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Abstract. Let µ be a Radon measure on Rd, which may be non dou-
bling. The only condition that µ must satisfy is the size condition
µ(B(x, r)) ≤ C rn, for some fixed 0 < n ≤ d. Recently, the author
introduced spaces of type BMO(µ) and H1(µ) with properties similar to
ones of the classical spaces BMO and H1 defined for doubling measures.
These new spaces proved to be useful to study the Lp(µ) boundedness
of Calderón-Zygmund operators without assuming doubling conditions.
In this paper a characterization of this new atomic Hardy space H1(µ)
in terms of a maximal operator MΦ is given. It is shown that f belongs
to H1(µ) if and only if f ∈ L1(µ),

R
f dµ = 0 and MΦf ∈ L1(µ), as in

the usual doubling situation.

1. Introduction

The aim of this paper is to characterize the atomic Hardy space H1,∞
atb (µ)

introduced in [To3] in terms of a grand maximal operator. Throughout all
the paper µ will be a (positive) Radon measure on Rd satisfying the growth
condition

(1.1) µ(B(x, r)) ≤ C0 r
n for all x ∈ supp(µ), r > 0,

where n is some fixed number with 0 < n ≤ d. We do not assume that µ is
doubling (µ is said to be doubling if there exists some constant C such that
µ(B(x, 2r)) ≤ C µ(B(x, r)) for all x ∈ supp(µ), r > 0).

The doubling condition on µ is an essential assumption in most results
of classical Calderón-Zygmund theory. Nevertheless, recently it has been
shown that many results in this theory also hold without the doubling as-
sumption. For example, in [To1] a T (1) theorem and weak (1, 1) estimates
for the Cauchy transforms are obtained. For general Calderón-Zygmund
operators (CZO’s) a T (1) theorem in [NTV1], and weak (1, 1) estimates and
Cotlar’s inequality in [NTV2] are proved. A T (b) is also given in [NTV3].
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For more results, see [MMNO], [NTV4], [OP], [To2], [To3], [To4] and [Ve],
for example.

In [To3] some variants of the classical spaces BMO(µ) and H1(µ) are
introduced. These variants are denoted by RBMO(µ) and H1,∞

atb (µ) respec-
tively. There, it is shown that many of the properties fulfiled by BMO(µ) and
H1(µ) when µ is doubling are also satisfied by RBMO(µ) and H1,∞

atb (µ) with-
out assuming µ doubling. For example, the functions from RBMO(µ) fulfil
a John-Nirenberg type inequality (see Section 5 for the precise statement of
this inequality), RBMO(µ) is the dual of H1,∞

atb (µ), CZO’s which are bounded
in L2(µ) are also bounded from H1,∞

atb (µ) into L1(µ) and from L∞(µ) into
RBMO(µ) and, on the other hand, any operator which is bounded from
H1,∞
atb (µ) into L1(µ) and from L∞(µ) into RBMO(µ) is bounded in Lp(µ),

1 < p <∞.
Let us remark that if µ is non doubling and one defines BMO(µ) and the

atomic space H1,∞
at (µ) ≡ H1(µ) exactly as in the classical doubling situation

(see [GR], [Jo] or [St], for instance), then these spaces still fulfil some of the
properties stated above [MMNO]. However a basic one fails: CZO’s may
be bounded in L2(µ) but not from H1,∞

at (µ) into L1(µ) or from L∞(µ) into
BMO(µ) (see [Ve] and [MMNO]). For this reason, if one wants to study
the Lp-boundedness of CZO’s, the spaces BMO(µ) and H1,∞

at (µ) are not
appropriate. This is the main reason for the introduction of RBMO(µ) and
H1,∞
atb (µ) in [To3].
Before stating our main result, we need some notation and terminology.

By a cube Q ⊂ Rd we mean a closed cube centered at some point in supp(µ)
with sides parallel to the axes. Its side length is denoted by `(Q) and its
center by zQ. Given ρ > 0, we denote by ρQ the cube concentric with Q
with side length ρ `(Q). Recall that a function f ∈ L1

loc(µ) belongs to the
classical space H1,∞

at (µ) if it can be written as f =
∑

i λi ai, where λi ∈ R
are numbers such that

∑
i |λi| < ∞ and ai are functions called atoms such

that

1. there exists some cube Qi such that supp(ai) ⊂ Qi,
2.
∫
ai dµ = 0,

3. ‖ai‖L∞(µ) ≤ µ(Qi)−1.

In order to recall the precise definition of H1,∞
atb (µ) we have to introduce

the coefficients KQ,R. Given two cubes Q ⊂ R, we set

KQ,R = 1 +
∫
QR\Q

1
|x− zQ|n

dµ(x),

where QR is the smallest cube concentric with Q containing R.
For a fixed ρ > 1, a function b ∈ L1

loc(µ) is called an atomic block if

1. there exists some cube R such that supp(b) ⊂ R,

2.
∫
b dµ = 0,



NON DOUBLING H1 IN TERMS OF A MAXIMAL OPERATOR 3

3. there are functions aj supported on cubes Qj ⊂ R and numbers
λj ∈ R such that b =

∑∞
j=1 λjaj , and

‖aj‖L∞(µ) ≤
(
µ(ρQj)KQj ,R

)−1
.

We denote
|b|
H1,∞

atb (µ)
=
∑
j

|λj |

(to be rigorous, we should think that b is not only a function, but a ‘structure’
formed by the function b, the cubes R and Qj , the functions aj , etc.). Then,
we say that f ∈ H1,∞

atb (µ) if there are atomic blocks bi such that

(1.2) f =
∞∑
i=1

bi,

with
∑

i |bi|H1,∞
atb (µ)

< ∞ (notice that this implies that the sum in (1.2)

converges in L1(µ)). The H1,∞
atb (µ) norm of f is

‖f‖
H1,∞

atb (µ)
= inf

∑
i

|bi|H1,∞
atb (µ)

,

where the infimum is taken over all the possible decompositions of f in
atomic blocks.

The definition of H1,∞
atb (µ) does not depend on the constant ρ > 1. The

H1,∞
atb (µ) norms for different choices of ρ > 1 are equivalent. Nevertheless,

for definiteness, we will assume ρ = 2 in the definition.
Compare the definitions of the spaces H1,∞

at (µ) and H1,∞
atb (µ): In H1,∞

at (µ)
the cancellation condition 2 and the size condition 3 are imposed over the
atoms aj . On the other hand, in H1,∞

atb (µ) the cancellation condition 2 is
imposed over the atomic blocks bi, and the size condition 3 is satisfied by
the “components” ai,j of bi separately for each j. It is not difficult to check
that H1,∞

at (µ) ≡ H1,∞
atb (µ) if µ(B(x, r)) ≈ r for all x ∈ supp(µ), r > 0 (the

notation A ≈ B means that there exists some constant C > 0 such that
C−1A ≤ B ≤ C A, that is A . B . A). If the latter condition does not
hold, then H1,∞

at (µ) may be different from H1,∞
atb (µ), even when µ is doubling

(see [To3]).
Now we are going to introduce the “grand” maximal operator MΦ, which

is the main tool in our characterization of H1,∞
atb (µ).

Definition 1.1. Given f ∈ L1
loc(µ), we set

MΦf(x) = sup
ϕ∼x

∣∣∣∣∫ f ϕ dµ

∣∣∣∣ ,
where the notation ϕ ∼ x means that ϕ ∈ L1(µ) ∩ C1(Rd) and satisfies

(1) ‖ϕ‖L1(µ) ≤ 1,

(2) 0 ≤ ϕ(y) ≤ 1
|y − x|n

for all y ∈ Rd, and
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(3) |ϕ′(y)| ≤ 1
|y − x|n+1

for all y ∈ Rd.

In this paper we will prove the following result.

Theorem 1.2. A function f belongs to H1,∞
atb (µ) if and only if f ∈ L1(µ),∫

f dµ = 0 and MΦf ∈ L1(µ). Moreover, in this case

‖f‖
H1,∞

atb (µ)
≈ ‖f‖L1(µ) + ‖MΦf‖L1(µ).

Theorem 1.2 can be considered as a version for non doubling measures
of some results that are already known in more classical situations. When
µ is the Lebesgue measure on the real line, a characterization of H1,∞

at (µ)
such as the one of Theorem 1.2 was proved by Coifman [Co]. This result
was extended to the Lebesgue measure on Rd by Latter [La]. Let us remark
that in these cases, in the definition of MΦ, for each x it is enough to take
the supremum over functions ϕx,r, r > 0, of the form

ϕx,r(y) =
1
rd
ψ

(
y − x
r

)
,

where 0 6≡ ψ ∈ S is some fixed function.
If

(1.3) µ(B(x, r)) ≈ rn for all x ∈ supp(µ), r > 0,

then supp(µ) is a homogeneous space in the sense of [CW]. For general
homogeneous spaces satisfying (1.3), Coifman, Meyer and Weiss showed that
there exists a description of H1,∞

at (µ) in terms of a grand maximal operator
(see [CW] for this result and for the detailed definition of homogeneous
spaces). They observed that a proof of this description by Carleson [Ca]
using the duality H1,∞(µ)–BMO(µ) in the case where µ is the Lebesgue
measure on Rn can be easily extended to the more general situation of
homogeneous spaces.

For a measure µ on Rd which is doubling but which may not satisfy (1.3),
Maćıas and Segovia ([MS1], [MS2]) obtained a characterization of H1,∞

at (µ)
by means of a grand maximal operator too (see also [Uc]). They showed
that if µ is doubling, then taking a suitable quasimetric one can assume
that (1.3) holds. Their result applies not only to doubling measures on Rd,
but to more general homogeneous spaces. On the other hand, since H1,∞

at (µ)
may be different from H1,∞

atb (µ) if µ is a doubling measure on Rd which does
not satisfy (1.3), the result of Maćıas and Segovia (in the precise case that
we are considering) cannot be derived as a particular instance of Theorem
1.2.

The absence of any regularity condition on µ, apart from the size condition
(1.1), makes impossible to extend the classical arguments to the present
situation without major changes. We will not consider any quasimetric on
Rd different from the Euclidean distance and we are not able to reduce our
case to a situation where (1.3) holds.
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Let us remark that the results of [Co], [La], [MS1] and [MS2] concern not
only the Hardy space H1 but also the Hardy spaces Hp, with 0 < p < 1.
However, it is not possible to extend our proof of Theorem 1.2 to 0 < p < 1
because we have obtained it by duality (following the same approach as
Carleson [Ca]).

The paper is organized as follows. In Section 2 we deal with some pre-
liminary questions. In Section 3 we show that the grand maximal operator
MΦ is bounded from H1,∞

atb (µ) into L1(µ), which proves the “only if” part of
Theorem 1.2 (the easy implication). In the remaining sections of the paper
we prove the other implication. In Section 4 we explain how this can be
proved by duality. A suitable version for our purposes of John-Nirenberg
inequality if obtained in Section 5. In Section 6 some kind of dyadic cubes
are constructed, and in the following section a suitable approximation of
the identity adapted to the measure µ is obtained. Section 8 contains a
construction which is the core of the proof of the “if” part of Theorem 1.2.
Finally, Section 9 is an Appendix where we prove a density result which is
necessary in the proof by duality of the “if” part of Theorem 1.2.

2. Preliminaries

The letter C will be used for constants that may change from one occur-
rence to another. Constants with subscripts, such as C1, do not change in
different occurrences.

We will assume that the constant C0 in (1.1) has been chosen big enough
so that for all the cubes Q ⊂ Rd we have

(2.1) µ(Q) ≤ C0 `(Q)n.

Given a function f ∈ L1
loc(µ), we denote by mQf the mean of f over Q with

respect to µ, i.e. mQf = 1
µ(Q)

∫
Q f dµ.

Definition 2.1. Given α > 1 and β > αn, we say that the cube Q ⊂ Rd is
(α, β)-doubling if µ(αQ) ≤ β µ(Q).

