ⊆ TxMC such that L ∩ L̄ = {0} is equivalent to a
generalized complex structure on TxM [8, Prop. 4.3].

Given a complex structure J on TxM , we denote its ±i-
eigenspaces as T (1,0)

x M and T (0,1)
x M , respectively. Then,

the +i-eigenspace of JJ is just T (0,1)
x M⊕(T

(1,0)
x M)∗. For

the case of Jω, the elements of its +i-eigenspace are of
the form XC − iιXCω for XC ∈ TxMC.

An arbitrary linear generalized complex structure J on
TxM determines disjoint symplectic n − 2r-dimensional
and complex 2r-dimensional subspaces of TxM for some
r called the type of J [8, Thm. 4.35].

III. GENERALIZED GEOMETRY

All the structures on TxM can be smoothly promoted
to structures on TM . In this sense, the pairing becomes

a C∞(M)-bilinear symmetric map

Γ(TM)× Γ(TM) → C∞(M)

(X,Y) 7→ (x 7→ ⟨Xx,Yx⟩) .

Analogously, maximally isotropic subbundles are bun-
dles where the sub-fibres are maximally isotropic. Or-
thogonal symmetries of TM are linear automorphisms on
each fibre. For example, f ∈ Diff(M) induces an orthog-
onal symmetry f∗ ∈ Γ(GL(M)) and B ∈ Ω2(M) encodes
a global B-transform. Finally, a linear generalized com-
plex structure on each fibre gives an almost generalized
complex structure since, as we will see, we have to add
an integrability condition.

A. Dorfman bracket and Courant algebroids

Recall that a Lie bracket is an antisymmetric bilinear
map on Γ(TM) satisfying the Jacobi identity and obey-
ing the Leibniz rule [X, fY ] = f [X,Y ] + X(f)Y . The
Dorfman bracket on Γ(TM) is defined as

[X + ξ, Y + η] = [X,Y ] + LXη − ιY dξ ,

where the bracket on vector fields is just the Lie bracket
and LX is the Lie derivative with respect to the field X.

It can be proven that [X, ·] is a derivation of the Dorf-
man bracket and of the pairing ⟨·, ·⟩. Moreover, using
Cartan’s formula LX = {d, ιX} on forms and antisym-
metry of the Lie bracket,

[X + ξ,X + ξ] = [X,X] + LXξ − ιXdξ

= diXξ = d⟨X + ξ,X + ξ⟩.

Let π : TM → TM be the canonical projection.
Then, the data (TM, ⟨·, ·⟩, [·, ·], π) is an example of what
is called a Courant algebroid. A Courant algebroid
(E, ⟨·, ·⟩, [·, ·], ρ) is a vector bundle E over M with a bun-
dle map ρ : E → TM called the anchor map, a sym-
metric non-degenerate bilinear form ⟨·, ·⟩ on E and a
bilinear bracket [·, ·] on Γ(E) such that for X ∈ Γ(E),
[X, ·] is a derivation of the form and the bracket, and
[X,X] = D⟨X,X⟩, where D = (2⟨·, ·⟩)−1π∗d.

It can be shown that in a Courant algebroid ρ([X,Y]) =
[ρ(X), ρ(Y)] and that the Leibniz rule [X, λY] = λ[X,Y]+
ρ(X)(λ)Y holds, for X,Y ∈ Γ(E) and λ ∈ C∞(M).

The Courant algebroid (TM, ⟨·, ·⟩, [·, ·], π) is, moreover,
a so-called exact Courant algebroid, that is, the anchor
map π is surjective and rkE = 2n. In fact [13, Letter 1],
it turns out that any exact Courant algebroid is isomor-
phic to (TM, ⟨·, ·⟩, [·, ·]H , π) for an H-twisted Dorfman



5

bracket

[X,Y]H = [X,Y] + ιπ(X)ιπ(Y)H ,

where H is a closed 3-form. Antisymmetry of H ensures
the twisted bracket [X, ·]H is a derivation of ⟨·, ·⟩, and the
closure of H is the necessary and sufficient condition for
it to be a derivation of [·, ·]H .

B. Generalized diffeomorphisms

Recall that a diffeomorphism f of M fulfils that
[f∗X, f∗Y ] = f∗[X,Y ] for the Lie bracket. Analogously,
a generalized diffeomorphism of M is defined as a diffeo-
morphism F : TM → TM that is a symmetry of TM
and additionally satisfies [F (X), F (Y)]H = F ([X,Y]H).
Let f ∈ Diff(M) and B ∈ Ω2(M), which makes both f∗
and eB symmetries of TM . Then the composition f∗e

B

that sends X + ξ to f∗X + (f−1)∗(ξ+ ιXB) can be com-
puted to obey

[f∗e
B(X), f∗eB(Y)]H = f∗e

B([X,Y]H)

+ (f−1)∗ιπ(Y)ιπ(X)(dB − (f∗H −H)) ,

which is a generalized diffeomorphism if and only if dB =

f∗H − H. In fact, by [8, Prop. 3.24], any generalized
diffeomorphism is of this form. Computing the action of
f∗e

B ◦ g∗eB
′
on an element X + ξ we get that it equals

(f∗e
B)(g∗X + (g−1)∗(ξ + ιXB

′))

= (f ◦ g)∗X + ((f ◦ g)−1)∗(ξ + ιXB
′ + ιX(g∗B)) .

Thus, the composition rule for generalized diffeomor-
phisms is f∗e

B ◦ g∗eB
′
= (f ◦ g)∗eg

∗B+B′
, and forms

the group GDiffH(M) =
{
f∗e

B : f∗H −H = dB
}

of
generalized diffeomorphisms on M . In particular, B-
transforms for B closed are generalized diffeomorphisms
taking f the identity. In fact, GDiffH(M) is an extension
of the subgroup of Diff(M) preserving the cohomology
class of H by the group of closed 2-forms.

