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Abstract

In this thesis, we present a precise mathematical definition of the transformer

model in Natural Language Processing, exploring its main components: word em-

beddings, positional encoding, attention mechanisms, and position-wise neural

networks. Our work includes original examples, insights into the connection be-

tween mathematical formalization and the model’s requirements, and independent

calculations.
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1 Introduction

Natural Language Processing (NLP) is a branch of computer science focused on de-

veloping models and systems that equip computers with the ability to understand and

reproduce human language.

The origins of NLP date back to the 1950s with the development of machine translation

models [Joh+21]. These early models relied on manually programmed sets of complex

“underlying rules” governing human language. However, by the late 1980s, a paradigm

shift occurred within the theoretical framework of NLP with the conceptualization of

deep learning (DL) models. These models proposed the use of neural networks to learn

these “underlying rules” of natural language autonomously, without the need for explicit

programming [Bas+22]. It was not until the late 2000s that technological advancements

enabled the practical implementation of these theoretical DL language models, leading

to remarkable results in NLP tasks.

Over the years, various DL models have been proposed for NLP, being recurrent neural

networks (RNNs) [Sch19] and Long-Short Term Memory (LSTMs) [WJ16] the most im-

plemented examples. Despite their popularity, RNNs and LSTMs face limitations when

handling long sequences of text. To overcome these limitations, Vaswani et al. intro-

duced a novel architecture known as transformers in their seminal paper “Attention is

All You Need” (2017) [Vas+23]. Since then, transformers have become the foundation

of most large language models (LLMs) we have today, including the well-known GPT

(Generative Pre-Trained Transformer).

Despite the growing interest in transformer-based models and their various applications

[Udd+24; NCK20], the underlying mathematics behind these models have not been

thoroughly explored [Bec23; PH22]. In this work, we aim to provide a mathematical

perspective on transformers, delving into the key mathematical concepts that justify

their success in sequence processing, and particularly in NLP.

This work is structured to show how to successively build the different components

constituting the transformer’s architecture, culminating in a mathematical definition of

transformers. We will see that transformers are essentially parametric functions that

take a snippet of text as an input and return a probability distribution over the words of
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a fixed vocabulary. This distribution can then used to sample the next word during text

generation tasks.

We begin by reviewing supervised learning and neural networks, two foundational con-

cepts for understanding the transformer model. Then, we discuss text representation

techniques, delving into word embeddings and positional encoding. We continue with a

detailed discussion of the main components of the transformer, with a particular focus

on attention mechanisms. Finally, we explore how the transformer generates the output

distribution and we briefly discuss its training process.

2 Preliminary concepts

In this section, we review the foundational concepts of supervised learning and neural

networks. These two topics provide a solid theoretical background for understanding the

more advanced concepts discussed later in this work.

2.1 Supervised learning

Supervised learning (SL) is one of the three primary paradigms in machine learning (ML),

alongside unsupervised learning and reinforcement learning. In the most general setting

of SL, we are given a finite set of labeled data:

D = {(xi, yi)}Ni=1 ⊂ X × Y

where X is called the data space, and Y is the label space 1. We work with the hypoth-

esis that there exists an underlying relationship between the elements of X and Y , and
our objective is to infer this relationship based on the elements of D.

From a mathematical standpoint, we identify X and Y with Euclidean subspaces, X ⊂
Rm and Y ⊂ Rn, as this allows us to translate the problem of inferring this underlying

relationship between X and Y into a problem of approximating an underlying function

1The label set can either be a discrete or continuous set of labels.
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f ∗ : X → Y given a set of known points:

f ∗(xi) = yi ∀ (xi, yi) ∈ D.

In order to approximate this underlying function f ∗ : X → Y , we propose a model,

which is essentially a family of parametrized functions:

{f : Θ×X → Y}

where Θ ⊂ Rp is the parameter space. The choice of model is highly context-specific,

but in general we require f to be continuous and differentiable with respect to parame-

ters in Θ.

Definition 2.1. Given a model {fθ : X → Y , θ ∈ Θ}, a loss function is defined as

any function L : Θ −→ R that quantifies the error between the outputs of fθ and f ∗

for the elements of the labeled data set D = {(xi, yi)}Ni=1:

L(θ) = Error
[
{(fθ(xi), yi)}Ni=1

]
.

The choice of loss function is also context-specific, but, again, we generally require

continuity and differentiability with respect to the parameters. In this context, training

the model refers to finding the optimal parameters θ∗ ∈ Θ that minimize the loss

function:

θ∗ = argmin
θ∈Θ
L(θ).

The idea is that, if the choice of model is appropriate and D contains enough labeled

data points, then fθ∗ approximates f ∗ well, and, given an arbitrary x ∈ X , we can

“guess” its corresponding label accurately, i.e. fθ∗(x) ≈ f ∗(x).

Example 2.2. Suppose we have a data set D = {(xi, yi)}Ni=1, where xi is the square

footage of a house “i”, and yi is its actual market price. We propose a linear model:

{f(a,b)(x) = ax+ b, (a, b) ∈ Θ ⊂ R2}
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and we choose the mean-squared error as the loss function:

L(a, b) = 1

N

N∑
i=1

[(axi + b)− yi]
2 .

If there is indeed a linear relationship between square footage and house prices, then

by minimizing L we would find a pair of parameters (a∗, b∗) for which the loss function

tends to 0, and, given the square footage x of a new house, we could accurately predict

its market price by computing a∗x+ b∗.