Remark 2.2. As shown in [To3], due to the fact that µ satisfies the growth
condition (1.1), there are a lot “big” doubling cubes. To be precise, given
any point x ∈ supp(µ) and c > 0, there exists some (α, β)-doubling cube Q
centered at x with l(Q) ≥ c. This follows easily from (1.1) and the fact that
β > αn.

On the other hand, if β > αd, then for µ-a.e. x ∈ Rd there exists a
sequence of (α, β)-doubling cubes {Qk}k centered at x with `(Qk) → 0 as
k →∞. So there are a lot of “small” doubling cubes too.

For definiteness, if α and β are not specified, by a doubling cube we mean
a (2, 2d+1)-doubling cube.

Now we are going to recall the definition of RBMO(µ). In fact, in Section
2 of [To3] several equivalent definitions are given. Maybe the easiest one is
the following. Let f ∈ L1

loc(µ). We say that f ∈ RBMO(µ) if there exists
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some constant C1 such that for any doubling cube Q

(2.2)
∫
Q
|f −mQf | dµ ≤ C1 µ(Q)

and

(2.3) |mQf −mRf | ≤ C1KQ,R for any two doubling cubes Q ⊂ R.
The best constant C1 is the RBMO(µ) norm of f , that we denote as ‖f‖∗.

Given any pair of constants 0 < α, β, with β > αn, if in the definition of
RBMO(µ) we ask (2.2) and (2.3) to hold for (α, β)-doubling cubes (instead
of doubling cubes), we will get the same space RBMO(µ), with an equivalent
norm [To3]. In fact, RBMO(µ) can be defined also without talking about
doubling cubes: Given some fixed constant ρ > 1, f ∈ RBMO(µ) if and only
if there exists a collection of numbers {fQ}Q (i.e. for each cube Q some
number fQ) and some constant C2 such that∫

Q
|f(x)− fQ| dµ(x) ≤ C2 µ(ρQ) for any cube Q ⊂ Rd

and,
|fQ − fR| ≤ C2KQ,R for any two cubes Q ⊂ R.

The best constant C2 is comparable to the RBMO(µ) norm of f given by
(2.2) and (2.3).

Recall that given two cubes Q ⊂ R, QR stands for the smallest cube
concentric with Q containing R. Without assuming Q ⊂ R, we will denote
by QR the smallest cube concentric with Q containing Q and R.

Definition 2.3. Consider two cubes Q,R ⊂ Rd (we do not assume Q ⊂ R
or R ⊂ Q). We denote

δ(Q,R) = max

(∫
QR\Q

1
|x− zQ|n

dµ(x),
∫
RQ\R

1
|x− zR|n

dµ(x)

)
.

Notice that `(QR) ≈ `(RQ) ≈ `(Q) + `(R) + dist(Q,R), and if Q ⊂ R,
then RQ = R and `(R) ≤ `(QR) ≤ 2`(R).

It is clear that if Q ⊂ R, then KQ,R = 1 + δ(Q,R). Quite often we will
treat points x ∈ supp(µ) as if they were cubes (with `(x) = 0). So for
x, y ∈ supp(µ) and some cube Q, the notations δ(x,Q) and δ(x, y) make
sense. In some way, they are particular cases of Definition 2.3. Of course, it
may happen δ(x,Q) =∞ or δ(x, y) =∞.

In the following lemma we show that δ(·, ·) satisfies some very useful
properties.

Lemma 2.4. The following properties hold:
(a) If `(Q) ≈ `(R) and dist(Q,R) . `(Q), then δ(Q,R) ≤ C. In partic-

ular, δ(Q, ρQ) ≤ C0 2n ρn for ρ > 1.
(b) Let Q ⊂ R be concentric cubes such that there are no doubling cubes

of the form 2kQ, k ≥ 0, with Q ⊂ 2kQ ⊂ R. Then, δ(Q,R) ≤ C3.



NON DOUBLING H1 IN TERMS OF A MAXIMAL OPERATOR 7

(c) If Q ⊂ R, then

δ(Q,R) ≤ C
(

1 + log
`(R)
`(Q)

)
.

(d) If P ⊂ Q ⊂ R, then∣∣δ(P,R)− [δ(P,Q) + δ(Q,R)]
∣∣ ≤ ε0.

That is, with a different notation, δ(P,R) = δ(P,Q) + δ(Q,R)± ε0.
If P and Q are concentric, then ε0 = 0: δ(P,R) = δ(P,Q)+δ(Q,R).

(e) For P,Q,R ⊂ Rd,

δ(P,R) ≤ C4 + δ(P,Q) + δ(Q,R).

The constants that appear in (b), (c), (d) and (e) depend on C0, n, d. The
constant C in (a) depends, further, on the constants that are implicit in the
relations ≈, ..

Let us insist on the fact that a notation such as a = b± ε does not mean
any precise equality but the estimate |a− b| ≤ ε.

Proof. The estimates in (a) are immediate. The proof of (b) is also an
easy estimate, which can be found in [To3, Lemma 2.1], for example. The
arguments for (c) are also quite standard. We leave the proof for the reader.

Let us see that (d) holds. If P and Q are concentric, the identity δ(P,R) =
δ(P,Q) + δ(Q,R) is a direct consequence of the definition. In case P and Q
are not concentric we have to make some calculations:

δ(P,R) = δ(P, PQ) +
∫
PR\PQ

1
|y − zP |n

dµ(y)

= δ(P,Q) +
∫
PR\PQ

1
|y − zP |n

dµ(y).

So we must show that

S :=

∣∣∣∣∣
∫
PR\PQ

1
|y − zP |n

dµ(y)− δ(Q,R)

∣∣∣∣∣ ≤ C.
We set

S ≤
∫
PQ\Q

1
|y − zQ|n

dµ(y) +
∫
PR∆QR

(
1

|y − zP |n
+

1
|y − zQ|n

)
dµ(y)

+
∫

Rd\PQ

∣∣∣∣ 1
|y − zP |n

− 1
|y − zQ|n

∣∣∣∣ dµ(y)

= S1 + S2 + S3.

The integral S2 is easily estimated above by some constant C, since |y −
zP |, |y − zQ| ≤ C `(R) for y ∈ PR∆QR. An analogous calculation yields
S1 ≤ C. For S3 we have

S3 ≤ C
∫
|y−zQ|≥`(Q)/2

|zP − zQ|
|y − zQ|n+1

dµ(y) ≤ C
|zP − zQ|
`(Q)

≤ C,
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and we are done with (d).
We leave the proof of (e) for the reader too. �

Notice that if we set D(Q,R) = 1 + δ(Q,R) for Q 6= R and D(Q,Q) = 0,
then D(·, ·) is a quasidistance on the set of cubes, by (e) in the preceding
lemma.

From (a) and the fact that QR and RQ have comparable sizes and QR ∩
RQ 6= ∅, we get that QR and RQ are close in the quasimetric D(·, ·). Also,
if we denote by Q̃ the smallest doubling cube of the form 2kQ, k ≥ 0, by (b)
we know that Q̃ is not far from Q (using again the quasidistance D). So Q
and Q̃ may have very different sizes, but we still have D(Q, Q̃) ≤ C.

In Remark 2.2 we have explained that there a lot of big and small doubling
cubes. In the following lemma we state a more precise result about the
existence of small doubling cubes in terms of δ(·, ·).

Lemma 2.5. There exists some (big) constant η > 0 depending only on C0,
n and d such that if R0 is some cube centered at some point of supp(µ) and
α > η, then for each x ∈ R0 ∩ supp(µ) such that δ(x, 2R0) > α there exists
some doubling cube Q ⊂ 2R0 centered at x satisfying

(2.4) |δ(Q, 2R0)− α| ≤ ε1,

where ε1 depends only on C0, n and d (but not on α).

Proof. Let Q1 be the biggest cube centered at x with side length 2−k `(R0),
k ≥ 1, such that δ(Q1, 2R0) ≥ α. Then, δ(2Q1, 2R0) < α. Otherwise, k = 1
and since `(Q1) = `(R0)/2 and `(Q1,R0) ≤ 4 `(R0) we get

δ(Q1, 2R0) ≤
∫
`(Q1)/2<|y−x|, y∈Q1,R0

1
|y − x|n

dµ(y) ≤ C0 8n `(R0)n

`(Q1)n
= C0 16n,

which contradicts the choice of Q1, assuming η > C0 16n.
Now we have δ(Q1, 2R0) ≤ α+ δ(Q1, 2Q1) ≤ α+ C0 16n. Thus

|δ(Q1, 2R0)− α| ≤ C0 16n.

Let Q be the smaller doubling cube of the form 2kQ1, k ≥ 0. Then
δ(Q1, Q) ≤ C3. Also, `(Q) ≤ `(R0). Otherwise, R0 ⊂ 3Q and

δ(Q1, 2R0) ≤ δ(Q1, 3Q) = δ(Q1, Q) + δ(Q, 3Q) ≤ C3 + 6nC0.

This is not possible if we assume η > C3 + 6nC0.
Now Q satisfies the required properties, since it is doubling, it is contained

in 2R0, and

|δ(Q, 2R0)− α| ≤ |δ(Q, 2R0)− δ(Q1, 2R0)|+ |δ(Q1, 2R0)− α|
≤ δ(Q,Q1) + C0 16n ≤ C3 + C0 16n =: ε1.

�
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As in (d) of Lemma 2.4, instead of (2.4), often we will write δ(Q, 2R0) =
α± ε1.

Notice that by (e) and (a) of Lemma 2.4, we get

|δ(Q,R0)− α| ≤ |δ(Q, 2R0)− α|+ |δ(Q, 2R0)− δ(Q,R0)|
≤ ε1 + δ(R0, 2R0) + C4

≤ ε1 + C + C4 := ε′1.

However we prefer the estimate (2.4), because we have Q ⊂ 2R0 but Q 6⊂ R0,
in general. So the cube 2R0, in some sense, is a more appropriate reference.

Results analogous to the ones in Lemma 2.5 can be stated about the
existence of cubes Q centered at some point x ∈ R0 with Q ⊃ R0, but since
we will not need this fact below, we will not show any precise result of this
kind.

If Q ⊂ R are doubling cubes and f ∈ RBMO(µ), then |mQf −mRf | ≤
(1 + δ(Q,R)) ‖f‖∗. Without assuming Q ⊂ R, we have a similar result:

Proposition 2.6. Let Q,R ⊂ Rd be doubling cubes. If f ∈ RBMO(µ), then

|mQf −mRf | ≤ (C + 2 δ(Q,R)) ‖f‖∗.

Proof. Suppose, for example, `(RQ) ≥ `(QR). Then, QR ⊂ 3RQ.
Let 3̃RQ be the smallest doubling cube of the form 2k 3RQ, k ≥ 0. We

have
δ(R, 3̃RQ) = δ(R,RQ) + δ(RQ, 3̃RQ) ≤ δ(R,Q) + C.

Thus

(2.5) |mRf −m g3RQ
f | ≤ (1 + C + δ(R,Q)) ‖f‖∗.

We also have

δ(Q, 3̃RQ) ≤ C + δ(Q, 3RQ) + δ(3RQ, 3̃RQ) ≤ C + δ(Q,QR) + δ(QR, 3RQ).

Since QR and RQ have comparable sizes, δ(QR, 3RQ) ≤ C, and so

δ(Q, 3̃RQ) ≤ C + δ(Q,R).

Therefore,

(2.6) |mQf −m g3RQ
f | ≤ (1 + C + δ(Q,R)) ‖f‖∗.

By (2.5) and (2.6), the proposition follows. �

3. The easy implication of Theorem 1.2

In this section we will prove the “only if” part of Theorem 1.2.

Lemma 3.1. The operator MΦ is bounded from H1,∞
atb (µ) into L1(µ).
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Proof. Let b =
∑

i λi ai be an atomic block supported on some cube R, with
λi ∈ R, where ai are functions supported on cubesQi ⊂ R such that ‖ai‖∞ ≤
((1 + δ(Qi, R))µ(2Qi))−1. We will show that ‖MΦb‖L1(µ) ≤ C

∑
i |λi|.