C. Generalized complex structures

On the one hand, almost complex structures and
non-degenerate 2-forms become complex and symplec-
tic structures if an additional integrability condition is
satisfied. In the generalized geometry case, the integra-
bility condition is defined in terms of invariance under
the Dorfman bracket, in analogy to the integrability con-
dition of a complex structure in terms of the Lie bracket.
A subbundle L ⊆ TM is said to be integrable if for all
X,Y ∈ Γ(L), [X,Y]H ∈ Γ(L). Then, a generalized almost

complex structure J on TM is said to be integrable if its
+i-eigenbundle is integrable. These structures are called
generalized complex structures.

In the particular case of JJ , the +i-eigenspace is inte-
grable if and only if J is integrable on M and

LXη − ιY dξ + ιXιYH (2)

is in (T(1,0)M)∗. In particular, we can decompose d =

∂+ ∂̄ and noting that η is of complex type (1, 0) and X ∈
T(0,1)M , LXη = ιXdη = ιX ∂̄η. Moreover, being ∂̄η of
complex type (1, 1), J∗ιX ∂̄η = ι−JXJ

∗∂̄η = iιX ∂̄η and
similarly for ιY dξ. Therefore, the first two terms in (2)
already belong to (T(1,0)M)∗. Therefore, we only need
that J∗ιXιYH = iιXιYH, where only the components
of complex types (1, 2) and (0, 3) of H do not vanish
automatically. However, ιXιYH(0,3) is of complex type
(0, 1), so it must be 0. Finally, H must be of complex
type (2, 1) + (1, 2) since it is a real form.

For the case of Jω, the +i-eigenspace is integrable if
and only if [X−iιXω, Y −iιY ω]H is of the form Z−iιZω,
which is equivalent to

ι[X,Y ]ω = LXιY ω − ιY dιXω + iιXιYH .

This condition can be rewritten as ιY ιX(dω + iH) = 0,
which implies that ω is closed and H = 0.

Note that the generalized versions JJ and Jω are inte-
grable only if the complex or symplectic structures are
integrable. Then, generalized complex geometry is a
manifestly good formalism to study both complex and
symplectic structures.

IV. BRANES AS GENERALIZED
SUBMANIFOLDS

Recall, from the introduction, that a p-brane is a p+1-
dimensional submanifold Σ of the target space M . In
order for branes to be physical gauge-invariant objects,
they need to carry an additional gauge potential A ∈
Ω1(Σ). Under a gauge transformation by Λ ∈ Ω1(M),
the new gauge potential A and the background Kalb-
Ramond B-field transform as

B 7→ B + dΛ

A 7→ A− ı∗Λ ,

where ı is the inclusion TΣ ⊆ TM . This allows us to
build an intrinsic gauge invariant 2-form field C = ı∗B+

dA related to the brane. Therefore, a physical brane
consists of a pair (Σ, C), where dC coincides with the
Neveu-Schwarz field strength on Σ.
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When M. Gualtieri was searching for the right notion
of generalized submanifold in [8, Ch. 7], A. Kapustin em-
phasized that the gauge invariance above should be im-
portant in order that these submanifolds describe branes.
This motivated M. Gualtieri to give the following defini-
tions.

Given a closed H ∈ Ω3(M), the pair (Σ, C) is said
to be a generalized submanifold of (M,H) if dC =

H|TΣ, where Σ ⊆ M is a submanifold and C ∈ Ω2(Σ)

a 2-form. We can characterize branes in the language of
generalized geometry if we add, to each element X ∈ TΣ,
1-forms that extend ιXC ∈ Ω1(Σ). This is done with the
generalized tangent bundle of the brane, defined as

τCΣ := {X + ξ ∈ TM |Σ : X ∈ TΣ and ξ|TΣ = ιXC} .

Note that the fibres of τCΣ at x ∈ Σ are the maximally
isotropic subspaces L(TxΣ, Cx) of (1), so that τCΣ is a
maximally isotropic subbundle of TM |Σ. The image of
τCΣ under f−1

∗ eB is the generalized tangent bundle τ C̃
Σ̃

for
Σ̃ = f−1Σ and C̃ = f∗(C+ı∗B). Indeed, for X+ξ ∈ τCΣ ,

f−1
∗ eB(X + ξ) = f−1

∗ X + f∗(ξ + ιXB) ∈ TM |Σ̃ ,

where f−1
∗ X ∈ T Σ̃ and

f∗(ξ + ιXB)|T Σ̃ = f∗ιX(C +B|TΣ)

= ιf−1
∗ Xf

∗(C + ı∗B) .

Moreover, (Σ̃, C̃) is again a generalized submanifold if
f−1
∗ eB ∈ GDiffH(M), because

dC̃ = f∗(dC + ı∗ dB) = f∗(H|TΣ + dB |TΣ)

and H|T Σ̃ = f∗((f−1)∗H|TΣ). This gives infinitely many
generalized submanifolds: in particular, (Σ, C + ı∗B) for
closed B and f = id.

The generalized tangent bundle τCΣ is always integrable
because the restriction of the Lie bracket on any subman-
ifold is again the Lie bracket and

LXιY C − ιY dιXC + ιXιYH|TΣ

= LXιY C − ιY LXC = ι[X,Y ]C .

A-type and B-type branes, which appear in topological
string theories, are branes compatible with, respectively,
an underlying symplectic or complex structure. Recall
that these structures are particular cases of generalized
complex structures. Therefore, a generalized submani-
fold (Σ, C) is said to be invariant under a generalized
(almost) complex structure J if JτCΣ = τCΣ .