Proposition 2.3 (Gradient descent algorithm). Let F : Rp → R be a continuous and

differentiable function in a neighbourhood of a point a0 ∈ Rp. Then, the direction of

steepest decrease of F is known to be given by −∇F (a0). From this, it follows that,

for a small enough step size γ ∈ R+, the following statement holds true:

a1 := a0 − γ∇F (a0) =⇒ F (a1) ≤ F (a0).

We can iterate this process obtaining {ai}mi=0, where

ai+1 := ai − γi∇F (ai)

and we have:

F (a0) ≥ F (a1) ≥ · · · ≥ F (am).

Proposition 2.3 provides a heuristic method, known as the gradient descent (GD), for

finding a local minimum of an arbitrary function F : Rp → R in the neighbourhood of

a point a0 ∈ Rp where F is differentiable. Since any loss function L(θ) is required to

be differentiable in Θ, applying the GD algorithm is a common approach for optimizing

models in SL.

2.2 Neural networks

Transformers are DL models and, as such, their architecture is based on neural networks.

Therefore, providing a solid mathematical background on neural networks is fundamental

for constructing a mathematical definition of transformers.
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Remark 2.4. In this work, we use the row vectors notation, i.e. x ∈ X ⊂ Rm is

expressed as:

x =
(
x1 x2 . . . xm

)
and, for M ∈Mm×q(R), the matrix acts on the right of x:

xM =
(
x1 x2 . . . xm

)


M11 M12 . . . M1q

M21 M22 . . . M2q

...
...

. . .
...

Mm1 Mm2 . . . Mmq

 = y ∈ Rq.

Definition 2.5. A p-depth neural network is a parametrized function Fθ : Rm → Rn

which consist of the composition of p functions called layers:

Fθ = Lp ◦ · · · ◦ L1.

Each layer Li : Rni−1 → Rni for i ̸= p is the composition of an affine transformation and

a non-polynomial function σi, called the activation function, which is applied element-

wise, whereas Lp : Rnp−1 → Rnp is simply an affine transformation. Abusing the

notation, this can be expressed as:

Li(x) = σi (xWi + bi) , i ̸= p

Lp(x) = xWp + bp

where Wi ∈ Mni−1×ni
are called weights matrices, and bi ∈ Rni bias vectors. The

parameters of neural networks are:

θ = {W (j,k)
i , b

(l)
i }

p
i=1

for j = 1, . . . , ni−1, and k, l = 1, . . . , ni.

Remark 2.6 (Graph-like representation of neural networks). Neural networks can effec-

tively be represented using graphs due to their structural similarities. For instance, for a

2-depth neural network:

Fθ : R3 L1−→ R4 L2−→ R2
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can be graphically represented as

L1 L2

where the nodes represent the inputs and the outputs of the layers, and the edges repre-

sent the components of the weights matrices. In these representations, the bias vectors

and the activation functions are often not explicitly depicted, although they are under-

stood to be present.

Once we have seen the graph-like representations of neural networks, we can provide a

brief justification of why they are called “neural networks”. The architecture of neural

networks is designed to mimic biological neurons: the nodes in the graph correspond to

the neurons in the brain, and the weighted edges represent the connections of variable

strength between them. Also, biological neurons only fire an electric signal to their

neighbours when they are sufficiently stimulated, and this is precisely the role that acti-

vation functions play in neural networks.

The following theorem expresses the power and adaptability of neural networks to virtu-

ally any type of SL setting:

Theorem 2.7 (Universal Approximation Theorem). Given a function f : K → Rn

where K ⊂ Rm is a compact set and any ϵ > 0, there exists a 2-depth neural network

Fθ : Rm → Rq → Rn with q sufficiently large such that:

sup
x∈K
∥f(x)−Fθ(x)∥ < ϵ.

From this theorem [Les+92] , it follows that any underlying function f ∗ : X −→ Y as-

sociated to a SL setting can be approximated arbitrarily well by a 2-depth neural network.
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To conclude this section, we will discuss the training process of neural networks. Due to

the layered structure of neural networks, applying the GD algorithm requires using the

chain rule multiple times to compute the gradient of loss functions.

Example 2.8. Consider the following 2-depth neural network:

R2 L1−→ R L2−→ R

with L1(x) = σ(z1(x)), L2(x) = z2(x), where σ is an arbitrary activation function. We

have defined z1(x) = xW1 + b1, z2(x) = w2x+ b2, where

W1 =

(
W

(1)
1

W
(2)
1

)
.

For simplicity, let us assume that our training set consists of a single element (x, y).

The output of our untrained neural network for the input x =
(
x1 x2

)
is:

ŷ = L2(L1(x)) = z2(σ(z1(x))).

To compute the gradient of the loss function L, we need the partial derivatives of L with

respect to the weights and biases. For the parameters of the first layer, W
(1)
1 ,W

(2)
1 , b1,

we have:

∂L
∂W

(j)
1

=
∂L
∂ŷ

∂ŷ

∂z2

∂z2
∂σ

∂σ

∂z1

∂z1

∂W
(j)
1

=
∂L
∂ŷ

w2σ
′(z1)xj

∂L
∂b1

=
∂L
∂ŷ

∂ŷ

∂z2

∂z2
∂σ

∂σ

∂z1

∂z1
∂b1

=
∂L
∂ŷ

w2σ
′(z1).