First we will estimate the integral
∫

Rd\2RMΦb dµ. For x ∈ Rd \ 2R and
ϕ ∼ x, since

∫
b dµ = 0, we have∣∣∣∣∫ b ϕ dµ

∣∣∣∣ =
∣∣∣∣∫ b(y) (ϕ(y)− ϕ(zR)) dµ(y)

∣∣∣∣
≤ C

∫
|b(y)| `(R)

|x− zR|n+1
dµ(y).(3.1)

Thus ∫
Rd\2R

MΦb dµ ≤ C ‖b‖L1(µ)

∫
Rd\2R

`(R)
|x− zR|n+1

dµ(x)

≤ C ‖b‖L1(µ) ≤ C
∑
i

|λi|.(3.2)

Now we will show that

(3.3)
∫

2R
MΦai dµ ≤ C,

and we will be done. If x ∈ 2Qi and ϕ ∼ x, then∣∣∣∣∫ ai ϕdµ

∣∣∣∣ ≤ C ‖ai‖L∞(µ) ‖ϕ‖L1(µ) ≤ C ‖ai‖L∞(µ).

So ∫
2Qi

MΦai dµ ≤ C ‖ai‖L∞(µ) µ(2Qi) ≤ C.

For x ∈ 2R \ 2Qi and ϕ ∼ x, we have∣∣∣∣∫ ai ϕdµ

∣∣∣∣ ≤ C ‖ai‖L1(µ)
1

|x− zQi |n
.

Therefore,∫
2R\2Qi

MΦai dµ ≤ C ‖ai‖L1(µ)

∫
2R\2Qi

1
|x− zQi |n

dµ(x)

≤ C ‖ai‖L1(µ) (1 + δ(Qi, R)) ≤ C,(3.4)

and (3.3) follows. �

4. An approach by duality for the other implication

We have to show that if f ∈ L1(µ),
∫
f dµ = 0 and MΦf ∈ L1(µ), then

f ∈ H1,∞
atb (µ). We will obtain this result by duality, following the ideas of

Carleson [Ca]. So we will prove
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Lemma 4.1 (Main Lemma). Let f ∈ RBMO(µ) with compact support
and

∫
f dµ = 0. There exist functions hm ∈ L∞(µ), m ≥ 0, such that

(4.1) f(x) = h0(x) +
∞∑
m=1

∫
ϕy,m(x)hm(y) dµ(y),

with convergence in L1(µ) where, for each m ≥ 1, ϕy,m ∼ y, and

(4.2)
∞∑
m=0

|hm| ≤ C ‖f‖∗.

Let us see that from this lemma the “if” part of Theorem (1.2) follows.
Consider f ∈ L1(µ) such that

∫
f dµ = 0 and MΦf ∈ L1(µ). Assume first

that f ∈ L∞(µ) and has compact support. In this case, f ∈ H1,∞
atb (µ) and

so we only have to estimate the norm of f .
Since RBMO(µ) is the dual of H1,∞

atb (µ) [To3], given f ∈ L1(µ), by the
Hahn-Banach theorem we have

‖f‖
H1,∞

atb (µ)
= sup
‖g‖∗≤1

|〈f, g〉|.

Since
∫
f dµ = 0, we can assume that g has compact support and

∫
g dµ = 0.

Then, applying the Main Lemma to g we get

|〈f, g〉| ≤
∣∣∣∣∫ f h0 dµ

∣∣∣∣+

∣∣∣∣∣
∞∑
m=1

∫∫
ϕy,m(x)hm(y) f(x) dµ(x) dµ(y)

∣∣∣∣∣ .
Since |

∫
ϕy,m(x) f(x) dµ(x)| ≤MΦf(y), we have

|〈f, g〉| ≤ ‖f‖L1(µ) ‖h0‖L∞(µ) +
∞∑
m=1

∫
MΦf(y) |hm(y)| dµ(y)

≤ ‖f‖L1(µ) ‖h0‖L∞(µ) + ‖MΦf‖L1(µ)

∥∥∥∥∥
∞∑
m=1

|hm|

∥∥∥∥∥
L∞(µ)

≤ C
(
‖f‖L1(µ) + ‖MΦf‖L1(µ)

)
‖g‖∗.

That is, ‖f‖
H1,∞

atb (µ)
≤ C

(
‖f‖L1(µ) + ‖MΦf‖L1(µ)

)
.

In the general case where we don’t know a priori that f ∈ H1,∞
atb (µ), we

can consider a sequence of functions fn bounded with compact support such
that

∫
fn dµ = 0, fn → f in L1(µ) and ‖MΦ(f − fn)‖L1(µ) → 0, and then

we apply the usual arguments. The existence of such a sequence is showed
in Lemma 9.1, in the Appendix.

The rest of the paper, with the exception of the Appendix, is devoted to
the proof of the Main Lemma.
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5. The inequality of John-Nirenberg

In [To3] it is shown that the functions of the space RBMO(µ) satisfy a
John-Nirenberg type inequality. Let us state the precise result.

Theorem 5.1. Let Q ⊂ Rd be a doubling cube. If f ∈ RBMO(µ), then

µ{x ∈ Q : |f −mQf | > λ} ≤ C5 µ(Q) exp
(
−C6 λ

‖f‖∗

)
, λ > 0,

where C5, C6 > 0 are constants that only depend on C0, n, d.

In the proof of the Main Lemma we will need a version of the above
inequality which appears to be stronger (although it is equivalent). In this
section we will state and prove this new version of John-Nirenberg inequality.

Definition 5.2. Given a doubling cube Q, we denote by Z(Q,λ) the set of
points x ∈ Q such that any doubling cube P with x ∈ P and `(P ) ≤ `(Q)/4
satisfies |mP f −mQf | ≤ λ.

In other other words, Q \ Z(Q,λ) is the subset of Q such that for some
doubling cube P with x ∈ P and `(P ) ≤ `(Q)/4 we have

|mP f −mQf | > λ.

Proposition 5.3. Let Q ⊂ Rd be a doubling cube. If f ∈ RBMO(µ), then

µ(Q \ Z(Q,λ)) ≤ C ′5 µ(Q) exp
(
−C ′6 λ
‖f‖∗

)
, λ > 0.

where C ′5, C
′
6 > 0 are constants that only depend on C0, n, d.

Proof. The arguments are quite standard. For any x ∈ Q \ Z(Q,λ) there
exists some cube Px which contains x, with `(Px) ≤ `(Q)/4 and such that
|mPxf − mQf | > λ. Then by Besicovitch’s Covering Theorem, there are
points xi ∈ Q \ Z(Q,λ) such that

Q \ Z(Q,λ) ⊂
⋃
i

2Pi,

and so that the cubes 2Pi, i = 1, 2, . . ., form an almost disjoint family.
Observe that the Covering Theorem of Besicovitch cannot be applied to the
cubes Px (they are non centered), however we have applied it to the cubes
2Px, which are non centered too, but fulfil the condition

x ∈ 1
22Px.

That is, the point x is “far” from the boundary of 2Px. Under this condition,
Besicovitch’s Covering Theorem also holds.
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Since, for each i, `(Pi) ≤ `(Q)/4 and Pi ∩ Q 6= ∅, it is easily seen that
2Pi ⊂ 7

4Q. Then,

µ(Q \ Z(Q,λ)) ≤
∑
i

µ(2Pi)

≤
∑
i

∫
Pi

exp (|f(x)−mQf | k) exp(−λ k) dµ(x)

≤ C

∫
7
4
Q

exp (|f(x)−mQf | k) exp(−λ k) dµ(x),

where k is some constant that will be fixed below. Now, we have

exp (|f(x)−mQf | k) ≤ exp
(
|f(x)−m 7

4
Qf | k

)
exp

(
|m 7

4
Qf −mQf | k

)
≤ exp

(
|f(x)−m 7

4
Qf | k

)
exp (C ‖f‖∗ k) .

The last inequality follows from |m 7
4
Qf −mQf | ≤ C ‖f‖∗ (notice that the

cube 7
4Q is (8

7 , 2
d+1)-doubling).

Therefore, by Theorem 5.1 (which also holds for cubes that are (8
7 , 2

d+1)-
doubling instead of (2, 2d+1)-doubling, with constants C̃1 and C̃2 instead of
C1 and C2) we have

µ(Q \ Z(Q,λ))

≤ C exp(−λ k) exp (C ‖f‖∗ k)
∫

7
4
Q

exp
(
|f(x)−m7

4Q
f | k

)
dµ(x)

= C exp(−λ k) exp (C ‖f‖∗ k)

×
∫ ∞

0
µ

{
x ∈ 7

4Q : exp
(
|f(x)−m7

4Q
f | k

)
> t

}
dt

≤ C µ(7
4Q) exp(−λ k) exp (C ‖f‖∗ k)

∫ ∞
0

C̃1 exp

(
−C̃2 log t
k ‖f‖∗

)
dt.

So if we choose k := C̃2/2‖f‖∗, we get

µ(Q \ Z(Q,λ)) ≤ C µ(7
4Q) exp

(
−C̃2 λ

2‖f‖∗

)
≤ C µ(Q) exp

(
−C̃2 λ

2‖f‖∗

)
.

�

6. The “dyadic” cubes

In [Ca], Carleson proves a result analogous to the one stated in the Main
Lemma for µ being the Lebesgue measure on Rd. He uses dyadic cubes of
side length 2−mA, where A is some big positive integer. In our proof, we will
also consider some cubes which will play the role of the dyadic cubes with
side length 2−mA of Carleson. In this section we will introduce these new
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“dyadic” cubes and we will show some of the properties that they satisfy
and that will be needed in the proof of the Main Lemma.

As in [Ca], we will take some big positive integer A whose precise value
will be fixed after knowing or choosing several additional constants. In
particular, we assume that A is much bigger than the constants ε0, ε1 and
η of Section 2.

Definition 6.1. Suppose that the support of the function f of the Main
Lemma is contained in a doubling cube R0. Let m ≥ 1 be some fixed integer
and x ∈ supp(µ) ∩ R0. If δ(x, 2R0) > mA, we denote by Qx,m a doubling
cube (with Qx,m > 0) such that

(6.1) |δ(Qx,m, 2R0)−mA| ≤ ε1.

Also, D′m = {Qi,m}i∈I′m , is a subfamily with finite overlap of the cubes Qx,m,
such that each cube Qi,m ≡ Qyi,m is centered at some point yi ∈ supp(µ)∩R0

with δ(yi, 2R0) > mA, and

{x ∈ supp(µ) ∩R0 : δ(x, 2R0) > mA} ⊂
⋃
i∈I′m

Qi,m

(this family exists because of Besicovitch’s Covering Theorem).
If δ(x, 2R0) ≤ mA, we set Qx,m = {x}. We denote by D′′m the family of

cubes Qx,m ≡ {x} such that δ(x, 2R0) ≤ mA and x 6∈
⋃
i∈I′m Qi,m. We set

Dm = D′m ∪ D′′m.
The cubes Qx,m, x ∈ supp(µ) ∩ R0 (not necessarily from the family Dm)

are called cubes of the m-th generation.

Obviously, the whole family of cubes in Dm has also finite overlap. Notice
that if x is a point in supp(µ) such that δ(x, 2R0) = ∞, then `(Qx,m) > 0
for all m ≥ 1. Otherwise, there exists some m0 such that `(Qx,m) = 0 for
all m ≥ m0.

It is easily seen that if A is big enough, then `(Qx,m+1) ≤ `(Qx,m)/10 (a
more precise version of this result will be proved in Lemma 6.3 below). So
`(Qx,m)→ 0 as m→∞.

If A is much bigger than ε1 and Qx,m 6= {x}, then δ(Qx,m, 2R0) ≈ mA.
However, the estimate (6.1) is much sharper. This will very useful in our
construction.

Lemma 6.2. Assume that P and Q are cubes contained in 2R0 whose cen-
ters are in R0. Let S be a cube such that P,Q ⊂ S ⊂ 2R0.

(a) If |δ(P, 2R0)− δ(Q, 2R0)| ≤ β, then

|δ(P, S)− δ(Q,S)| ≤ β + 2ε0.