Having an almost complex structure J on M , a gen-
eralized submanifold (Σ, C) is invariant under JJ if and

only if −JX + J∗ξ ∈ τCΣ for X + ξ ∈ τCΣ . For this, −JX
needs to belong to TΣ again, which implies that J |Σ is
an almost complex structure on Σ. The second condi-
tion implies that J∗ιXC = ι−JXC, which is equivalent
to C(X,Y ) = C(JX, JY ) for all X,Y ∈ TΣ. In other
words, C must be of complex type (1, 1) on Σ. More-
over, if J is integrable, the +i-eigenbundle of J on M is
invariant under the H-twisted bracket, and therefore J |Σ
is also integrable. Finally, since H|TΣ = dC = ∂C + ∂̄C

and C is of complex type (1, 1), H|TΣ must be of com-
plex type (2, 1)+(1, 2). In the end, the complex structure
JJ |TΣ on TΣ is integrable on its own. In the case that
H|TΣ = 0, the complex submanifold Σ is endowed with
a holomorphic line bundle [8, Ex. 7.7], which is the de-
scription of B-type branes (see, e.g., [6, Sec. 2]).

For an almost symplectic structure ω on M , let
ω|−1

TΣ : T ∗Σ → TM/TωΣ be the linear map defined by
ω|−1

TΣ(η) =
[
ιξω

−1
]

whenever ξ|TΣ = η. This map is well
defined because if ξ|TΣ = 0, then ιξω

−1 ∈ TωΣ. Here,
[·] denotes the class of an element in the quotient vector
space. A generalized submanifold (Σ, C) is invariant un-
der Jω if and only if −ιξω−1 + ιXω ∈ τCΣ for X + ξ ∈ τCΣ .
This is equivalent to the linear map from TΣ/TωΣ to it-
self [X] 7→ −ω|−1

TΣ(ιXC) being well defined and an almost
complex structure. In particular, TωΣ ⊆ TΣ and Σ must
be a co-isotropic submanifold. We prove this equivalence
in the next two paragraphs.

Assume that for X + ξ ∈ τCΣ , Jω(X + ξ) ∈ τCΣ , which
means that Yξ = −ιξω−1 ∈ TΣ and ιXω|TΣ = ιYξ

C. Let
Z ∈ TωΣ, so that ιZω|TΣ = 0. Then ξ = 0 + ιZω ∈ τCΣ ,
and the conditions for these elements read Yξ = −Z ∈
TΣ and ιZC = 0. This implies that TωΣ ⊆ TΣ and
that C descends to the quotient TΣ/TωΣ. Therefore,
[π(JωX)] =

[
−ιξω−1

]
= −ω|−1

TΣ(ιXC) only depends on
[X] and the linear map [π(X)] 7→ [π(JωX)] is a well de-
fined endomorphism of TΣ/TωΣ. Finally, since Jω is
a generalized almost complex structure, the endomor-
phism is automatically an almost complex structure on
TΣ/TωΣ.

Conversely, suppose that the linear endomorphism
[X] 7→ −ω|−1

TΣ(ιXC) of TΣ/TωΣ is well defined and an
almost complex structure. For X + ξ ∈ τCΣ , we have
that

[
ιξω

−1
]
= ω|−1

TΣ(ιXC) ∈ TΣ/TωΣ, so ιξω−1 ∈ TΣ.
Being an almost complex structure, the class of Y =

−ιξω−1 ∈ TΣ must map to −ω|−1
TΣ(ιY C) and to −[X] at

the same time. This can only happen if X + Z = ιηω
−1

for some Z ∈ TωΣ and η such that η|TΣ = ιY C,
which implies that ιXω|TΣ = ιX+Zω|TΣ = ιY C. Then,
Jω(X + ξ) = Y + ιXω ∈ τCΣ and the generalized tangent
bundle is invariant under Jω.

In the case that C = 0, we have that TΣ/TωΣ must be
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trivial, and Σ becomes a Lagrangian submanifold with a
flat line bundle [8, Ex. 7.8], which was the usual descrip-
tion of A-type brane. However, more general co-isotropic
submanifolds seem to be another option for characteriz-
ing A-type branes. In fact, giving string theory argu-
ments, [6] proves that co-isotropic A-type branes must
also be allowed. In conclusion, generalized submanifolds
allow us to describe A-type and B-type branes under par-
ticular cases of J. Considering a general J, this formalism
suggests [14, Sec. 7.2] that a topological brane should be
more generally considered as a generalized submanifold
compatible with any complex structure J.

V. Bn-GENERALIZED GEOMETRY

Recall that generalized geometry allows us to study all
exact Courant algebroids, which are necessarily of even
rank. A Courant algebroid (E, ⟨·, ·⟩, [·, ·], ρ) is said to be
odd exact if ρ is surjective and rkE = 2n + 1. Sim-
ilarly to how exact Courant algebroids are isomorphic
to a twisted structure on TM , Bn-generalized geome-
try allows us to study all odd exact Courant algebroids.
In Bn-generalized geometry we add an additional trivial
rank-1 bundle R ×M to TM , so that it is extended to
E′ := TM ⊕ R×M ⊕ T ∗M . Elements or sections of E′

are of the form u = X + λ+ ξ for λ ∈ R or λ ∈ C∞(M).
The pairing is defined as

⟨X + λ+ ξ, Y + µ+ η⟩ = 1

2
(ιXη + ιY ξ) + λµ ,

which has signature (n+ 1, n).