Now, for the parameters of the second layer, w2 and b2:

∂L
∂w2

=
∂L
∂ŷ

∂ŷ

∂z2

∂z2
∂w2

=
∂L
∂ŷ

σ(z1)

∂L
∂b2

=
∂L
∂ŷ

∂ŷ

∂z2

∂z2
∂b2

=
∂L
∂ŷ

.

Example 2.8 illustrates how computing the gradient of neural networks often involves

redundant calculations. Note how the term ∂L
∂ŷ

appears repeatedly in all the partial

derivatives of the weights and biases of the network. This redundancy might not be

7



significant in terms of computational complexity for simple neural networks like this one,

but for deeper neural networks with many layers, it becomes very inefficient.

Backpropagation is a technique that addresses this inefficiency by computing the partial

derivatives in reverse order, i.e. starting with the last layer and ending with the first. This

idea of “moving backward” in the neural network allows to reuse intermediate results of

the partial derivatives from one layer to compute the partial derivatives of the previous

layer (for further information, see [DMC23]).

3 Text representation techniques

In this section, we will delve into text representation techniques. First, we will discuss

word embeddings, which will enable us to mathematically represent the concept of se-

mantic similarity. Then, we will explore positional encodings, essential components in

transformers due to their non-sequential processing.

3.1 Word embeddings

The first step is defining the basic units of language using a large corpus of text. Let A
denote the alphabet of a language, i.e. the set of all characters in a language, and let

C0 denote a large corpus of text.

Let us note that the corpus of text C0 is a sequence of characters from A. With the

following method, we can create a set V , called the vocabulary, which will contain the

most common character patterns in C0. The elements of V , called the tokens, will be

the basic units of language.

1. Let us begin with an initial set V0 = A. Then, we identify the ordered pair of

characters (α, β) that occurs most frequently in C0.

2. We define V1 = V0 ∪ {αβ}, and C1 = C0((α, β) = {αβ}). Note how we have

included the group αβ to our vocabulary set, and we have created a new corpus

where the ordered pair (α, β) is now a single element αβ.
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3. We identify the ordered pair of elements of V1, (α′, β′), that occurs most frequently

in the new corpus C1, and we define V2 = V1∪{α′β′}, C2 = C1((α
′, β′) = {α′β′}).

4. We iterate this process, producing Vn, Cn from Vn−1, Cn−1, with |Vn| = |Vn−1|+1.

5. We terminate the process at Cm and V = Vm, with |V| = nvoc, where nvoc is a

prefixed integer.

Remark 3.1. We denote the set of tokens with {αi}nvoc
i=1 . These represent the patterns

of characters that occur most frequently in the given corpus of text. Therefore, tokens

can be single characters, segments of words, full words, or, in some cases, complete

phrases. For simplicity, in this work we will usually assume that tokens represent full

words, but it is important to bear in mind that the notion of token extends beyond single

words.

Example 3.2. Let us consider the following alphabet A = {a, b, c}, and let us sup-

pose we are given a corpus C0 = abacabbc. The ordered pair of characters that occurs

more frequently is (a, b), which we can find twice in the corpus C0. Thus, we define

V1 = {a, b, c, ab}, and we create a new corpus where ab is now a single element, which

we will denote with ab. With this, we have that the new corpus is C1 = abacabbc.

Now, in C1 all pairs of elements of V1 occur just once. In this case, we can take the

pair that occurs first, (ab, a), and define V2 = {a, b, c, ab, aba}. We repeat these steps,

updating the vocabulary and the corpus at each iteration, until we reach a vocabulary

of a predetermined size, nvoc.

The next step is identifying tokens with vectors in a Euclidean space. One way to do

this is by fixing a one-to-one mapping Γ between the set of tokens, {αi}nvoc
i=1 , and the

standard orthonormal basis of Rnvoc , {ej}nvoc
j=1 .

Note that there are nvoc! possible mappings, but for simplicity we will consider the

mapping:

Γ(αi) = ei, ∀ i = 1, . . . , nvoc.

This mapping is called one-hot encoding, and {ei}nvoc
i=1 is the set of one-hot vectors. The

term “one-hot” is used to indicate that these vectors only have a ’1’ in the component

corresponding to the index of the token within the vocabulary, while the rest of the

components are ’0’.
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One-hot vectors (nvoc = 3)

V = {α1, α2, α3}

Γ

e1 e2

e3

One-hot encoding provides a straightforward method for obtaining vector representations

of tokens, but it has its limitations. For one thing, one-hot vectors are very sparse in

nature, which can lead to inefficient storage and computation, especially for large vocabu-

laries. Furthermore, one-hot encoding lacks a built-in mechanism for capturing semantic

similarity2 between tokens, as each token is represented as an independent index within

the vocabulary. To address these limitations, we turn to the concept of word embeddings.

Definition 3.3. A word embedding is a projection matrix with trainable entries:

WE : Rnvoc −→ Rd

where d < nvoc is called the dimension of the embedding.

Remark 3.4. Notice how a matrix with trainable entries can be understood as a 1-depth

neural network with no bias vector.

2Semantic similarity refers to the degree to which two tokens can convey similar meanings in a given
linguistic context.
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Definition 3.5. We refer to {wi}nvoc
i=1 , where wi = eiWE, as the set of embedding vec-

tors. Note that embedding vectors are the rows of the embedding matrix WE.

Embedding vectors (d = 2)

w1

w2

w3

Word embeddings reduce the dimensionality of one-hot vectors by projecting them into

a lower-dimensional Euclidean space, Rd. More importantly, word embeddings learn to

perform these projections in such a way that semantically related tokens are brought

“closer” together in Rd. This notion of “closeness” refers to the geometrical proximity

between embedding vectors in Rd, typically defined in this context by means of the dot

product. By assigning close vectors to related tokens, we ensure that semantic similarity

is rooted in the geometry of the new representation space.