(b) If |δ(P, S)− δ(Q,S)| ≤ β, then

|δ(P, 2R0)− δ(Q, 2R0)| ≤ β + 2ε0.

In particular, this lemma can be applied to cubes P and Q belonging to
the same generation m, with β = 2ε1 (assuming `(P ), `(Q) 6= 0).
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Proof. Both statements are a straightforward consequence of (d) in Lemma
2.4, since

δ(P, 2R0) = δ(P, S) + δ(S, 2R0)± ε0

and
δ(Q, 2R0) = δ(Q,S) + δ(S, 2R0)± ε0.

�

The constants ε0 and ε1 should be understood as upper bounds for some
“errors” and deviations of our construction from the classical dyadic lattice.

We will need the following result too.

Lemma 6.3. Assume that A is big enough. There exists some γ > 0 such
that if Qx,m ∩Qy,m+1 6= ∅, x, y ∈ supp(µ), then `(Qy,m+1) ≤ 2−γ A `(Qx,m).

Proof. We can assume Qy,m+1 6= {y}. Let B > 1 be some fixed constant.
If `(Qy,m+1) > B−1 `(Qx,m), then Qx,m ⊂ 3BQy,m+1. So, if Rx is a cube
centered at x with side length 6B `(Qy,m+1), we have Qx,m, Qy,m+1 ⊂ Rx.

By (c) of Lemma 2.4 we get

δ(Qy,m+1, Rx) ≤ C
(

1 + log
(

`(Rx)
`(Qy,m+1)

))
≤ C (1 + logB).

Since
δ(Qy,m+1, 2R0) = δ(Qy,m+1, Rx) + δ(Rx, 2R0)± ε0,

if we set B = 2γ A, we obtain

δ(Rx, 2R0) > (m+ 1)A− ε1 − ε0 − C(1 + γ A log 2).

Then for γ small enough we have

δ(Rx, 2R0) > (m+ 1)A− ε1 − ε0 − C −
1
2
A > mA+ ε1.

This implies δ(Qx,m, 2R0) > mA+ ε1, which is not possible. �

As a consequence, we obtain

Lemma 6.4. Assume that A is big enough. If x, y ∈ supp(µ) are such that
Qx,m ∩Qy,m+k 6= ∅ (with k ≥ 1), then `(Qy,m+k) ≤ 2−γ Ak `(Qx,m).

Proof. By the previous lemma, `(Qy,j+1) ≤ 2−γ A `(Qy,j) and `(Qy,m+1) ≤
2−γ A `(Qx,m). This gives `(Qy,m+1) ≤ 2−γ Ak `(Qx,m). �

7. An approximation of the identity

The proof of the Main Lemma will be constructive. At the level of cubes
of generation m we will construct a function hm yielding the “potential”

Um(x) =
∫
ϕy,m(x)hm(y) dµ(y)

(to be precise, instead of one function hm, for each m we will have N func-
tions h1

m, . . . , h
N
m, but this is a rather technical detail that we can skip now).
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The potentials Um will compensate the large values of f at the scale of cubes
of the generation m. So the arguments will be similar to the ones of [Ca].

However, in our situation several problems arise, in general, because of
the absence of any kind of regularity in the measure µ (except the growth
condition (1.1)). For example, in [Ca] the potentials Um are convolutions
with approximations of the identity: Um = ϕm ∗ hm. Using the previous
notation, we have

ϕy,m(x) = ϕm(y − x) = 2mAn ϕ(2mA(y − x)).

This is not our case. The measure µ is not invariant by translations and we
don’t know how it behaves under dilations (notice that if µ were doubling, we
would have some information, at least, about the behaviour under dilations).
We need to use functions ϕy,m such that ‖ϕy,m‖L1(µ) = 1 (or at least equal
to some value close to 1). So ϕy′,m cannot be obtained as a translation of
ϕy,m for y′ 6= y, neither as a dilation of ϕy′,k, k 6= m. In this section we will
show how these problems can be overcome.

We denote
σ := 10ε0 + 10ε1 + 12n+1C0.

We introduce two new constants α1, α2 > 0 whose precise value will be
fixed below. For the moment, let us say that ε0, ε1, C0, σ � α1 � α2 � A.

Definition 7.1. Let y ∈ supp(µ). We denote by Q1
y,m, Q̂1

y,m, Q2
y,m, Q̂2

y,m,
Q3
y,m some doubling cubes (with positive side length) centered at y such

that
δ(Qy,m, 2R0) = mA± ε1,

δ(Q1
y,m, 2R0) = mA− α1 ± ε1,

δ(Q̂1
y,m, 2R0) = mA− α1 − σ ± ε1,

δ(Q2
y,m, 2R0) = mA− α1 − α2 ± ε1,

δ(Q̂2
y,m, 2R0) = mA− α1 − α2 − σ ± ε1,

δ(Q3
y,m, 2R0) = mA− α1 − α2 − 2σ ± ε1

(7.1)

By Lemma 2.5 we know that if δ(y, 2R0) > mA, then all the cubes Q1
y,m,

Q̂1
y,m, Q2

y,m, Q̂2
y,m, Q3

y,m exist. Otherwise only some (or none) of them may
exist. If any of these cubes does not exists, we let this cube be the point
{y}.

Notice that we can only assume that the estimates in (7.1) hold for the
cubes Q which are different from {y} (i.e. with `(Q) > 0). So if Q̂1

y,m = {y},
say, then, we only know that δ(Q̂1

y,m, 2R0) ≤ mA− α1 − σ + ε1.

Lemma 7.2. Let y ∈ supp(µ). If we choose the constants α1, α2 and A big
enough, we have

(7.2) Qy,m ⊂ Q1
y,m ⊂ Q̂1

y,m ⊂ Q2
y,m ⊂ Q̂2

y,m ⊂ Q3
y,m ⊂ Qy,m−1.



NON DOUBLING H1 IN TERMS OF A MAXIMAL OPERATOR 17

Proof. Notice first that for α1, α2 and A big enough, then the numbers
that appear in the right hand side of the estimates in (7.1) form an strictly
decreasing sequence. That is,

mA− ε1 > mA− α1 + ε1,

mA− α1 − ε1 > mA− α1 − σ + ε1,

mA− α1 − σ − ε1 > mA− α1 − α2 + ε1

mA− α1 − α2 − ε1 > mA− α1 − α2 − σ + ε1,

mA− α1 − α2 − σ − ε1 > mA− α1 − α2 − 2σ + ε1,

mA− α1 − α2 − 2σ − ε1 > (m− 1)A+ ε1.

Let us check the inclusion Q̂1
y,m ⊂ Q2

y,m, for example. Suppose first that
Q2
y,m 6= {y}, then

δ(Q2
y,m, 2R0) = mA− α1 − α2 ± ε1.

If Q̂1
y,m = {y}, the inclusion is obvious. Otherwise,

δ(Q̂1
y,m, 2R0) = mA− α1 − σ ± ε1.

Then δ(Q̂1
y,m, 2R0) > δ(Q2

y,m, 2R0), and so Q̂1
y,m ⊂ Q2

y,m. Assume now
Q2
y,m = {y}. Then,

δ(y, 2R0) ≤ mA− α1 − α2 + ε1.

In this case there is not any cube Q̂1
y,m satisfying

δ(Q̂1
y,m, 2R0) = mA− α1 − σ ± ε1,

and so, by our convention, Q̂1
y,m = {y}. That is, the inclusion holds in any

case.
The other inclusions are proved in a similar way. �

For a fixed m, the cubes Q1
y,m may have very different sizes for different

y’s. The same happens for the cubes Q2
y,m Nevertheless, in the following

lemma we show that we still have some kind of regularity. This regularity
property will be essential for our purposes.

Lemma 7.3. Let x, y be points in supp(µ). Then,

(a) If Q1
x,m ∩Q1

y,m 6= ∅, then Q1
x,m ⊂ Q̂1

y,m, in particular x ∈ Q̂1
y,m.

(b) If Q2
x,m ∩Q2

y,m 6= ∅,then Q2
x,m ⊂ Q̂2

y,m, in particular x ∈ Q̂2
y,m.

So, although we cannot expect to have the equivalence

y ∈ Q1
x,m ⇔ x ∈ Q1

y,m,

we still have something quite close to it, because the cubes Q1
x,m and Q̂1

x,m

are close one each other in the quasimetric D(·, ·), since δ(Q1
x,m, Q̂

1
x,m) is

small (at least in front of A). Of course, the same idea applies if we change
1 by 2 in the superscripts of the cubes.
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Proof of Lemma 7.3. Let us proof the statement (a). The second statement
is proved in an analogous way. Let x, y be as in (a). If `(Q1

y,m) > `(Q1
x,m) (in

particular, Q1
y,m 6= {y}), then Q1

x,m ⊂ 3Q1
y,m ⊂ Q̂1

y,m (the latter inclusion
holds provided δ(Q̂1

y,m, 2R0) < δ(Q1
y,m, 2R0)− 6nC0).

Assume now `(Q1
y,m) ≤ `(Q1

x,m). If Q1
x,m = {x}, then x = y and the result

is trivial. If Q1
x,m 6= {x}, we denote by Py a cube centered at y with side

length 3`(Q1
x,m). Then, Q1

x,m ⊂ Py ⊂ 6Q1
x,m and so δ(Q1

x,m, Py) ≤ 12nC0.
Thus

δ(Py, 2R0) ≥ δ(Q1
x,m, 2R0)− δ(Q1

x,m, Py)− ε0

≥ δ(Q1
x,m, 2R0)− 12nC0 − ε0

≥ mA− α1 − σ + ε1.

Therefore, Q̂1
y,m 6= {y} and Q̂1

y,m ⊃ Py ⊃ Q1
x,m. �

Now we are going to define the functions ϕy,m. First we introduce the
auxiliary functions ψy,m.

Definition 7.4. For any y ∈ supp(µ)∩ 2R0, the function ψy,m is a function
such that

(1) 0 ≤ ψy,m(x) ≤ min
(

4
`(Q1

y,m)n
,

1
|y − x|n

)
,

(2) ψy,m(x) =
1

|x− y|n
if x ∈ Q̂2

y,m \Q1
y,m,

(3) supp(ψy,m) ⊂ Q3
y,m,

(4) |ψ′y,m(x)| ≤ C12 min
(

1
`(Q1

y,m)n+1
,

1
|y − x|n+1

)
.

It is not difficult to check that such a function exists if we choose C12 big
enough. We have to take into account that 2Q̂2

y,m ⊂ Q3
y,m. This is due to

the fact that δ(Q̂2
y,m, 2Q̂

2
y,m) ≤ 4nC0 < δ(Q̂2

y,m, Q
3
y,m) if `(Q̂2

y,m) 6= 0.
In the definition of ψy,m, if Q1

y,m = {y}, then one must take 1/`(Q1
y,m) =

∞. If Q̂2
y,m = {y}, then we set ψy,m ≡ 0. This choice satisfies the conditions

for the definition of ψy,m stated above.
Choosing α2 big enough, the largest part of the L1(µ) norm of ψy,m will

come from the integral over Q2
y,m \ Q̂1

y,m. We state this in a precise way in
the following lemma.

Lemma 7.5. There exists some constant ε2 depending on n, d, C0, ε0, ε1

and σ (but not on α1, α2 nor A) such that if Q1
y,m 6= {y}, then

(7.3)
∣∣‖ψy,m‖L1(µ) − α2

∣∣ ≤ ε2

and

(7.4)

∣∣∣∣∣‖ψy,m‖L1(µ) −
∫
Q2

y,m\ bQ1
y,m

1
|y − x|n

dµ(x)

∣∣∣∣∣ ≤ ε2.
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The proof of this result is an easy calculation that we will skip. A direct
consequence of it is

lim
α2→∞

1
α2

∫
Q2

y,m\ bQ1
y,m

1
|y − x|n

dµ(x) = 1

for y ∈ supp(µ) such that δ(y, 2R0) > mA.

Definition 7.6. Let wi,m be the weight function defined for y ∈
⋃
i∈I′m Qi,m

(these are the cubes of Dm with `(Qi,m) > 0) by

wi,m(y) =
χQi,m(y)∑
j∈I′m χQj,m(y)

.