Given a subspace W ⊆ TxM , ω ∈ ∧2W and δ ∈W ∗,

L(W, δ, ω) = {X + ιXδ + ξ ∈ E′
x : X ∈W

and ξ|W = ιXω − ιXδ · δ} (3)

is a maximally isotropic subspace of the fibre E′
x, and

any such subspace is of this form [9, Prop. 1.2].

Orthogonal symmetries include the previous symme-
tries of generalized geometry (diffeomorphisms and B-
transforms) and also an additional symmetry for A ∈
T ∗
xM sending u = X + λ+ ξ to u+ ιXA− (2λ+ ιXA)A

called an A-transform. It turns out that B- and A-
transforms commute. We denote the composition of both
of them by (B,A) and call it a (B,A)-transform. Being
orthogonal symmetries, (B,A)-transforms of maximally
isotropic subspaces are also maximally isotropic. In fact,

(B,A)L(W, δ, ω) = L(W, δ + ı∗A,ω + ı∗A ∧ δ + ı∗B) ,

where ı :W → TxM is the inclusion map.

In analogy to the standard case, a Bn-generalized al-
most complex structure is a maximally isotropic subbun-
dle L ⊆ E′

C such that L ∩ L̄ = {0}. Since E′
C has

complex rank 2n + 1, L ⊕ L̄ can be enlarged [9, Sec.
4.1.2] by the rank-1 real subbundle U = L⊥ ∩ L̄⊥ so that
E′

C = L ⊕ L̄ ⊕ U . The analogous endomorphism of an
almost complex structure J can be defined on E′

C by set-
ting L to be the +i-eigenbundle, L̄ the −i-eigenbundle
and U the 0-eigenbundle. This endomorphism F, ful-
fils F3 + F = 0 and has maximal rank, that is, 2n. It
can be proven that isotropy of L (and L̄) is equivalent to
antisymmetry of F with respect to the pairing. In conclu-
sion, an endomorphism F of E′ such that F3+F = 0, has
maximal rank at each point and ⟨Fv, v⟩ = 0, called an
F-operator, equivalently defines a Bn-generalized almost
complex structure.

For n even, given an almost complex structure J and
a 1-form σ such that σ ∧ J∗σ = 0, the map

FJ,σ : E′ → E′

X + λ+ ξ 7→ JJ(X + ξ)− 2λσ + ιXσ

is an F-operator that extends JJ . On the other hand,
given an almost symplectic structure ω and a vector field
Z, the map

Fω,Z : E′ → E′

X + λ+ ξ 7→ Jω(X + ξ) + ιZιXω · (1− Z)

+ (2λ− ιZξ)ιZω

is an F-operator that extends Jω. For n odd, there exist
contact and cosymplectic structures, which resemble the
complex and symplectic cases in even-dimensional man-
ifolds.

An almost contact structure on M is defined by a field
Z, a 1-form σ and an endomorphism ϕ of TM such that
ιZσ = 1 and ϕ2(X) = −X + ιXσ · Z. Note that in
this case, ϕ2(Z) = 0, which implies that ϕ(Z) = ιϕ(Z)σ ·
Z, and applying again ϕ we conclude that ϕ(Z) = 0.
Similarly, ϕ∗(σ) = 0, and if we let S = Z + σ, the map

Fϕ,S : E′ → E′

X + λ+ ξ 7→ −ϕX + ϕ∗ξ − λS+ ⟨X + ξ,S⟩
(4)

turns out to be an F-operator. An almost cosymplectic
structure is defined by a 1-form σ and a 2-form ω such
that σ∧ω n−1

2 is a volume form. In this case, there exists
a vector field Z defined by ιZω = 0 and normalized as
ιZσ = 1, and ιTMω has maximal rank, that is, n − 1.
Let S = Z + σ and let P be the linear map from T ∗M =

⟨σ⟩ ⊕ ιTMω to TM given by P (σ) = 0 and P (ιXω) =

−X + ιXσ · Z. Then, the map

Fω,S : E′ → E′

X + λ+ ξ 7→ P (ξ) + ιXω − λS+ ⟨X + ξ,S⟩
(5)
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turns out to be an F-operator.

On sections of E′, the Dorfman bracket is modified as

[X+λ+ξ, Y +µ+η] = [X+ξ, Y +η]+LXµ−ιY dλ+2µdλ,

which also makes (E′, ⟨·, ·⟩, [·, ·], π) a Courant algebroid
for the projection π : E′ → TM . The (F,H)-twisted
Dorfman bracket is defined, for a closed F ∈ Ω2(M) and
H ∈ Ω3(M) such that dH + F 2 = 0, as

[u, v]F,H = [u, v] + ιXιY (F +H) + 2(µιXF − λιY F ) ,

where u = X+λ+ξ and v = Y +µ+η. Again, [u, ·]F,H is
a derivation of ⟨·, ·⟩ due to the antisymmetry of H and F ,
and being a derivation of [·, ·]F,H is equivalent to closure
of F and dH + F 2 = 0. In fact, any odd exact Courant
algebroid is isomorphic to (E′, ⟨·, ·⟩, [·, ·]F,H , π) for some
F and H [15, Sec. 5].

Generalized diffeomorphisms now include some A-
transforms in addition to the elements in GDiffH(M).
Letting f ∈ Diff(M), B ∈ Ω2(M) and A ∈ Ω1(M), it
can be proven that, for u = X+λ+ ξ and v = Y +µ+η,

[f∗(B,A)(u), f∗(B,A)(v)]F,H − f∗(B,A)[u, v]F,H (6)

has a term 2(f−1)∗((λιY − µιX)(dA− f∗F + F )) that is
the only one depending on λ and µ. Therefore, dA =

f∗F − F , and in this case, the remaining term of (6) is

(f−1)∗ιY ιX(dB −A ∧ dA− 2A ∧ F − f∗H +H) .