There exist various techniques for training word embeddings, each with its own advan-

tages and specific applications [Nas+20]. Two prominent examples of these techniques

are Continuous-Bag-of-Words (CBOW) and the Skip-gram, both pertaining to the frame-

work known as Word2Vec, proposed by Mikolov et al. in 2013 [Mik+13].
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The Skip-gram model

The Skip-gram model is built upon the distributional3 hypothesis, which states that

tokens frequently co-occurring within a corpus of text tend to be semantically related.

Leveraging this hypothesis, the model learns efficient word embeddings by predicting

surrounding tokens given a target token within a corpus of text.

The Skip-gram model, although not a classification model in the traditional sense, shares

a similar structure, since it involves predicting a set of surrounding tokens from a fixed

vocabulary given a target token, which is analogous to predicting classes given an input

in classification models. This similarity also extends to the transformer model, where we

try to predict the next token for a given sequence. Therefore, it is beneficial to briefly

discuss the general procedure in classification models.

In a classification setting, we have a set with N data points, {xi}Ni=1 each belonging to

one of k classes. In the notation of the previous section, the label space in this setting

is a discrete set Y = {y(1), . . . , y(k)}. For each input example xi, a classification model

typically outputs a k-dimensional vector of the so-called logits:

zi =
(
z
(1)
i . . . z

(k)
i

)
.

Here, z
(j)
i is called the logit corresponding to the j-th class for the i-th data point. These

logits can be interpreted as scores assigned by the model, representing how “confident”

it is that the i-th data point actually belongs to the j-th class. However, logits can be

negative or arbitrarily large, which poses issues in terms of interpretability of the model.

Definition 3.6. Given v =
(
v(1) . . . v(k)

)
∈ Rk, we define the softmax function as:

softmax(v) =
1∑k

l=1 e
v(l)

(
ev

(1)
. . . ev

(k)
)
.

Note that the output of the softmax is a k-dimensional vector whose components are

between 0 and 1, and they all sum up to 1. Therefore, the output of the softmax is a

valid probability distribution.

3Here, the term “distributional” refers to the allocation of tokens within a corpus of text, rather
than to probability distributions.
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The vector of logits is passed through a softmax function, obtaining a probability distri-

bution over the k classes for the i-th data point:

softmax(zi) =
1∑k

l=1 e
z
(l)
i

(
ez

(1)
i . . . ez

(k)
i

)
:=
(
p(y(1) | xi) . . . p(y(k) | xi)

)
.

Finally, in order to predict the class of xi, the classification model chooses the class with

the highest probability:

prediction for xi = argmax
j

p(y(j) | xi).

These probabilities p(y(j) | xi) actually depend on the parameters of the model, θ ∈ Θ.

We will denote this as usual by writing pθ(y
(j) | xi). To train the model, we want

to maximize the probability of the actual class of xi, which we will denote with yi.

Therefore, we choose the loss function for a single data point xi to be:

li(θ) = − log pθ(yi | xi).

This loss function, known as cross entropy, heavily penalizes the model when the proba-

bility assigned to the actual class is close to 0, since the log makes the expression go to

+∞.

Now, considering all the data points {xi}Ni=1, the loss function of the model is:

L(θ) =
N∑
i=1

li(θ) = −
N∑
i=1

log pθ(yi | xi).

This loss function is then minimized using the GD algorithm, obtaining the optimal pa-

rameters for classification.

Going back to the Skip-gram model, let us consider a corpus of text C = (αit)
T
t=1. For

each possible target token αit in the corpus , we want to predict its surrounding tokens

within a context window of size 2c, for some c ∈ N.

αit−c
. . . αit−2

αit−1 αit αit+1
αit+2

. . . αit+c

The Skip-gram model computes logits for each token in the vocabulary relative to the
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given target token using the dot product of their embedding vectors:

z
(j)
t = ⟨wj,wit⟩, j = 1, . . . , nvoc.

Using the dot product of the embeddings to compute the logits aligns with the distri-

butional hypothesis, assigning higher probability of occurrence to those tokens that are

semantically related to the target token.

With this, for each target token we obtain a probability distribution over the vocabulary:

pθ(αj | αit) =
e⟨wj ,wit ⟩∑nvoc

l=1 e
⟨wl,wit ⟩

, j = 1, . . . , nvoc

and the predicted surrounding tokens will be the 2c tokens with the highest probabilities.

We are interested in maximizing the probability of predicting all the actual neighbours,

and therefore we must consider their joint probability. Assuming that the probabilities

are conditionally independent, we have:

pθ(αit−c , . . . , αit−1 , αit+1 , . . . , αit+c | αit) =
c∏

j=−c
j ̸=0

pθ(αit+j
| αit).

The loss function for a single target token is then:

lt(θ) = − log pθ(αit−c , . . . , αit−1 , αit+1 , . . . , αit+c | αit) = −
c∑

j=−c
j ̸=0

log pθ(αit+j
| αit)

= −
c∑

j=−c
j ̸=0

⟨wit+j
,wit⟩ − log

nvoc∑
l=1

e⟨wl,wit ⟩

︸ ︷︷ ︸
no dependence on j

 = 2c log
nvoc∑
l=1

e⟨wl,wit ⟩ −
c∑

j=−c
j ̸=0

⟨wit+j
,wit⟩.
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Therefore, summing over all possible target tokens, we have:

L(θ) =
T∑
t=1

lt(θ) =
T∑
t=1

2c log nvoc∑
l=1

e⟨wl,wit ⟩ −
c∑

j=−c
j ̸=0

⟨wit+j
,wit⟩

 .