If y ∈ supp(µ) ∩ 2R0 belongs to some cube Qi,m centered at some point yi,
with `(Qi,m) > 0, then we set

ϕy,m(x) = α−1
2

∑
i

wi,m(y)ψyi,m(x).

If y does not belong to any cube Qi,m with `(Qi,m) > 0 (this implies
δ(y, 2R0) ≤ mA and Qy,m = {y}), then we set

ϕy,m(x) = α−1
2 ψy,m(x).

Setting wi,m(y) = χQi,m(y) if `(Qi,m) = 0, we can write

ϕy,m(x) = α−1
2

∑
i

wi,m(y)ψyi,m(x),

for any y.
Let us remark that a more natural definition for ϕy,m would have been

the choice ϕy,m(x) = α−1
2 ψy,m(x) for all y. However, as we shall see, for

some of the arguments in the proof of the Main Lemma below (in Subsection
8.2), the choice of Definition 7.6 is better.

In order to study some of the properties of the functions ϕy,m, we need
to introduce some additional notation.

Definition 7.7. Given x ∈ supp(µ), we denote by ̂̂
Q3
x,m a doubling cube

centered at x such that δ( ̂̂Q3
x,m, 2R0) = mA− α1 − α2 − 3σ ± ε1. Also, we

denote by Q̌1
x,m and ˇ̌Q1

x,m some doubling cubes centered at x such that

δ(Q̌1
x,m, 2R0) = mA− α1 + σ ± ε1,

δ( ˇ̌Q1
x,m, 2R0) = mA− α1 + 2σ ± ε1

(the idea is that the symbols ̂ and ˇ are inverse operations, modulo some

small errors). If any of the cubes Q̌1
x,m,

ˇ̌Q1
x,m,

̂̂
Q3
x,m does not exist, then we

let it be the point x.
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So, when δ(x, 2R0) is big enough, one should think that ̂̂Q3
x,m is a cube a

little bigger than Q̂3
x,m, while Q̌1

x,m is a little smaller than Q1
x,m. Also, ˇ̌Q1

x,m

is a little smaller than Q̌1
x,m, but still much bigger than Qx,m.

Lemma 7.8. Let x, y ∈ supp(µ). For α1 and α2 big enough, we have:

(a) If x ∈ Qx0,m and y 6∈ Q̂3
x0,m, then ϕy,m(x) = 0. In particular,

ϕy,m(x) = 0 if y 6∈ Q̂3
x,m.

(b) If y ∈ Q̌1
x,m, then ϕy,m(x) ≤ C α−1

2

`(Q̌1
x,m)n

.

(c) Let ε3 > 0 be an arbitrary constant. If α1 is big enough (depending
on ε3, C0, n, d but not on α2), then

ϕy,m(x) ≤ α−1
2 (1 + ε3/2)
|y − x|n

if y 6∈ Q̌1
x,m,

and

ϕy,m(x) ≥ α−1
2 (1− ε3/2)
|y − x|n

if y ∈ Q2
x,m \ Q̂1

x,m.

(d) If x ∈ Qx0,m, then

|ϕ′y,m(x)| ≤ C α−1
2 min

(
1

`(Q̌1
x0,m)n+1

,
1

|y − x|n+1

)
.

Notice that, in Definition 7.4 of the functions ψy,m, the properties that
define these functions are stated with respect to cubes centered at y (Q1

y,m,
Q2
y,m, Q3

y,m...). In this lemma some analogous properties are stated, but
these properties have to do with cubes centered at x or containing x (Qx0,m,
Q̌1
x,m, Q2

x,m, Q̂3
x,m...).

Proof. (a) Let x0 ∈ supp(µ) and x ∈ Qx0,m. If ϕy,m(x) 6= 0, there exists
some i with y ∈ Qi,m ≡ Qyi,m and x ∈ Q3

yi,m. Then Q3
x0,m∩Q

3
yi,m 6=

∅ and so y ∈ Q3
yi,m ⊂ Q̂

3
x0,m (as in Lemma 7.3).

(b) Let y ∈ Q̌1
x,m and let yi be such that y ∈ Qyi,m. We know that

ϕyi,m(x) ≤ C α−1
2

1
`(Q1

yi,m)n
.

So we are done if we see that `(Q1
yi,m) ≥ `(Q̌1

x,m).
As in Lemma 7.3, we have

y ∈ Q̌1
x,m ⇒ Q̌1

yi,m ∩ Q̌
1
x,m 6= ∅⇒ Q̌1

x,m ⊂ Q1
yi,m.

Thus `(Q̌1
x,m) ≤ `(Q1

yi,m).
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(c) Let us see the first inequality. If y 6∈ Q̌1
x,m and y belongs to some

cube Qyi,m with `(Qyi,m) > 0, then x 6∈ ˇ̌Q1
yi,m because otherwise,

as in Lemma 7.3, we would get ˇ̌Q1
yi,m ⊂ Q̌1

x,m. However, since we

assume α1 � σ, the cube ˇ̌Q1
yi,m is bigger than Qyi,m and contains y.

So y ∈ Q̌1
x,m, which is a contradiction.

Since x 6∈ ˇ̌Q1
yi,m and this cube is much bigger than Qyi,m, if α1 is

big enough we get

α−1
2

|yi − x|n
≤ α−1

2 (1 + ε3)
|y − x|n

.

As this holds for all i with wi,m(y) 6= 0, we obtain

ϕy,m(x) ≤ α−1
2 (1 + ε3)
|y − x|n

.

This inequality also holds if `(Qyi,m) = 0 with ε3 = 0, since in this
case yi = y.

We consider now the second inequality in (c). Let y ∈ supp(µ) be
such that y ∈ Q2

x,m \ Q̂1
x,m. If y ∈ Qyi,m with `(Qyi,m) > 0 for some

i, by Lemma 7.3 we get x ∈ Q̂2
yi,m \Q

1
yi,m. Since this is satisfied for

all i such that wi,m(y) 6= 0,

ϕy,m(x) =
∑
i

wi,m(y)
α−1

2

|yi − x|n
.

If α1 has been chosen big enough, then `(Q1
yi,m)� `(Qyi,m) and one

has
α−1

2

|yi − x|n
≥ α−1

2 (1− ε3/2)
|y − x|n

.

Thus

(7.5) ϕy,m(x) ≥ α−1
2 (1− ε3/2)
|y − x|n

.

If y ∈ Q2
x,m \ Q̂1

x,m and y ∈ Qi,m with `(Qi,m) = 0, then by Lemma
7.3 we also get x ∈ Q̂2

y,m \ Q1
y,m (in particular Q̂2

y,m 6= {y}). Then
(7.5) holds in this case too (with ε3 = 0).

(d) Suppose first that y ∈ Q̌1
x0,m. In this case we must show that

|ϕ′y,m(x)| ≤ C α−1
2

`(Q̌1
x0,m)n+1

.

Let yi be such that y ∈ Qyi,m. We know that

|ϕ′yi,m(x)| ≤ C α−1
2

`(Q1
yi,m)n+1

.
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By the definition of ϕy(x), it is enough to see that `(Q1
yi,m) ≥

`(Q̌1
x0,m). This follows from the inclusion Q1

yi,m ⊃ Q̌1
x0,m, which

holds because y ∈ Q̌1
yi,m ∩ Q̌

1
x0,m and then we can apply Lemma 7.3

(in fact, a slight variant of Lemma 7.3).
Suppose now that y 6∈ Q̌1

x0,m. It is enough to show that

|ϕ′y,m(x)| ≤ C α−1
2

|y − x|n+1
.

Let yi be such that y ∈ Qyi,m. By definition we have

|ϕ′yi,m(x)| ≤ C α−1
2

|yi − x|n+1
.

We are going to see that

(7.6) |y − yi| ≤ |y − x|/2.

Assume |y − yi| > |y − x|/2. Then, since x ∈ 1
2Q̌

1
x0,m (for α1 big

enough),

(7.7) `(Qyi,m) > C−1 |y − x| ≥ C−1 `(Q̌1
x0,m).

Notice that from the first inequality in (7.7) we get dist(x,Qyi,m) ≤
C `(Qyi,m). In this situation we have Q̌1

x0,m ⊂ C Qyi,m ⊂
ˇ̌Q1
yi,m. This

is not possible, since by Lemma 7.3 we would have Q̌1
x0,m ⊃

ˇ̌Q1
yi,m,

and then we would get Q̌1
x0,m = ˇ̌Q1

yi,m. This would imply x0 = yi

and also x0 = yi = Q̌1
x0,m = ˇ̌Q1

yi,m, and then y = yi which is a
contradiction because we are assuming that (7.6) does not hold.

So (7.6) is true and |yi − x| ≈ |y − x|. Thus

|ϕ′yi,m(x)| ≤ C α−1
2

|y − x|n+1
.

Since this holds for any i such that y ∈ Qyi,m, we get

|ϕ′y,m(x)| ≤ C α−1
2

|y − x|n+1
.

�

Some of the estimates in the preceding lemma will be used to prove next
result, which was one of our main goals in this section.

Lemma 7.9. For any ε3 > 0, if α1 and α2 are big enough, for all x ∈
supp(µ) we have

(7.8)
∫
ϕy,m(x) dµ(y) ≤ 1 + ε3.
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If x ∈ supp(µ) is such that there exists some cube Q ∈ Dm with Q 3 x and
`(Q) > 0 (in particular if δ(x, 2R0) > mA), then

(7.9) 1− ε3 ≤
∫
ϕy,m(x) dµ(y)

Let us observe that if µ were invariant by translations and ϕy,m(x) =
ϕm(y−x), then (7.8) and (7.9) would hold with ε3 = 0 (choosing ‖ϕy,m‖L1(µ)

= 1).

Proof. Let us see (7.9) first. So we assume that there exist some cube
Qi,m ∈ Dm containing x with `(Qi,m) > 0. Since x ∈ Qi,m ⊂ Q̌1

i,m, we have
Q̌1
i,m ⊂ Q1

x,m. In particular, `(Q1
x,m) > 0. By Lemma 7.5 and the second

inequality of (c) in Lemma 7.8 we get∫
ϕy,m(x) dµ(y) ≥

∫
Q2

x,m\ bQ1
x,m

ϕy,m(x) dµ(y)

≥
∫
Q2

x,m\ bQ1
x,m

α−1
2 (1− ε3/2)
|y − x|n

dµ(y)

≥ α−1
2 (α2 − 2ε2) (1− ε3/2).

So (7.9) holds if we take α2 big enough.
Consider now (7.8). By (a) in Lemma 7.8 have∫

ϕy,m(x) dµ(y) =
∫

bQ3
x,m

ϕy,m(x) dµ(y).

Thus we can write

(7.10)
∫
ϕy,m(x) dµ(y) =

∫
bQ3

x,m\Q̌1
x,m

ϕy,m(x) dµ(y) +
∫
Q̌1

x,m

ϕy,m(x) dµ(y).

Let us estimate the first integral on the right hand side of (7.10). Using
the first inequality in (c) of Lemma 7.8 we obtain∫

bQ3
x,m\Q̌1

x,m

ϕy,m(x) dµ(y) ≤
∫

bQ3
x,m\Q̌1

x,m

α−1
2 (1 + ε3/2)
|y − x|n

dµ(y)

= δ(Q̌1
x,m, Q̂

3
x,m)α−1

2 (1 + ε3/2)

≤ α−1
2 (α2 + 4σ + 2 ε1) (1 + ε3/2).(7.11)

Let us consider the last integral in (7.10) (only in the case Q̌1
x,m 6= {x}).

By (b) in Lemma 7.8 we have

(7.12)
∫
Q̌1

x,m

ϕy,m(x) dµ(y) ≤
∫
Q̌1

x,m

C α−1
2

`(Q̌1
x,m)n

dµ(y) ≤ C C0 α
−1
2 .

