HYPERELLIPTIC CURVES COVERING AN ELLIPTIC CURVE TWICE

XAVIER XARLES

To the memory of F. Momose

Let K be a field and let E be an elliptic curve over K. A natural question that have been considered by Mestre in [1] is the existence of an hyperelliptic curve H defined over K with two independent maps from H to E, hence such that its Jacobian $\text{Jac}(H)$ is isogenous to $E^2 \times A$, for some abelian variety A. Mestre constructs in (op. cit.) such a curve H with genus 6 (for a field with characteristic 0). In this short note we show that there exists such a curve, but with genus 5, and for any field of characteristic $\neq 2, 3$. We don’t know if the characteristic 2 and 3 cases can be solved using the same methods. We also show that, if we want such a curve H to be just geometrically hyperelliptic, so having a degree two map to a conic, then there is one with genus 3. It is known that there does not exists such a curve with genus 2 for a general elliptic curve over a general field.

These results have consequences on the distribution of rank ≥ 2 twists of elliptic curves over \mathbb{Q}, as showed by Steward and Top ([3], see also [2]).

We start with the second result. The following theorem was already shown (but not in this form) by Mestre in a remark in [1] and by Steward and Top in [3] during the proof of their Theorem 4. The proof is elementary and we leave it to the reader.

Theorem 1. Let E be an elliptic curve over K given by a Weierstrass equation of the form $y^2 = x^3 - Ax + B$, for some A and B in K. Then the curve H obtained form the desingularization of the projectivization of the curve in the affine space \mathbb{A}^3 given by the equations

\[
\begin{align*}
 y^2 &= x^3 - Ax + B \\
 x^2 + xz + z^2 &= A
\end{align*}
\]

is geometrically hyperelliptic and it has two independent natural maps to E, given by $f_1(x, y, z) = (x, y)$ and $f_2(x, y, z) = (z, y)$.

Remark. It is a short computation to show that the abelian variety $\text{Jac}(C)$ is isogenous to $E^2 \times E'$, where E' is the elliptic curve given by the Weierstrass equation $y^2 = x^3 - 27Bx^2 + 27A^3x$.

Next theorem is based on a similar idea of the previous theorem, but using a quartic equation instead of a cubic equation for an elliptic curve.

The author was partially supported by the grant MTM2009-10359.
Theorem 2. Let K be a field of characteristic $\neq 2$ and 3, and let $j \in K$, $j \neq 0$ and 1728. Consider $A := \frac{3^2 j}{2^5 (j - 1728)}$. Then the elliptic curve E over K given by the Weierstrass equation $y^2 = x^3 - Ax + A$ has j-invariant j and the hyperelliptic curve H of genus 5 given by the equation

$$y^2 = A(x + 1)^4(x^2 + 1)^4 - 2^6x^3(x^2 + x + 1)^3$$

has two independent maps to E.

Proof. The assertion on the j-invariant is easy by using the known formulae of the j-invariant. We are going to find the two maps from H to E by writing H in a different form.

First of all, we write the genus 1 curve E as the curve D with equation of the form $y^2 = x^4 + x^3 + B$, where $B = \frac{A}{2}$. It is standard to show that both curves are isomorphic. Now, consider the affine (singular) curve given by the equation

$$F(x, z) = \left(\frac{x^4 - z^4}{x - z} + \frac{x^3 - z^3}{x - z}\right) = 0$$

in the affine plane A^2. This curve has genus 0 and can be parametrized by

$$x = -\frac{t^3 - 1}{t^4 - 1}, \quad y = -\frac{t^3 - 1}{t^4 - 1}.$$

By using this formulae we get that the curve C obtained form the desingularization of the projectivization of the curve in the affine space A^3 given by the equations

$$\begin{align*}
y^2 &= x^4 + x^3 + B \\
\left(\frac{x^4 - z^4}{x - z} + \frac{x^3 - z^3}{x - z}\right) &= 0
\end{align*}$$

is isomorphic to the hyperelliptic curve H given by the equation

$$y^2 = A(x + 1)^4(x^2 + 1)^4 - 2^6x^3(x^2 + x + 1)^3.$$

Now, the two independent maps from H to E are described easily as maps from C to D given by $f_1(x, y, z) = (x, y)$ and $f_2(x, y, z) = (z, y)$. Both maps are clearly well defined. To show they are independent, it is sufficient to prove that there does not exist two distinct endomorphisms m_1 and m_2 of E as genus 1 curve such that $m_1 \circ f_1 = m_2 \circ f_2$. First, recall that f_1 and f_2 send the only point at infinity to the 0 point of E, hence m_1 and m_2 must be endomorphisms as elliptic curves. Moreover, both f_1 and f_2 have the same degree (equal to 3), hence the only possibility is that $f_1 = -f_2$, which is clearly not the case. \square

For any (hyper)elliptic curve E defined over a field K given by an equation of the form $y^2 = p(x)$, where $p(x) \in K[X]$, and for any $d \in K^*$, we will denote by E_d the quadratic twist of E, which is the (hyper)elliptic curve given by the equation $dy^2 = p(x)$.

Corollary 3. Let K be a field with characteristic $\neq 2, 3$, and let E be an elliptic curve over K. Then there exists an hyperelliptic curve H of genus ≤ 5 and defined over K with two independent maps from H to E defined over K.
Proof. If the curve E has j-invariant equal to 0 or 1728, the result is well known (and in fact one can find such a curve with genus 2, see for example [3]).

Now, if the j-invariant is $\neq 0$ and 1728, there exists a quadratic twist of E isomorphic to the elliptic curve given by the equation $y^2 = x^3 - Ax + A$, for $A := \frac{3^3 j}{2^3 (j-1728)}$. Then the same quadratic twist of the curve H given by the previous theorem gives the answer. \qed

We can apply this result to give lower bounds for the number of quadratic twists with rank at least 2 for elliptic curves over \mathbb{Q}, improving slightly the results by Steward and Top in [3]. The result is a direct application of their theorem 2, but using our theorem 2 instead of Mestre's construction.

Corollary 4. Let E be an elliptic curve over \mathbb{Q}. Consider, for any positive real number $X \in \mathbb{R}$, the function

$$N_{\geq 2}(X) := \# \{ \text{squarefree } d \in \mathbb{Z} : |d| \leq X \text{ and rank } \mathbb{Z}(E_d(\mathbb{Q})) \leq 2 \}.$$

Then $N_{\geq 2}(X) \gg X^{1/6}/\log^2(X)$.

References

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

E-mail address: xarles@mat.uab.cat