Next, we present the computation of∇L(θ) performed independently by the author. The

partial derivative of L(θ) with respect to one component w
(k)
p of an arbitrary embedding

vector wp is given by:

∂L
∂w

(k)
p

=
T∑
t=1

2c ∂

∂w
(k)
p

log
nvoc∑
l=1

e⟨wl,wit ⟩

︸ ︷︷ ︸
I

−
c∑

j=−c
j ̸=0

∂

∂w
(k)
p

⟨wit+j
,wit⟩︸ ︷︷ ︸

II

 .

Computing I, we obtain:

∂

∂w
(k)
p

log
nvoc∑
l=1

e⟨wl,wit ⟩ =
1∑nvoc

l=1 e
⟨wl,wit ⟩

nvoc∑
l=1

e⟨wl,wit ⟩
∂

∂w
(k)
p

⟨wl,wit⟩

=
1∑nvoc

l=1 e
⟨wl,wit ⟩

nvoc∑
l=1

e⟨wl,wit ⟩
(
δp,lw

(k)
it

+ δp,itw
(k)
l

)
=

1∑nvoc

l=1 e
⟨wl,wit ⟩

(
e⟨wp,wit ⟩w

(k)
it

+
nvoc∑
l=1

e⟨wl,wp⟩w
(k)
l

)

where δij denotes Kronecker’s delta.

Computing II, we obtain:

∂

∂w
(k)
p

⟨wit+j
,wit⟩ = δp,it+j

w
(k)
it

+ δp,itw
(k)
it+j

.

Substituting I and II into the expression for ∂L
∂w

(k)
p

, we obtain an explicit form for the

partial derivatives of the loss function in the Skip-gram model. This allows us to apply
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the GD algoritm to optimize the components of the embedding vectors.

Now that we have seen how to train word embeddings, for any given snippet of text

s = (αi1 , . . . , αiN ), N ∈ N, we can use the trained word embedding WE to represent s

as a sequence of trained embedding vectors:

W (s) = (wi1 , . . . ,wiN )

where W (s) is called the semantic representation of the text snippet s. It is common to

write W (s) in matrix form:

W (s) =

← wi1 →
...

...
...

← wiN →

 .

3.2 Positional encoding

Transformers will offer a key feature known as parallel processing. Parallelization is a

paradigm in computer science that involves performing operations simultaneously on a

set of elements. In our context, this means that the embedding vectors wik correspond-

ing to the rows of W (s) will not be processed by the transformer one by one, but rather

all at once. This approach provides a significant speed-up in both output generation and

training time compared to preceding NLP architectures [SHT24]. However, because of

this non-sequential processing, the transformer has no reference of the position of the

tokens within the sequence. This suggests that positional information must be added to

the semantic representation W (s).

In order to do this, we take the embedding vector wik in the sequence, and we add a

d-dimensional real-valued vector pik
. This vector pik

is called the positional vector of

αik , and it encodes positional information of αik . By adding this positional vector to the

embedding vector, we obtain a new representation:

uik = wik + pik

which now encodes semantic and positional information of αik . In matrix form, this

corresponds to adding a positional matrix P (s) to the embedding representation W (s),
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obtaining a new representation:

U(s) = W (s) + P (s) =

← wi1 →
...

...
...

← wiN →

+

← pi1 →
...

...
...

← piN
→

 =

← ui1 →
...

...
...

← uiN →

 .

The matrix U(s) is called the semantic-positional representation of s, and uik is called

the semantic-positional vector of αik .

A first approach would be to add the absolute position of each token within the sequence

to the embedding representation. Namely, the matrix P (s) would be:

P (s) =


1 1 . . . 1

2 2 . . . 2
...

...
. . .

...

N N . . . N

 .

However, for long sequences with N ≫ 1, the positional vectors for the last tokens in the

sequence would have very large components compared to the corresponding embedding

vectors. This imbalance can cause semantic information to become less relevant or even

neglegible for the model. Therefore, one desired property of positional vectors is that

they are properly scaled.

To this end, we can normalize the elements of P (s) by dividing all the components by N :

P (s) =


1/N 1/N . . . 1/N

2/N 2/N . . . 2/N
...

...
. . .

...

1 1 . . . 1

 .

This would certainly solve the scaling problem, but it raises another issue. Note that, for

a sequence of 3 tokens, that is N = 3, the positional information added to the second

token would be p2 = 2/3. Now, for a sequence of 6 tokens, N = 6, the positional

information added to the second token would be p′2 = 2/6 = 1/3, and the positional

information added to the fourth token would be p′4 = 4/6 = 2/3 = p2. With this

example, we can see that this approach leads to a positional encoding which is not
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position-unique. This can cause problems if we want our model to handle sequences of

variable length.

Sinusoidal positional encoding

Let Pij denote the components of the positional matrix. Sinusoidal positional encoding

is defined as: Pi,2j = sin (ωj · i)
Pi,2j+1 = cos (ωj · i)

where ωj =
1

M2j/d , for M a fixed integer4.