From (7.11) and (7.12) we get (7.8). �
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8. Proof of the Main Lemma

8.1. The argument. As stated above, A is a large positive integer that
will be fixed at the end of the proof. We assume that the support of f is
contained in some doubling cube R0, and for each integer m ≥ 1 we consider
the family Dm of “dyadic” cubes Qi,m, i ∈ Im, introduced in Definition 6.1,
and we set D =

⋃
m≥1Dm. Recall that the elements of D may be cubes with

side length 0, i.e. points.
For each m we will construct functions gm and bm. The function gm

will be supported on a subfamily DGm of the cubes in Dm. On the other
hand, bm will be supported on a subfamily DBm of the cubes in Dm. We set
DG =

⋃
m≥1DGm and DB =

⋃
m≥1DBm. The cubes in DG will be called good

cubes and the ones in DB bad cubes (let us remark that in the family Dm,
in general, there are also cubes which are neither good nor bad).

From gm and bm, we will obtain the following potentials:

UGm(x) =
∫
ϕy,m(x) gm(y) dµ(y),

UBm(x) =
∫
ϕy,m(x) bm(y) dµ(y),

Um(x) = UGm(x) + UBm(x).

This potentials will be successively subtracted from f . We will set

fm+1(x) = f(x)−
m∑
j=1

Uj(x) = fm(x)− Um(x)

and

(8.1) h0 = f −
∞∑
m=1

Um = lim
m→∞

fm.

The support of the functions gm, bm, UGm, UBm will be contained in 2R0.
By induction we will show that the functions gm, bm, Um and fm fulfil

the following properties:
(a) |gm|, |bm| ≤ C8A ‖f‖∗.
(b) |mQfm+1| ≤ A ‖f‖∗ if Q ∈ Dm and `(Q) > 0.
(c) If gm 6≡ 0 on Q, Q ∈ Dm, with `(Q) > 0, then |mQfm+1| ≤

7
20
A ‖f‖∗.

(d) If Q ∈ Dm and |mQfm| ≤
8
20
A ‖f‖∗, then Um ≡ 0 and gm ≡ bm ≡ 0

on Q.
(e) If Q ∈ Dm and δ(Q, 2R0) ≤ (m− 1

10)A (so `(Q) = 0), then Um ≡ 0
and gm ≡ bm ≡ 0 on Q.

Finally, we will see that our construction satisfies the following properties
too:
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(f) If δ(x, 2R0) < ∞, then |h0(x)| ≤ C9A ‖f‖∗, and if Q ∈ Dm and
`(Q) = 0, then |mQfm+1| ≡ |fm+1(zQ)| ≤ C9A ‖f‖∗.

(g) For each m, there are functions g1
m, . . . , g

N
m such that

(g.1) UGm(x) =
N∑
p=1

∫
ϕpy,m(x) gpm(y) dµ(y), where ϕpy,m is defined be-

low.
(g.2) |gpm| ≤ 2C8A ‖f‖∗ for p = 1, . . . , N,
(g.3) The functions

∑N
p=1 |g

p
m| have disjoint supports for different

m’s.
(h) The family of cubes DB that support the functions bm, m ≥ 1,

satisfies the following Carleson packing condition for each cube R ∈
Dm with `(R) > 0:

(8.2)
∑

Q:Q∩R 6=∅
Q∈DB

k , k>m

µ(Q) ≤ C µ(R).

Let us remark that if some cube Q coincides with a point {x}, then we
set mQfm ≡ fm(x). Also, the notation for the sum in (h) is an abuse of
notation. This sum has to be understood as∑

Q:Q⊂2R
Q∈DB

k , k>m

µ(Q) ≡
∑

Q: `(Q)>0, Q⊂2R

Q∈DB
k , k>m

µ(Q) +
∑
k>m

µ
{
x ∈ 2R : {x} ∈ DB

k

}
.

On the other hand, the number N that appears in (g) is the number of
disjoint families of cubes given in the Covering Theorem of Besicovitch,
which only depends only on d.

The functions ϕpy,m of (g) are defined as follows. We set Dm = D1
m ∪

· · · ∪ DNm, where each subfamily Dpm is disjoint (recall that the cubes of Dm
originated from Besicovitch’s Covering Theorem). Then we set

ϕpy,m(x) = ϕyi,m(x)

if y ∈ Qi,m with Qi,m ∈ Dpm, and ϕpy,m(x) ≡ 0 if there does not exist any
cube of the subfamily Dpm containing y.

First we will show that if there exist functions gm and bm satisfying (a)–
(h) then the Main Lemma follows, and later we will show the existence of
these functions.

It is not difficult to check that if (4.1) and (4.2) hold, then the sum of
(8.1) converges in L1

loc(µ) (this is left to the reader). Since the support of
all the functions involved is contained in 2R0, the convergence is in L1(µ).

Let us see now that if (b) and (f) hold, then ‖h0‖L∞(µ) ≤ C A ‖f‖∗.
Because of (f), we only have to see that |h0(x)| ≤ C A ‖f‖∗ for x ∈ supp(µ)
such that δ(x, 2R0) = ∞. In this case, if Q ∈ Dk is such that x ∈ Q, then
`(Q) > 0.
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For λ > 0, we denote

F0 = {x ∈ supp(µ) : δ(x, 2R0) =∞, |h(x)| > A ‖f‖∗ + λ}.

Given k, k0 ≥ 1, take mk such that ‖fmk
− h0‖L1(µ) ≤ 2−k−k0 , and set

F1 = {x ∈ supp(µ) : ∃Q ∈
⋃
k

Dmk−1, x ∈ Q, |mQ(h0)| > A‖f‖∗ + λ}.

By the Lebesgue differentiation theorem, we have µ(F0 \ F1} = 0 (this
theorem can be applied to the cubes Q ∈ D which are non centered because
they are doubling). Consider Q ∈ Dmk−1 such that |mQ(h0)| > A‖f‖∗ + λ.
Since |mQ(fmk

)| ≤ A‖f‖∗ for Q ∈ Dmk−1 [by (b)] and

|mQ(h0)| ≤ |mQ(h0 − fmk
)|+ |mQ(fmk

)|,

we deduce that |mQ(h0−fmk
)| > λ. Thus, if x ∈ F1, then |mQ(h0−fmk

)| > λ
for some dyadic cube which contains x and some k ≥ 1. By the usual
arguments (using the fact that our dyadic cubes are doubling),

µ(F0) ≤ µ(F1) ≤ C
∑
k

‖h0 − fmk
‖L1(µ)

λ
≤ C

∑
k

2−k−k0

λ
= C

2−k0

λ
.

Since this holds for any integer k0, we have µ(F0) = 0 for all λ > 0. Thus,
|h(x)| ≤ A‖f‖∗ for µ-a.e. x ∈ supp(µ) such that δ(x, 2R0) =∞.

Observe that the functions gpm in (g.1) originate the same potential as gm.
In fact, they will be constructed modifying slightly the function gm in such
a way that they are supported in disjoint sets for different m’s. By (g.2) we
have ∑

m

N∑
p=1

|gpm| ≤ 2N C8A ‖f‖∗.

The supports of the functions bm may be not disjoint. To solve this prob-
lem, we will construct “corrected” versions (bpm, p = 1, . . . , N) of wi,m bm.
Moreover, as in the case of gm, the modifications will be made in such a way
that the potentials UBm will not change.

8.2. The “correction” of bm. We assume that the functions bm, m ≥ 1,
have been obtained and they satisfy (a)–(h). We will start the construction
of some new functions (the corrected versions of wi,m bm) in the small cubes,
and then we will go over the cubes from previous generations. However, since
there is an infinite number of generations, we will need to use a limiting
argument.

For each j we can write the potential originated by bj as

UBj (x) =
∑
i∈Ij

ϕyi,j(x)
∫
wi,j(y) bj(y) dµ(y).
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For a fixedm ≥ 1 we are going to define functions vmi,j , for j = m, m−1, . . . , 1,
and all i ∈ Ij . The functions vmi,j will satisfy

(8.3) supp(vmi,j) ⊂ Qi,j ,

where Qi,j ∈ DBJ , the sign of vmi,j will be constant on Qi,j , and

(8.4)
∫
vmi,j(y) dµ(y) =

∫
wi,j(y) bj(y) dµ(y).

Moreover, we will also have

(8.5)
m∑
j=1

∑
i∈Ij

|vmi,j | ≤ C11A ‖f‖∗.

We set vmi,m(y) = wi,m(y) bm(y) for all i ∈ Im. Assume that we have
obtained functions vmi,m, v

m
i,m−1, . . . v

m
i,k+1 for all the i’s, fulfiling (8.3), (8.4),

and such that
m∑

j=k+1

∑
i∈Ij

|vmi,j | ≤ BA ‖f‖∗,

where B is some constant that will be fixed below. We are going to construct
vmi,k now.

Let Qi0,k ∈ Dk be some fixed cube from the k-th generation. Assume first
that Qi0,k is not a single point. Since the cubes in the family DB satisfy the
packing condition (8.2), for any t > 0 we get

µ

{
y ∈ Qi0,k :

m∑
j=k+1

∑
i∈Ij

|vmi,j(y)| > t

}

≤ 1
t

m∑
j=k+1

∑
i∈Ij

∫
Qi0,k

|vmi,j(y)| dµ(y)

≤ 1
t

m∑
j=k+1

∑
i∈Ij

∫
Qi0,k

|wi,j(y) bj(y)| dµ(y)

≤ C8A ‖f‖∗
t

∑
Q:Q∩Qi0,k 6=∅
Q∈DB

j , j>k

µ(Q) ≤ C12A ‖f‖∗
t

µ(Qi0,k).

Therefore, if we choose t = 2C12A ‖f‖∗ and we denote

V m
i0,k =

{
y ∈ Qi0,k :

m∑
j=k+1

∑
i∈Ij

|vmi,j(y)| ≤ t
}
,

we have µ(V m
i0,k

) ≥ 1
2µ(Qi0,k). If we set vmi0,k = cmi0,k χVi0,k

, where cmi0,k ∈ R is
such that (8.4) holds for i = i0, then

|cmi0,k| ≤
1

µ(Vi0,k)

∫
|wi,k(y) bk(y)| dµ(y) ≤ 2C8A ‖f‖∗.
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By the finite overlap of the cubes in DBk , we get∑
i0:Qi0,k∈DB

k

`(Qi0,k)6=0

|vmi0,k| ≤ CB 2C8A ‖f‖∗,

where CB is the overlap constant in the Covering Theorem of Besicovitch.
Now if we take B := 2CB C8 + 2C12, we will have

(8.6)
∑

i0:Qi0,k∈DB
k

`(Qi0,k)6=0

|vmi0,k|+
m∑

j=k+1

∑
i∈Ij

|vmi,j | ≤ BA ‖f‖∗.

In case Qi0,k is a single point {y}, then we set vmi0,k(y) = wi0,k(y) bk(y) =
bk(y). All the cubes of the generations k+1, . . . ,m that intersect Qi0,k ≡ {y}
coincide with {y} by Lemma 6.3. From (e) we get that bk+1(y) = bk+2(y) =
· · · = 0, which is the same as saying that vmi,k+1(y) = vmi,k+2(y) = · · · = 0 for
all i. So we have

(8.7)
m∑
j=k

∑
i∈Ij

|vmi,j(y)| = |bk(y)| ≤ C8A ‖f‖∗ ≤ BA ‖f‖∗.

From (8.6) and (8.7) we get
m∑
j=k

∑
i∈Ij

|vmi,j | ≤ BA ‖f‖∗.

Operating in this way, the functions vmi,j , j = m, m − 1, . . . , 1, i ∈ Ij , will
satisfy the conditions (8.3), (8.4) and (8.5) (with C11 = B).