In conclusion, the group of generalized diffeomor-
phisms GDiffF,H(M) is

{f∗(B,A) : f∗F − F = dA and
f∗H −H = dB −A ∧ dA− 2A ∧ F} ,

with the composition rule being f∗(B,A) ◦ g∗(B′, A′) =

(f ◦g)∗(g∗B+B′+g∗A∧A′, g∗A+A′) [16, Prop. 2.2]. In
particular, (B,A)-transforms are generalized diffeomor-
phisms for A closed and B such that dB = 2A ∧ F .

A Bn-generalized almost complex structure L is said
to be integrable if [u, v]F,H ∈ Γ(L) for all u, v ∈ Γ(L),
and it is called a Bn-generalized complex structure.

VI. Bn-GENERALIZED SUBMANIFOLDS

Here we propose, as an original contribution, the defi-
nition of Bn-generalized submanifolds. In section IV, we
saw that generalized submanifolds of (M,H) are pairs
(Σ, C) consisting of a submanifold Σ ⊆ M and a 2-form
C such that dC = H|TΣ. In Bn-generalized geometry, in

addition to a 3-form H, which is not necessarily closed,
we have a closed 2-form F such that dH + F 2 = 0.
In analogy, we define a Bn-generalized submanifold of
(M,F,H) as a triple (Σ, C, α) consisting of a subman-
ifold Σ ⊆ M , and forms C ∈ Ω2(Σ) and α ∈ Ω1(Σ)

satisfying some conditions related to F and H. By con-
sidering equal degree on forms, these relations should be
of the form

F |TΣ = a dα+ bC

H|TΣ = ã dC + b̃α ∧ C + c̃α ∧ dα ,

and imposing that the case F = α = 0 recovers the
condition dC = H|TΣ, we get that b = 0 and ã = 1.
Then, by a redefinition of α we might set a = 1 and,
recalling that dH + F 2 = 0, we get that

b̃(dα ∧ C − α ∧ dC) + c̃dα2 + dα2 = 0 .

Assuming that this has to be true for any F and H in
a manifold with dimension n > 3, we deduce that b̃ = 0

from the case F = 0 and that c̃ = −1 from the case
F 2 ̸= 0.

Consider a closed F ∈ Ω2(M) and H ∈ Ω3(M) such
that dH + F 2 = 0. Given a submanifold Σ ⊆ M , α ∈
Ω1(Σ) and C ∈ Ω2(M), we define the triple (Σ, α, C) to
be a Bn-generalized submanifold of (M,F,H) if

F |TΣ = dα and
H|TΣ = dC − α ∧ dα .

Recall that the fibres of τCΣ were the maximal isotropic
subspaces L(TxΣ, Cx) defined in (1), so the additional
form α suggests that we set the fibres of its Bn version
to be L(TxΣ, αx, Cx) defined in (3). Therefore, we define
the Bn-generalized tangent bundle as

τα,CΣ := {X + ιXα+ ξ ∈ E′|Σ : X ∈ TΣ

and ξ|TΣ = ιXC − ιXα · α} .

Just as in the standard case, it is a maximally isotropic
subbundle of E′|Σ and it can be proven to be integrable.
Indeed, the Lie bracket on M restricts to the Lie bracket
on Σ, the function part of [X + ιXα+ ξ, Y + ιY α+ η]F,H

is LXιY α− ιY dιXα+ ιXιY F |TΣ = ι[X,Y ]α and the form
part restricts to

LXη|TΣ − ιY dξ|TΣ + 2ιY α · dιXα+ ιXιYH|TΣ

+2(ιY α·ιXF |TΣ−ιXα·ιY F |TΣ) = ι[X,Y ]C−ι[X,Y ]α·α .

Let us study what happens with the image of X +

ιXα + ξ ∈ τα,CΣ under f−1
∗ (B,A)|Σ. First of all, letting
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Y + µ + η = f−1
∗ (B,A)|Σ(X + ιXα + ξ), we get that

Y = f−1
∗ X, so Y ∈ T (f−1Σ). Letting ı : TΣ → TM , for

the function part we get that

µ = f∗(ιXα+ ιXA|Σ) = ιf−1
∗ Xf

∗(α+ ı∗A) ,

and, for the form part, η|T (f−1Σ) equals

f∗(ξ|TΣ + ιXB|TΣ − (2ιXα+ ιXA|Σ) ·A|TΣ)

= ιf−1
∗ X(f∗(C + ı∗B))− ιf−1

∗ X(f∗α) · f∗α

− ιf−1
∗ X(f∗(2α+ ı∗A)) · f∗ı∗A . (7)

From the function part we get that f−1
∗ (B,A)τα,CΣ is

a generalized tangent bundle τ α̃,C̃f−1Σ if and only if α̃ =

f∗(α + ı∗A). However, equation (7) needs some more
work to deduce what C̃ should be. The last two terms of
(7) equal

− ιf−1
∗ X(f∗α) · f∗α− ιf−1

∗ X(f∗α+ α̃) · (α̃− f∗α)

= −ιf−1
∗ X(f∗α+ α̃) · α̃+ ιf−1

∗ X α̃ · f∗α

= −ιf−1
∗ X α̃ · α̃+ ιf−1

∗ X(α̃ ∧ f∗α) ,

and noting that α̃ ∧ f∗α = f∗(ı∗A ∧ α), it is clear
that C̃ = f∗(C + ı∗B + ı∗A ∧ α). In this case
again, (f−1Σ, α̃, C̃) is a Bn-generalized submanifold if
f−1(B,A) ∈ GDiffF,H(M). Indeed,

dα̃ = f∗(dα+ ı∗ dA) = f∗(F |TΣ + dA |TΣ)

= f∗((f−1)∗F |TΣ) = F |T (f−1Σ) ,

and

dC̃ − α̃ ∧ dα̃

= f∗(dC + ı∗dB − α ∧ dα− 2ı∗A ∧ dα− ı∗A ∧ ı∗dA)
= f∗(H|TΣ + dB|TΣ − 2A|TΣ ∧ F |TΣ −A|TΣ ∧ dA|TΣ)

= f∗((f−1)∗H|TΣ) = H|T (f−1Σ) .