For an even dimension of the embedding, i.e. d = 2m for some m ∈ N, the sinusoidal

positional matrix reads:

P (s) =


sin(1) cos(1) sin

(
1

M2/d

)
cos
(

1
M2/d

)
sin
(

1
M4/d

)
. . . sin

(
1

M(m−1)/d

)
sin(2) cos(2) sin

(
2

M2/d

)
cos
(

2
M2/d

)
sin
(

2
M4/d

)
. . . sin

(
2

M(m−1)/d

)
...

...
...

...
...

. . .
...

sin(N) cos(N) sin
(

N
M2/d

)
cos
(

N
M2/d

)
sin
(

N
M4/d

)
. . . sin

(
N

M(m−1)/d

)
 .

Note how the sine and cosine functions keep the components bounded to ±1, and we

can also observe that each position has a unique positional vector. However, the most

interesting property of sinusoidal positional encoding is that it allows the transformer to

understand relative positions of tokens. This means that the transformer will be able

to infer the relative distance between two tokens without having to explicitly learn their

absolute positions within the sequence.

4The value of M is determined empirically, based on model performance. In [Vas+23], the value
used is M = 10000.
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Proposition 3.7. For any pair of tokens whose absolute position differs an offset l ∈ N,
there exists a linear transformation T such that:

pik+l
= T pik

where T = T (l) only depends on the offset l.

Proof. The sinusoidal positional vector pik
for a given token of the sequence αik reads:

pik
=
(
sin (k) cos (k) . . . sin

(
k

M2j/d

)
cos
(

k
M2j/d

)
. . . sin

(
k

M(m−1)/d

))
.

Now, for a fixed offset l ∈ N, the positional vector of αik+l
reads:

pik+l
=
(
sin (k + l) cos (k + l) . . . sin

(
k+l

M2j/d

)
cos
(

k+l
M2j/d

)
. . . sin

(
k+l

M(m−1)/d

))
.

For any j, we have that:

sin

(
k + l

M2j/d

)
= sin

(
k

M2j/d
+

l

M2j/d

)
.

Using the angle addition formula for the sine:

sin(α + β) = sin(α) cos(β) + cos(α) sin(β).

We can rexpress this as:

sin

(
k + l

M2j/d

)
= sin

(
k

M2j/d

)
cos

(
l

M2j/d

)
+ cos

(
k

M2j/d

)
sin

(
l

M2j/d

)
.

Similarly, we can use the addition formula for the cosine, and we obtain:

cos

(
k + l

M2j/d

)
= cos

(
k

M2j/d

)
cos

(
l

M2j/d

)
− sin

(
k

M2j/d

)
sin

(
l

M2j/d

)
.
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Therefore, for any j, we can write:

(
sin
(

k+l
M2j/d

)
cos
(

k+l
M2j/d

))
=
(
sin
(

k
M2j/d

)
cos
(

k
M2j/d

))(cos ( l
M2j/d

)
− sin

(
l

M2j/d

)
sin
(

l
M2j/d

)
cos
(

l
M2j/d

) )︸ ︷︷ ︸
Rj

.

where notice that Rj = Rj(l) is a rotation matrix of an angle ϕ(l, j) = l
M2j/d .

Therefore, we have that pik+l
= pik

T (l) where:

T (l) =



R0 0 . . . 0 . . . 0

0 R1 . . . 0 . . . 0
...

...
. . .

...
...

...

0 0 . . . Rj . . . 0
...

...
...

...
. . .

...

0 0 . . . 0 . . . Rm−1


.

The existence of a linear relationship T (l) between positional vectors of any two tokens

separated by an offset l will enable the transformer to infer the relative position of two

tokens based on the linear mapping that relates their positional vectors, without having

to explicitly learn their absolute positions.
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4 Transformer architecture

Word embeddings and positional encoding are often viewed as preprocessing compo-

nents within the transformer architecture. In this section, we will delve into the main

components of the transformer, with a particular focus on attention mechanisms, which

are its most distinctive and powerful features.

4.1 Attention mechanisms

Attention mechanisms enhance the model’s ability to understand context-specific rela-

tionships within the input text by refining the generic semantic-positional representations.

This allows the transformer to better grasp the precise meanings of tokens in certain

contexts. As a motivating example, let us consider the following sentences:

He quickly dived into the swimming pool.

He brilliantly won a game of pool.

Because of how word embeddings are constructed, they do not learn different embed-

ding vectors for each possible meaning of the token pool ; instead, they learn a single

generic embedding vector wpool that somehow encapsulates all its possible meanings.

Furthermore, both occurrences of pool appear in the seventh position of their respective

sentences, which means that they also have the same positional vector ppool. Therefore,

despite pool having entirely different meanings in each context, both instances share an

identical semantic-positional vector:

upool1 = upool2 = wpool + ppool.

uswimming

upool1 = upool2

ugame
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To address this limitation, attention mechanisms update these generic representations by

incorporating information from the rest of the tokens in the sequence, thereby providing

each token with a new representation that is context-aware. From the various types of

attention mechanisms [BF23], in this work we focus on dot-product attention [Vas+23].

Let us consider the semantic-positional representation of some snippet of text s:

U(s) =

← ui1 →
...

...
...

← uiN →

 .

Definition 4.1. For a semantic-positional vector uik in U(s), we define its associated

value vector as:

vik = uik WV

where WV ∈Md×d is a matrix with trainable entries.

Intuitively, value vectors encode the information necessary for updating the representa-

tions of the rest of the tokens in the sequence. In the case of the introductory example,

the updated representations of pool might resemble:

upool1 7→ upool1 + vswimming + vdived + vinto + . . .

upool2 7→ upool2 + vgame + vpool + vbrilliantly + . . .