Now we can take a subsequence {mk}k such that for all i ∈ I1 (i.e. for
all the cubes of the first generation) the functions {vmk

i,1 }k converge weakly
in L∞(µ) to some function vi,1 ∈ L∞(µ). Let us remark that the sequence
{mk}k can be chosen independently of i since, by the Besicovitch’s Covering
Theorem, there is a bounded number N of subfamilies D1

1, . . . ,DN1 of D1

such that each subfamily Dp1 is disjoint. If we denote by Dp,B1 the subfamily
of bad cubes of Dp1, we can write

∑
i∈I1

vmi,1 =
N∑
p=1

∑
i:Qi,1∈Dp,B

1

vmi,1,

and we can choose {mk}k such that, for each p,
∑

i:Qi,1∈Dp,B
1

vmk
i,1 converges

weakly to
∑

i:Qi,1∈Dp,B
1

vi,1.
In a similar way, we can consider another subsequence of {mkj

}j of {mk}k
such that for all i ∈ I2 the functions {v

mkj

i,2 }j converge weakly in L∞(µ) to
some function vi,2 ∈ L∞(µ). Going on with this process, we will obtain
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functions vi,j , j ≥ 1, that satisfy (8.3), (8.4) (without the superscript m)
and

(8.8)
∞∑
j=1

∑
i∈Ij

|vi,j | ≤ C11A ‖f‖∗.

Also, we have

UBj (x) =
∑
i∈Ij

ϕyi,j(x)
∫
vi,j(y) dµ(y).

We denote Dp,Bm = Dpm ∩ DBm and

bpm(y) =
∑

i:Qi,m∈Dp,B
m

vi,m(y).

Recall also that ϕpy,m(x) = ϕyi,m(x) if y ∈ Qi,m with Qi,m ∈ Dpm, and
ϕpy,m(x) = 0 if there does not exist any cube of the subfamily Dpm containing
y. Then we have

UBm(x) =
N∑
p=1

∫
ϕpy,m(x) bpm(y) dµ(y).

Now we set hpm = gpm + bpm, and we get

f(x) = h0(x) +
N∑
p=1

∞∑
m=1

∫
ϕpy,m(x)hpm(y) dµ(y),

with C ϕy,m ∼ y for some constant C > 0, and

|h0|+
N∑
p=1

∞∑
m=1

|hpm| ≤ C A ‖f‖∗,

and the Main Lemma follows, by (g) and (8.8).

8.3. The construction of gm and bm. In this subsection we will construct
inductively functions gm and bm satisfying the properties (a)–(e). We will
check in Subsection 8.4 that these functions fulfil (f)–(h) too.

Assume that g1, . . . , gm−1 and b1, . . . , bm−1 have been constructed and
they satisfy (a)–(e). Let Ωm be the set of points x ∈ supp(µ) with δ(x, 2R0) >
mA such that that there exists some Q ∈ Dm, `(Q) > 0, with Q 3 x and
|mQfm| ≥ 3

4A. For each x ∈ Ωm, we consider a doubling cube Sx,m centered
at x such that δ(Sx,m, 2R0) = mA − α1 − α2 − α3 ± ε1, where α3 is some
big constant with 10α2 < α3 � A, whose precise value will be fixed below.
One has to think that Sx,m is much bigger than Q3

x,m but much smaller than
Qx,m−1 (observe that all these cubes have positive side length).

Now we take a Besicovitch covering of Ωm with cubes of type Sx,m, x ∈
Ωm:

Ωm ⊂
⋃
j

Sj,m,
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where Sj,m stands for Sxj ,m, with xj ∈ Ωm. We say that a cube Q ∈ Dm is
good (i.e. Q ∈ DGm) if

Q ⊂
⋃
j

3
2
Sj,m,

and we say that it is bad (i.e. Q ∈ DBm) if it is not good and

Q ⊂
⋃
j

2Sj,m.

Both good and bad cubes are contained in
⋃
j 2Sj,m. Roughly speaking,

the difference between good and bad cubes is that bad cubes may be sup-
ported near the boundary of

⋃
j 2Sj,m, while the good ones are far from the

boundary.
Now we define gm and bm:

gm =
∑

i:Qi,m∈DG
m

wi,mmQi,m(fm),

bm =
∑

i:Qi,m∈DB
m

wi,mmQi,m(fm).

Because there is some overlapping among the cubes in Dm, we have used
the weights wi,m in the definition of these functions. However one should
think that gm and bm are approximations of the mean of f over the cubes
of DGm and DBm, respectively.

The following remark will be useful.

Claim 1. Let Qh,m ∈ Dm be such that either gm 6≡ 0, bm 6≡ 0 or Um 6≡ 0
on Qh,m. Then there exists some j such that Q̂3

h,m ⊂ 4Sj,m and so Qh,m ⊂
4Sj,m.

Proof. In the first two cases Qh,m∩2Sj,m 6= ∅ for some j. In the latter case,
by (a) of Lemma 7.8 and our construction, there exists some j such that
Q̂3
h,m ∩ 2Sj,m 6= ∅.
So in any case Q̂3

h,m ∩ 2Sj,m 6= ∅ for some j. Arguing as in Lemma 6.3,
for α3 big enough, it is easily checked that `(Q̂3

h,m) ≤ `(Sj,m)/4, and so
Q̂3
h,m ⊂ 4Sj,m. �

Let us see now that (e) is satisfied.

Claim 2. If Q ∈ Dm and δ(Q, 2R0) ≤ (m − 1
10)A (so `(Q) = 0), then

Um ≡ gm ≡ bm ≡ 0 on Q and Q 6∈ DGm ∪ DBm.
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Proof. Assume that Q ≡ {x} and that either gm 6≡ 0, bm 6≡ 0 or Um 6≡ 0 on
Q, or Q ∈ DGm ∪ DBm. By the preceding claim, Q ⊂ 4Sj,m for some j. Then,

δ(x, 2R0) = δ(x, 4Sj,m) + δ(4Sj,m, 2R0)± ε0

≥ δ(4Sj,m, 2R0)− ε0

≥ δ(Sj,m, 2R0)− 8nC0 − ε0 >

(
m− 1

10

)
A.

�

The following estimate will be necessary in many steps of our construction.

Claim 3. Let Q be some cube of the m-th generation and x, y ∈ 2Q. Then,
if g1, . . . , gm and b1, . . . , bm satisfy (a), then

m∑
k=1

|Uk(x)− Uk(y)| ≤ A

100
‖f‖∗.

We postpone the proof of Claim 3 until Subsection 8.5. Let us see that
(a) holds.

Claim 4. If Q ∈ DGm ∪ DBm, then |mQfm| ≤ C9A ‖f‖∗. Also, |gm|, |bm| ≤
C8A ‖f‖∗.

Proof. First we will prove the first statement. By Claim 2, we know that
δ(Q, 2R0) > (m − 1

10)A. Let R ∈ Dm−1 be such that Q ∩ R 6= ∅. We
must have `(R) > 0. Otherwise, Q ≡ R and δ(R, 2R0) > (m − 1

10)A >
(m− 1)A+ ε1, which is not possible.

Since `(Q) ≤ `(R)/10, we have Q ⊂ 2R. We know |mRfm| ≤ A ‖f‖∗
because (b) holds for m− 1. By Claim 3 (for m− 1 and R) we get

|mQfm| ≤ |mRfm|+ |mQfm −mRfm|

≤ |mRfm|+ |mQf −mRf |+
∣∣∣mQ

(m−1∑
k=1

Uk

)
−mR

(m−1∑
k=1

Uk

)∣∣∣
≤ C A ‖f‖∗ + |mQf −mRf |.

The term |mQf −mRf | is also bounded above by C A ‖f‖∗ because Q and
R are doubling, f ∈ RBMO(µ), and it is easily checked that δ(Q,R) ≤ C A.

The estimates on gm and bm follow from from the definition of these
functions and the estimate |mQfm| ≤ C9A ‖f‖∗ for Q ∈ DGm ∪ DBm. �

Let us prove (d) now.

Claim 5. If Q ∈ Dm and |mQfm| ≤
8
20
A ‖f‖∗, then Um ≡ 0 and gm ≡

bm ≡ 0 on Q.

Proof. Suppose that Q ≡ Qh,m ∈ Dm is such that either gm 6≡ 0, bm 6≡ 0
or Um 6≡ 0 on Qh,m. By Claim 1 we have Qh,m ⊂ 4Sj,m for some j. By
construction, the center of Sj,m belongs to some cube Qi,m with |mQi,mfm| ≥
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3
4 A ‖f‖∗. It is easily seen that δ(Qh,m, 4Sj,m), δ(Qi,m, 4Sj,m) ≤ C ′ + α1 +
α2 + α3. Thus

|mQi,mf −mQh,m
f | ≤ (C ′′ + 2α1 + 2α2 + 2α3) ‖f‖∗.

Since Qi,m and Qh,m are contained in a common cube of the generation
m− 1, by Claim 3 we get

|mQi,mfm −mQh,m
fm| ≤ |mQi,mf −mQh,m

f |

+
∣∣∣mQi,m

(m−1∑
k=1

Uk

)
−mQh,m

(m−1∑
k=1

Uk

)∣∣∣
≤ (C ′′ + 2α1 + 2α2 + 2α3 +A/100) ‖f‖∗

≤ 1
10
A ‖f‖∗,

and so

|mQh,m
fm| ≥

(
3
4
− 1

10

)
A ‖f‖∗ >

8
20
A ‖f‖∗.

�

The statement (c) is a consequence of the fact that if Q ∈ DGm, then Q is
far from the boundary of

⋃
j 2Sj,m. Then Um is very close to mQfm on Q,

since we only integrate over cubes of DGm ∪DBm in order to obtain Um(x) for
x ∈ Q. On the other hand, if Q ∈ DBm, this argument does not work because
Q may be near the boundary of

⋃
j 2Sj,m, and so it may happen that we

integrate on some cubes from Dm \ (DGm ∪DBm) for obtaining Um(x), x ∈ Q.
Let us see (c) in detail.

Claim 6. If Q ∈ DGm and `(Q) > 0, then |mQfm+1| ≤ 7
20A‖f‖∗.

Proof. Consider Qi,m ∈ DGm. We want to see that Um is very close to
mQi,mfm on this cube. By (a) of Lemma 7.8 we have to deal with the
cube Q̂3

i,m.
Let us see that if P ∈ Dm is such that P ∩ Q̂3

i,m 6= ∅, then P ∈ DGm ∪DBm.

Notice that P ⊂ ̂̂
Q3
i,m. Now, by the definition of good cubes, there exists

some j such that Qi,m ∩ 3
2Sj,m 6= ∅, which implies ̂̂Q3

i,m ∩ 3
2Sj,m 6= ∅. For

α3 big enough, we have `( ̂̂Q3
i,m) � `(Sj,m), and then ̂̂

Q3
i,m ⊂ 2Sj,m. So

P ∈ DGm ∪ DBm.
Let us estimate the term

sup
y∈ bQ3

i,m

|(gm(y) + bm(y))−mQi,mfm|.

Recall that

gm(y) + bm(y) =
∑

h:Qh,m∈DG
m∪DB

m

wh,m(y)mQh,m
fm.
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By the arguments above, if y ∈ Q̂3
i,m and wh,m(y) 6= 0, then Qh,m has been

chosen for supporting gm or bm, i.e. Qh,m ∈ DGm ∪ DBm. Then,

gm(y) + bm(y)−mQi,mfm =
∑

h:Qh,m∈Dm

wh,m(y) (mQh,m
fm −mQi,mfm).

By Claim 3 we obtain

|mQh,m
fm −mQi,mfm| ≤

1
100

A‖f‖∗ + |mQh,m
f −mQi,mf |

≤
(

1
100

A+ C + 2 δ(Qh,m, Qi,m)
)
‖f‖∗

≤ 1
50
A ‖f‖∗

(we have used that δ(Qh,m, Qi,m) ≤ C, with C depending on α1, α2). Then
we get

(8.9) |gm(y) + bm(y)−mQi,mfm| ≤
1
50
A ‖f‖∗.

For x ∈ Qi,m, we have

|Um(x)−mQi,mfm| ≤
∣∣∣∣Um(x)−mQi,mfm

∫
ϕy,m(x) dµ(y)

∣∣∣∣
+ |mQi,mfm|

∣∣∣∣1− ∫ ϕy,m(x) dµ(y)
∣∣∣∣ .(8.10)

Let us estimate the first term on the right hand side. By (8.9) and (7.8) we
obtain ∣∣∣∣Um(x)−mQi,mfm

∫
ϕy,m(x) dµ(y)

∣∣∣∣
=

∣∣∣∣∣
∫

bQ3
i,m

ϕy,m(x) (gm(y) + bm(y)−mQi,mfm) dµ(y)

∣∣∣∣∣
≤ (1 + ε3)

1
50
A ‖f‖∗.