Given an F-operator, the Bn-generalized submanifold
(Σ, α, C) is said to be invariant under F if Fτα,CΣ ⊆ τα,CΣ .
Let us study what are the conditions for particular F-
operators introduced in section V.

For Fϕ,S given in (4), recall that ϕZ = 0, ϕ∗σ = 0,
ϕ2X = −X + ιXσ · Z and (ϕ∗)2ξ = −ξ + ιZξ · σ. Then,
if u = X + ιXα+ ξ ∈ τα,CΣ , we get that

Fϕ,S(u) = −ϕX + ϕ∗ξ − ιXα · S+ ⟨X + ξ,S⟩ ,
F2
ϕ,S(u) = ϕ2X + (ϕ∗)2ξ − ⟨X + ξ,S⟩ · S

+ ⟨−ϕX + ϕ∗ξ − ιXα · S,S⟩
= −X + ιXσ · Z − ξ + ιZξ · σ
− ⟨X + ξ,S⟩ · S− ιXα .

Letting S̃ = −Z + σ, note that ιXσ − ⟨X + ξ,S⟩ =

⟨X + ξ, S̃⟩ and ιZξ − ⟨X + ξ,S⟩ = −⟨X + ξ, S̃⟩. Then,
imposing Fϕ,S(u),F

2
ϕ,S(u) ∈ τα,CΣ , invariance under Fϕ,S

is equivalent to the conditions

− ϕX − ιXα · Z, ⟨X + ξ, S̃⟩ · Z ∈ TΣ

⟨X + ξ,S⟩ = ι−ϕX−ιXα·Zα

ι⟨X+ξ,S̃⟩·Zα = 0

(ϕ∗ξ − ιXασ)|TΣ = ι−ϕX−ιXαZC − ⟨X + ξ,S⟩α
ι⟨X+ξ,S̃⟩·ZC = −⟨X + ξ, S̃⟩ · σ|TΣ .

(8)

First of all, if ⟨X + ξ, S̃⟩ ≠ 0 for some element, from
the first equation in (8) we get that Z ∈ TΣ, but then
from the last one in (8), contracting with Z we get that
⟨X + ξ, S̃⟩ = 0, which is impossible. Then, we must
have ⟨X + ξ, S̃⟩ = 0 for all elements, so that ⟨X + ξ,S⟩ =
ιXσ = ιZξ and the third and last equations in (8) become
trivial. In fact, in this case F2

ϕ,S = − 11 on τα,CΣ and S̃ is
orthogonal to τα,CΣ .

The first condition in (8) is equivalent to the fact that
the linear map ϕ̃ defined by ϕ̃X = −ϕX − ιXα · Z is
an endomorphism of TΣ. The second condition in (8) is
equivalent to ϕ̃∗α = σ|TΣ because we have that ιXσ =

⟨X + ξ,S⟩ = ιϕ̃Xα for all X ∈ TΣ. This last condition
is equivalent to ϕ̃ being an almost complex structure.
Note that, in particular, Σ must be even-dimensional.
The fourth condition in (8) is equivalent to C having
complex type (1, 1) with respect to ϕ̃. Indeed, for Y ∈
TΣ, contracting the fourth condition in (8) with ϕ̃Y ∈
TΣ we get that

ιϕ̃Y (ϕ
∗ξ)− ιXα · ιϕ̃Y σ = ιϕ̃Y ιϕ̃XC − ιϕ̃Xα · ιϕ̃Y α . (9)

Since ξ|TΣ = ιXC − ιXα · α and ϕϕ̃Y = Y − ιY σ · Z,
the first term in the left-hand side equals

ιϕϕ̃Y ξ = ιY−ιY σ·Zξ = ιY ξ − ιY σ · ιZξ

= ιY ιXC − ιXα · ιY α− ιY σ · ιXσ ,

where we have used that ιZξ = ιXσ and that ξ|TΣ =

ιXC − ιXα · α. Recalling that ϕ̃∗α = σ|TΣ, (9) becomes
ιY ιXC = ιϕ̃Y ιϕ̃XC, that is, C is of complex type (1, 1)

with respect to ϕ̃.