However, let us note that not all tokens should contribute equally to refining the meaning

of a specific token. In particular, we naturally understand that tokens such as swim-

ming, dived, won and game are significantly more relevant than the rest of tokens when

determining the specific meaning of the token pool. This suggests that we require a

mechanism for quantifying relative contextual relevance, so that we can update the rep-

resentations accordingly. To quantify this contextual relevance, attention mechanisms

use the concepts of queries, keys and attention scores.
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Definition 4.2. For a fixed integer d∗ < d, let us consider two projection matrices with

trainable parameters:

WQ : Rd −→ Rd∗

WK : Rd −→ Rd∗

For a context-positional vector uik in U(s), we define its associated query and key vectors

as:

qik
= uik WQ

kik = uik WK

Query and key vectors play complementary roles in determining contextual relevance

between tokens. We can think of query vectors as “questions” each token asks about

the rest of the tokens in the sequence, representing what each token is “looking for” in

others. Conversely, key vectors are like the “answers” each token provides when queried

by another token, representing what each token can “offer” to the other tokens. Based

on this intuition, the projection matrices WQ and WK are trained to generate represen-

tations in Rd∗ that optimally encode these “questions” and “answers”.

Remark 4.3. Bear in mind that this interpretation is just a humanized oversimplification

of how attention mechanisms work. In reality, the information encoded in query and key

vectors is much more abstract and complex, capturing deep dependencies within the

sequence that go far beyond simple question-and-answer analogies.

Building on this intuition, we define the attention score between two tokens as the

measure to how well the questions posed by the query align with the answers provided

by the key. Mathematically, this is captured by the dot product in Rd∗ between the query

vector and the key vector of two tokens:

AttentionScore(αik , αij) = ⟨qik
, kij⟩.

This attention score quantifies how relevant the token αij is for the token αik .
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Definition 4.4. The attention pattern is defined as an N ×N matrix:

A(s) = softmax



⟨qi1 ,ki1⟩ . . . ⟨qi1 ,kiN ⟩
⟨qi2 ,ki1⟩ . . . ⟨qi2 ,kiN ⟩

...
. . .

...

⟨qiN ,ki1⟩ . . . ⟨qiN ,kiN ⟩


 :=


a1,1 . . . a1,N
a2,1 . . . a2,N
...

. . .
...

aN,1 . . . aN,N


where the softmax function is applied row-wise.

The softmax function normalizes the attention scores for a fixed query qik
across all pos-

sible keys, thereby providing the token αik with a set of attention weights {ak,l}Nl=1 that

represent the relative contextual importance of all tokens in the sequence with respect

to αik .

Remark 4.5 (Attention pattern as a bilinear form). Alternatively, if we define WQK =

WQ(WK)
T as the query-key matrix, the attention pattern A(s) can also be seen as the

result of applying a non-symmetric bilinear form ⟨v,w⟩QK := vWQKw to each pair of

rows in U(s) and then followed by the softmax function applied row-wise:

A(s) = softmax


⟨ui1 ,ui1⟩QK . . . ⟨ui1 ,uiN ⟩QK

...
. . .

...

⟨uiN ,ui1⟩QK . . . ⟨uiN ,uiN ⟩QK


 .

Finally, for each token in the sequence we can compute weighted sums of the value

vectors, where the attention weights ensure that the contribution of each value vector

is based on the corresponding contextual relevance.
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We collect all these weighted sums in an N × d matrix called the attention head:

H(s) =


∑N

l=1 a1,lvil
...∑N

l=1 aN,lvil


where the k-th row of H(s) represents the contextual information that will be used to

refine the representation of αik .

By adding the attention head H(s) to the semantic-positional representation U(s), we

obtain a context-aware representation of the text snippet s:

Y (s) = U(s) +H(s) =

← yi1 →
...

...
...

← yiN →


where yik = uik +

∑N
l=1 αk,lvil is called the context-aware vector of αik .
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Going back to the introductory example, the context-aware representations of pool1 and

pool2 allow the model to understand their specific meaning in their respective contexts.

yswimming

ypool1

ypool2

ygame

4.2 Position-wise neural networks and normalization

Even though context-aware representations are already very informative, they might not

sufficiently capture higher-level abstractions required for complex tasks. Position-wise

neural networks introduce non-linearity to the model, enhancing the transformer’s ability

to capture complex patterns and dependencies in the sequence.

The term “position-wise” refers to the fact that a neural network is applied identically

and independently to each position in the sequence. This neural network consists of two

layers:

F : Rd L1−→ RdF L2−→ Rd, dF > d.
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Its explicit expression is given by:

F(x) = max (0,xW1 + b1)W2 + b2

with W1 ∈Md×dF , W2 ∈MdF×d, b1 ∈ RdF and b2 ∈ Rd.

L1 L2

...

...

...

...

...

...

...

Applying the position-wise neural network to the context-aware representation gives a

new representation:

Z̃(s) =

← F(yi1) →
...

...
...

← F(yiN ) →

 :=

← z̃i1 →
...

...
...

← z̃iN →

 .

These vectors z̃ik are called enhanced vectors, and they are richer representations of the

context-aware vectors yik , capturing higher-level abstractions and dependencies within

the sequence. Typically, these vectors undergo a normalization process before generating

the output distribution.
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Normalization

Including normalization steps in DL models offers significant advantages in speed and

performance by stabilizing the learning process [BKH16]:

zik =
z̃ik − µik

σik + ϵ
, µik

= (µik , . . . , µik)

where µik = 1
d

∑d
j=1 z̃

(j)
ik
, σ2

ik
= 1

d

∑d
j=1(z̃

(j)
ik
− µik)

2, and ϵ > 0 is an added constant to

avoid division by 0. Here, the term σik refers to the standard deviation of the compo-

nents of z̃ik , not to be confused with the activation function from previous sections.

With this, we can finally define the normalized enhanced representation of the text

snippet s as:

Z(s) =

← zi1 →
...

...
...

← ziN →

 .

This will be the vectors used during the output generation and training parts of the

transformer, as we will see in the upcoming section.

4.3 Output distribution and training

Similarly to the Skip-gram model, the transformer outputs a nvoc-dimensional vector of

logits, which is then passed through a softmax function to obtain a probability distribu-

tion. Given a snippet of text s = (αi1 , . . . , αiN ), the probability of αj ∈ V being the

next token in the sequence is given by:

pθ(αj | s) =
e⟨wj ,ziN ⟩∑nvoc

l=1 e
⟨wl,ziN ⟩ .

Note how this distribution is very similar to the one discussed in the Skip-gram model.

However, instead of using the embedding vector of the last token in s, we are using

its normalized enhanced vector to compute the logits. The intuition behind this is that

the enhanced representation now incorporates contextual information from the previous

tokens in the sequence and captures higher-level abstractions, enabling the model to

make more informed and accurate probability assignments.
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With this foundation, we can finally provide a mathematical definition of the transformer

model.

Definition 4.6. The transformer model is a family of parametrized functions {Tθ :

RN×d → Rnvoc | θ ∈ Θ} such that, given a snippet of text s = (αi1 , . . . , αiN ), Tθ
outputs a probability distribution:

Tθ(s) ∼ pθ(αj | s) =
e⟨wj ,ziN ⟩∑nvoc

l=1 e
⟨wl,ziN ⟩ .

The parameters of the transformer model primarily include those of the attention mech-

anism and the position-wise neural network. Specifically, in the attention mechanism

the parameters are the components of the projection matrices WQ,WK and the linear

transformation WV , corresponding to the queries, keys and values, respectively. On the

other hand, the parameters of the position-wise neural network are the components of

the weights matrices W1,W2 and the bias vectors b1 and b2. Typically, word embeddings

are trained separately and independently from the transformer model, and thus they do

not contribute to the set of parameters.
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Year Model N◦ parameters

2018 GPT 110M
2018 BERT 340M
2019 GPT-2 1.5B
2020 GPT-3 175B
2022 PaLM 540B
2023 GPT-4 1.4T (?)

Table 1: Evolution of total number of parameters in LLMs. Source: [Dou23]

The rapid growth in the number of parameters in LLMs reflects the advancements in

computational power and efficiency. More parameters generally translates to better

understanding and accuracy of the model in predicting and generating text.

Training

In order to adjust the parameters of the transformer model, we use a set of training

text snippets, {si}NS
i=1. For each training sample si = (αi1 , . . . , αiN ), the transformer

computes the output probability distribution passing si = (αi1 , . . . , αiN−1
) as input. The

goal of the training process is to maximize the probability pθ(αiN | si). Therefore, similar

to the Skip-gram model, the loss function for a single training sample is:

li(θ) = − log pθ(αiN | si) = −⟨wiN , ziN−1
⟩+ log

nvoc∑
l=1

e⟨wl,ziN−1
⟩

and then the total loss function of the transformer is the sum of individual losses across

all training samples:

L(θ) =
NS∑
i=1

li(θ) =

NS∑
i=1

(
−⟨wiN , ziN−1

⟩+ log
nvoc∑
l=1

e⟨wl,ziN−1
⟩

)
.

In this case, deriving a closed-form analytical expression for the gradient of the loss

function is virtually impossible due to the complex structure of the transformer model.

However, this underscores the critical role of the backpropagation algorithm, providing

a highly efficient method for computing gradients in complex DL models like the trans-

former. By leveraging backpropagation, the transformer model adjusts its parameters

using the GD algorithm, enabling to effectively improve its predictive capabilities.
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5 Conclusions

In this work, we have defined transformers as families of parametrized functions used

for generating probability distributions over a fixed vocabulary given a snippet of text.

We have delved into their main components: word embeddings and positional encoding

for generic text representations, attention mechanisms for capturing relevant contextual

information, and position-wise neural networks for higher-level abstractions.

To answer the title of the thesis, there are three main mathematical frameworks we

have used during this work. Linear algebra has played a critical role by performing linear

and affine transformations on generic text representations, obtaining enhanced represen-

tations that factor in a broader range of natural language aspects. Calculus has also

been essential for optimizing the model’s parameters using the GD algorithm, ensuring

the model improves its capabilities during training. Lastly, probability theory has been

fundamental in generating output distributions over the vocabulary, which can then be

used for sampling during text generation.

Some of the concepts described in this work have been oversimplified, prioritizing math-

ematically precise and accessible explanations over technical intricacies. Future work

could extend on this introduction to transformers by exploring more advanced versions

with richer mathematics.

In conclusion, a deep mathematical understanding of transformers is essential for devel-

oping and enhancing their capabilities. Today, many improvements introduced to these

models are purely based on empirical observations, lacking a solid theoretical background

supporting them. Therefore, future research should focus on establishing fundamental

principles to better understand current models, facilitating the development of more

efficient and accurate architectures in the field of NLP.
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