For Fω,S given in (5), recall that ιZω = 0 and P (σ) = 0.
Then, if u = X + ιXα+ ξ ∈ τα,CΣ , we get that

Fω,S(u) = P (ξ) + ιXω − ιXα · S+ ⟨X + ξ,S⟩ ,
F2
ω,S(u) = P (ιXω) + ιP (ξ)ω − ⟨X + ξ,S⟩ · S

+ ⟨P (ξ) + ιXω − ιXα · S,S⟩
= −X + ιXσ · Z − ξ + ιZξ · σ
− ⟨X + ξ,S⟩ · S− ιXα ,
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where we have used that ξ = ιZξ · σ + ιY ω for some
Y ∈ TM , so that ιP (ξ)σ = ι−Y+ιY σ·Zσ = 0 and
ιP (ξ)ω = ι−Y+ιY σ·Zω = −ιY ω = −ξ + ιZξ · σ. Note
that the expression for F2

ω,S(u) is identical to the F2
ϕ,S(u)

case. Then, imposing Fω,S(u),F
2
ω,S(u) ∈ τα,CΣ , invariance

under Fω,S is equivalent to

P (ξ)− ιXα · Z ∈ TΣ

⟨X + ξ,S⟩ = ιP (ξ)−ιXα·Zα

(ιXω − ιXασ)|TΣ = ιP (ξ)−ιXαZC − ⟨X + ξ,S⟩α ,
(10)

in addition to the previous conditions ⟨X+ξ, S̃⟩ ·Z ∈ TΣ

and the third and last equations in (8). Reasoning as
before, we conclude that ιXσ = ιZξ for all elements of
τα,CΣ (i.e., S̃ is orthogonal to τα,CΣ ) and F2

ϕ,S = − 11 at
τα,CΣ .

Let Tσ,ωΣ = kerσ ∩ TωΣ. Note that for X ∈ Tσ,ωΣ,
ξ = ιXω ∈ τα,CΣ and for this case the conditions read
P (ιXω) = −X ∈ TΣ, ιXα = 0 and ιXC = 0. Then,
Tσ,ωΣ ⊆ TΣ and α and C descend to the quotient
TΣ/Tσ,ωΣ. Let us see that the linear endomorphism
of TΣ/Tσ,ωΣ given by [X] 7→ [P (ξ)− ιXσ · Z] whenever
X+ιXα+ξ ∈ τα,CΣ is well defined. If ξ′ is another 1-form
such thatX+ιXα+ξ

′ ∈ τα,CΣ , we must have ξ−ξ′ ∈ τα,CΣ .
This implies that ιZ(ξ − ξ′) = ι0σ and ξ|TΣ = ξ′|TΣ, so
that

ιP (ξ−ξ′)ω|TΣ = (ξ′ − ξ + ιZ(ξ − ξ′) · σ)|TΣ = 0 ,

which means that P (ξ − ξ′) ∈ Tσ,ωΣ and the endomor-
phism is independent from the 1-form chosen. Moreover,
since α and C descend to the quotient, Tσ,ωΣ ⊆ τα,CΣ ,
which implies that [P (ξ)− ιXα ·Z] only depends on [X].
Finally, since the endomorphism is [π(u)] 7→ [π(Fω,S(u))],
it is automatically an almost complex structure.

Conversely, assume that u = X + ιXα + ξ ∈ τα,CΣ ,
that −Z + σ is orthogonal to τα,CΣ and that the endo-
morphism of TΣ/Tσ,ωΣ given by [X] 7→ [P (ξ)− ιXα ·Z]
is well defined and an almost complex structure. Let
Y = P (ξ) − ιXα · Z, which lies in TΣ by hypothesis,
and note that ιY σ = −ιXα. Let η ∈ Ω1(M) extend
ιY C−ιY α ·α so that Y +ιY α+η ∈ τα,CΣ . Since the endo-
morphism is an almost complex structure, [Y ] must map
to [P (η)− ιY α ·Z] and to −[X] at the same time, which
implies that X+X̃ = ιY α·Z−P (η) for some X̃ ∈ Tσ,ωΣ.
Then, contracting with σ we get that ιXσ = ιY α, and
contracting with ω,

ιXω|TΣ = −ιP (η)ω|TΣ = (η − ιZη · σ)|TΣ .

Using that ιZη = ιY σ = −ιXα we conclude that
Fω,S(u) = Y + ιXσ + ιXω − ιXα · σ ∈ τα,CΣ also, so
τα,CΣ is invariant under Fω,S.

In summary, a Bn-generalized submanifold (Σ, α, C)

is invariant under Fϕ,S if and only if ⟨S̃, τα,CΣ ⟩ = 0, ϕ̃ ∈
End(TΣ) given by ϕ̃X = −ϕX − ιXα · Z is an almost
complex structure and C is of complex type (1, 1) with
respect to ϕ̃. On the other hand, (Σ, α, C) is invariant
under Fω,S if and only if ⟨S̃, τα,CΣ ⟩ = 0 and the linear
endomorphism of TΣ/Tσ,ωΣ that sends [X] to [P (ξ) −
ιXα ·Z] whenever X+ ιXα+ξ ∈ τα,CΣ is well defined and
an almost complex structure.

VII. CONCLUSION

We have seen how generalized geometry serves as
a good mathematical framework to work with Kalb-
Ramond B-fields and the Neveu-Schwarz 3-form field
H in string theories. We have focused on how physi-
cal branes of topological string theories are described in
terms of generalized submanifolds invariant under partic-
ular generalized complex structures. Then, motivated by
the fact that generalized complex structures only exist
in even-dimensional manifolds, we have introduced the
Bn version of generalized complex structures that exist
in odd-dimensional manifolds. Finally, we have studied
the conditions that Bn-generalized submanifolds need to
fulfil in order to be invariant under two types of Bn-
generalized complex structures. This opens the way for
other possible branes that contain an additional gauge
invariant 1-form. On the one hand, the almost contact
structure case studied in section VI suggests that even-
dimensional branes embedded in odd-dimensional back-
ground geometries can also be described in terms of Bn-
generalized submanifolds. On the other hand, the almost
cosymplectic structure case suggests that there might ex-
ist other branes similar to the co-isotropic branes in odd-
dimensional background geometries.
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Appendix: A third point of view on generalized
complex structures

We describe here a third way to define generalized com-
plex structures that shows its interaction with the theory
of Clifford algebras and spinors. We will denote the sum
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of forms of arbitrary degree by ∧•(TM) and its sections
by Ω•(M).

1. Forms and Clifford action

Consider a form φ ∈ ∧•(T ∗
xM). The natural ac-

tion of an element of TxM is the interior product, and
the natural action of an element of T ∗

xM is the exte-
rior wedge product. Thus, it might be natural to con-
sider the R-linear action of TxM on ∧•(T ∗

xM) given by
(X + ξ) · φ = ιXφ + ξ ∧ φ. Recalling that the interior
product is antisymmetric on elements of ∧•(T ∗

xM), one
easily computes that for X = X + ξ,

X · (X · φ) = X · (ιXφ+ ξ ∧ φ) = ιx(ξ ∧ φ) + ξ ∧ ιXφ
= (ιXξ)φ = ⟨X,X⟩φ .

This action is called the Clifford action since bilin-
earity of the action implies that X · Y + Y · X acts on
∧•(T ∗

xM) as the scalar 2⟨X,Y⟩, which is the defining
property of a Clifford algebra. Being this the stan-
dard spin representation, elements on the exterior alge-
bra ∧•(T ∗

xM) are called spinors. Given a non-zero spinor
φ ∈ ∧•(T ∗

xM), consider its annihilator: the subspace
Ann(φ) = {X ∈ TxM : X · φ = 0}. This subspace is
isotropic because 0 = X · (X ·φ) = ⟨X,X⟩φ, which implies
⟨X,X⟩ = 0 since φ ̸= 0. Denoting by eB =

∑∞
j=0

1
j!B

j

where exponentiation is understood as repeated wedge
product with itself, e−B∧φ is said to be the B-action on φ
and one can prove that the B-transform of Ann(φ) is the
annihilator of the B-action on φ. A spinor φ is said to be
pure if Ann(φ) is maximally isotropic, which, as studied
in [17], happens if and only if φ is of the form eB ∧ψd for
B ∈ ∧2(T ∗

xM) and a decomposable ψd ∈ ∧•(T ∗
xM)\{0}.

Moreover, it is proven in [17, III.1.2] that any maximally
isotropic subspace of TxM is the annihilator of a pure
spinor line in ∧•(T ∗

xM). The degree of ψd, which equals
the degree of the lowest non-vanishing term of φ is said
to be the type of the pure spinor φ and, by extension,
the type of Ann(φ).

Let σ be the operator on ∧•(T ∗
xM) that extends lin-

early the index-reversing operator σ(ξ1 ∧ · · · ∧ ξk) =

ξk ∧ · · · ∧ ξ1. Then, one defines the Chevalley pairing
of two spinors φ,ψ to be

(φ,ψ) = (σ(φ) ∧ ψ) |top ,

where |top projects to the top-degree component of the
spinor.

2. Generalized linear complex structures

When it comes to characterizing a generalized complex
structure in terms of pure spinors, one can always choose
φ ∈ ∧•(TxMC) such that the +i-eigenspace of J at x
is L = Ann(φ) and L ∩ L̄ = {0} implies that (φ, φ̄) ̸=
0. Moreover, it can be proven that such a pure spinor,
up to a complex non-zero multiple, equivalently gives a
generalized complex structure. In the particular cases of
JJ and Jω, the corresponding pure spinors are a volume
form of T (1,0)

x M and eiω, respectively.

3. Generalized geometry

The Clifford action of X ∈ Γ(M) on φ ∈ Ω•(M) is
extended to the function x 7→ Xx · φx on M .

Letting dH = d+H∧ denote theH-twisted differential,
it is proven in [8, Prop. 3.44] that a maximally isotropic
subbundle L = Ann(φ) is integrable if and only if dHφ =

X · φ for some X ∈ Γ(TMC).

Imposing that the +i-eigenbundle of J is integrable can
be seen to be equivalent to the vanishing of theH-twisted
Nijenhuis tensor

NH
J (X,Y) = [JX, JY]H−J[JX,Y]H−J[X, JY]H−[X,Y]H .

4. Bn-generalized geometry

Denoting by τ the operation that sends an r-degree
form to (−1)r times itself, the Clifford action of X +λ+

ξ ∈ E′
x on φ ∈ ∧•(T ∗

xM) is ιXφ+ λτφ+ ξ ∧φ. Similarly
to the case in generalized geometry, u ·(v ·φ)+v ·(u ·φ) =
2⟨u, v⟩φ, so Ann(φ) is again an isotropic subspace of E′

x.
The (B,A)-action on φ is defined as e−(B+Aτ) ∧ φ, and
it can be proven that the (B,A)-transform of Ann(φ) is
the annihilator of the (B,A)-action on φ. Analogously,
Ann(φ) is maximally isotropic if and only if φ equals a
(B,A)-action on a non-zero decomposable form, and φ is
called a pure spinor. The Chevalley pairing depends on
the parity of n, since (φ,ψ) = (σ(φ) ∧ τnψ)|top.

Similarly, given a pure spinor φ ∈ Ω•(M,C), Ann(φ)
is a Bn-generalized almost complex structure if and only
if (φ, φ̄) ̸= 0, and a Bn-generalized almost complex struc-
ture is locally equivalent to a complex line of pure spinors.

The (F,H)-twisted differential dF,H = d + F ∧ τ +

H ∧ allows to characterize integrability of Ann(φ) in
terms of the pure spinor φ. A Bn-generalized almost
complex structure given locally by Ann(φ) is integrable
if and only if dF,Hφ = u · φ for some u ∈ Γ(E′

C) [9,
Prop. 4.15]. The spinorial viewpoint, although not used
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for generalized submanifolds, is a very good source of examples in the general theory.
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