On the other hand, by (7.8), (7.9) and Claim 4, the second term on the right
hand side of (8.10) is bounded above by ε3C8A ‖f‖∗. Thus we have

|mQi,mfm+1| ≤
(

(1 + ε3)
1
50

+ ε3C8

)
A ‖f‖∗ ≤

7
20
A ‖f‖∗,

if we choose ε3 small enough. �

Now we are going to show that (b) also holds.

Claim 7. If Q ∈ Dm and `(Q) > 0, then |mQfm+1| ≤ A‖f‖∗.
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Proof. If Q ∈ DGm, we have already seen that |mQfm+1| ≤ 7
20 A ‖f‖∗.

If Q ∈ Dm \ DGm, then Q ∩
⋃
j Sj,m = ∅ (because `(Q) � `(Sj,m) and

Q 6⊂
⋃
j

3
2Sj,m). By construction, we have

(8.11) |mQfm| ≤
3
4
A ‖f‖∗.

If Um ≡ 0 on Q, then |mQfm+1| = |mQfm| ≤ 3
4 A ‖f‖∗.

Now we consider the case Q ≡ Qh,m ∩
⋃
j Sj,m = ∅ such that Um 6≡ 0 on

Q. By Claim 1 there exists some j with Q̂3
h,m ⊂ 4Sj,m. Recall that by (a)

of Lemma 7.8, if x ∈ Qh,m, we have

Um(x) =
∫

bQ3
h,m

ϕy,m(x) (gm(y) + bm(y)) dµ(y).

So if ϕy,m(x) 6= 0 and y ∈ Qi,m, we have Qi,m ∩ Q̂3
h,m 6= ∅. Therefore,

Qi,m ⊂
̂̂
Q3
h,m. Then,

δ(Qi,m, Qh,m) ≤ C+δ(Qi,m,
̂̂
Q3
h,m)+δ(Qh,m,

̂̂
Q3
h,m) ≤ C+2α1 +2α2 ≤

A

400
.

Therefore, |mQi,mf −mQh,m
f | ≤ A

100 ‖f‖∗. By Claim 1 we get

|mQi,mfm −mQh,m
fm| ≤ |mQi,mf −mQh,m

f |

+
∣∣∣mQi,m

(m−1∑
k=1

Uk

)
−mQh,m

(m−1∑
k=1

Uk

)∣∣∣
≤ 1

10
A ‖f‖∗.(8.12)

Recall also that, by (d),

(8.13) |mQh,m
fm| ≥

8
20
A ‖f‖∗.

From the definition of gm, bm and (8.12), (8.13), we derive that mQh,m
fm

and Um(x) have the same sign.
On the other hand, from (8.11) and (8.12) we get

|mQi,mfm| ≤
34
40
A ‖f‖∗.

So by the definition of gm and bm we have

‖gm + bm‖L∞(µ) ≤
34
40
A ‖f‖∗,

and by (7.8) we obtain
(8.14)

|Um(x)| ≤ 34
40
A ‖f‖∗

∫
ϕy,m(x) dµ(y) ≤ (1 + ε3)

34
40
A ‖f‖∗ ≤ A ‖f‖∗

(assuming ε3 small enough). By (8.11), (8.14) and since mQh,m
fm and Um(x)

have the same sign, (b) holds also in this case. �
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Therefore, (a)–(e) are satisfied.

8.4. Proof of (f), (g) and (h). The statement (f) is a direct consequence
of the following.

Claim 8. If δ(x, 2R0) < ∞, and if Q = {x} ∈ Dm (i.e. `(Q) = 0), then
h0(x) = fm+1(x) and |h0(x)| ≤ C9A ‖f‖∗.

Proof. Take m such that (m − 1)A < δ(x, 2R0) ≤ mA. By (e) we get
Um+k(x) = 0 for k ≥ 1. Therefore, fm+1(x) = fm+2(x) = · · · = h0(x). By
(a) we have

|fm+1(x)| ≤ |fm(x)|+ |Um(x)| ≤ |fm(x)|+ 2C8 (1 + ε3)A ‖f‖∗.
So we only have to estimate |fm(x)|.

Take Qi,m−1 ∈ Dm−1 with x ∈ Qi,m−1. Since `(Qi,m−1) > 0, by (b) we
have |mQi,m−1fm| ≤ A ‖f‖∗. Applying Claim 3 we get

|mQi,m−1fm − fm(x)| ≤ |mQi,m−1f − f(x)|+ A

100
‖f‖∗

≤ C

(
1 + δ(x,Qi,m−1) +

A

100

)
‖f‖∗.

It is easily checked that δ(x,Qi,m−1) ≤ A+ ε0 + ε1. Then we get |fm(x)| ≤
C A ‖f‖∗. �

Now we turn our attention to (g). Given some good cube Qi,m ∈ DGm with
`(Qi,m) > 0, we denote

Zi,m := Z(Qi,m, A ‖f‖∗/30)

(see Definition 5.2; roughly speaking Zi,m is the part of Qi,m where f does
not oscillate too much with respect to mQi,mf). If Qi,m ∈ DGm and `(Qi,m) =
0, we set Zi,m = Qi,m. The set Zi,m has a very nice property:

Claim 9. Let k > m and Qi,m ∈ DGm. If P ∈ Dk is such that P ∩Zi,m 6= ∅,
then gk ≡ bk ≡ 0 on P and P 6∈ DGk ∪ DBk .

Proof. Consider first the case `(Qi,m) = 0. If P ∈ Dk is such that P ∩Qi,m 6=
∅, then `(P ) ≤ `(Qi,m)/10 = 0 and so P ≡ Qi,m. Therefore,

δ(P, 2R0) ≤ mA ≤
(
k − 1

10

)
A.

By (e), we get bk ≡ gk ≡ 0 on P .

Assume now `(Qi,m) > 0. Let x ∈ P ∩ Zi,m. From the definition of Zi,m,
we have

(8.15) |mQi,mf −mSf | ≤
A

30
‖f‖∗

for any S ∈ Dm+j , j ≥ 1, with x ∈ S. Also, by Claim 6 we have

|mQi,mfm+1| ≤
7
20
A ‖f‖∗.
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Consider now Pm+1 ∈ Dm+1 with x ∈ Pm+1. Observe that `(Pm+1) ≤
`(Qi,m)/10 and Pm+1 ⊂ 2Qi,m. We have

|mPm+1fm+1| ≤ |mQi,mfm+1|+ |mQi,mfm+1 −mPm+1fm+1|

≤ 7
20
A ‖f‖∗ + |mQi,mf −mPm+1f |

+
∣∣∣mQi,m

( m∑
k=1

Uk

)
−mPm+1

( m∑
k=1

Uk

)∣∣∣.
By (8.15) and Claim 3 we obtain |mPm+1fm+1| ≤ 8

20A ‖f‖∗. By (d), on
Pm+1 we have gm+1 ≡ bm+1 ≡ 0 and also Um+1 ≡ 0. Thus,

fm+2 ≡ fm+1

on any cube Pm+1 ∈ Dm+1 containing x.
Take now Pm+2 ∈ Dm+2 with x ∈ Pm+2. On this cube fm+2 ≡ fm+1, and

then we have

|mPm+2fm+2| ≤ |mQi,mfm+1|+ |mQi,mfm+1 −mPm+2fm+1|

≤ 7
20
A ‖f‖∗ + |mQi,mf −mPm+2f |

+
∣∣∣mQi,m

( m∑
k=1

Uk

)
−mPm+2

( m∑
k=1

Uk

)∣∣∣.
Again by (d), we get gm+2 ≡ bm+2 ≡ Um+2 ≡ 0 on Pm+2. Thus, fm+3 =
fm+1 on Pm+2.

Going on, we will obtain gm+j ≡ bm+j ≡ Um+j ≡ 0 for all j ≥ 1 on any
cube Pm+j ∈ Dm+j containing x. �

As a consequence of Claim 9, Zi,m is a good place for supporting gm. If,
for each m, gm were supported on

⋃
i Zi,m, then the supports of gm, m ≥ 1,

would be disjoint for different m’s. This is the idea that Carleson used in
[Ca].

So we are going to make some “corrections” according to this argument.
We have

UGm(x) =
∑
i∈Im

ϕyi,m(x)
∫
wi,m(y) gm(y) dµ(y).

For each Qi,m with `(Qi,m) > 0 we set

ui,m(y) =
∫
wi,m gm dµ ·

χZi,m(y)
µ(Zi,m)

.

If `(Qi,m) = 0, we set ui,m(y) = wi,m(y) gm(y) ≡ gm(y) (we do not change
anything in this case). Then UGm can be written as

UGm(x) =
∑
i∈Im

ϕyi,m(x)
∫
ui,m(y) dµ(y).
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As in the case of UBm in Subsection 8.2, if we set DGm = D1,G
m ∪ · · · ∪ DN,Gm

where each subfamily Dp,Gm is disjoint, we can write UGm in the following way:

UGm(x) =
N∑
p=1

∫
ϕpy,m(x) gpm(y) dµ(y)

with
gpm(y) =

∑
i:Qi,m∈Dp,G

m

ui,m(y)

and
ϕpy,m(x) = ϕyi,m(x)

if y ∈ Qi,m and Qi,m ∈ Dpm.
By Proposition 5.3, if A is big enough we have µ(Zi,m) ≥ µ(Qi,m)/2 (if

`(Qi,m) > 0). Then it easily checked that ‖ui,m‖L∞(µ) ≤ 2 ‖gm‖L∞(µ) for all
i. Thus, from (a), (g.2) follows. Moreover, because of Claim 9, (g.3) also
holds.

One of the differences between our construction and Carleson’s one is
that, because of the regularity of Lebesgue measure, Carleson can treat the
bad cubes in a way very similar to the way for the good ones. We have
not been able to operate as Carleson. However, as it has been shown in
Subsection 8.2, the packing condition (8.2) is also a good solution. Let us
prove that this condition is satisfied.

Claim 10. For any R ∈ Dm with `(R) > 0, the bad cubes satisfy the packing
condition ∑

Q:Q∩R 6=∅
Q∈DB

k , k>m

µ(Q) ≤ C µ(R).

Proof. Let k > m be fixed. We are going to estimate the sum∑
Q:Q∩R 6=∅
Q∈DB

k

µ(Q).

Let Q ∈ DBk be such that Q∩R 6= ∅. Since Q is a bad cube, there exists some
j such that 2Sj,k∩Q 6= ∅. Then we have Q ⊂ 4Sj,k. Since A� α1 +α2 +α3

and 4Sj,k ∩R 6= ∅, we get `(Sj,k) ≤ `(R)/20, and so 4Sj,k ⊂ 2R.
By the finite overlapping of the cubes Q in Dk, we have∑
Q:Q∩R 6=∅
Q∈DB

k

µ(Q) ≤ C µ

( ⋃
j:Sj,k⊂2R

2Sj,k

)

≤ C
∑

j:Sj,k⊂2R

µ(2Sj,k) ≤ C
∑

j:Sj,k⊂2R

µ(Sj,k).



38 XAVIER TOLSA

Now, from the construction of gpk, it is easy to check that µ(Sj,k) ≤ C µ
(
Sj,k∩{∑N

p=1 |g
p
k| 6= 0

})
. This fact and the bounded overlapping of the cubes Sj,k

give ∑
Q:Q∩R 6=∅
Q∈DB

k

µ(Q) ≤ C µ
(

2R ∩
{ N∑
p=1

|gpk| 6= 0
})
.

Summing over k > m, as the supports of the functions gpk are disjoint for
different k’s, we obtain∑

Q:Q∩R 6=∅
Q∈DB

k , k>m

µ(Q) ≤ C
∑
k>m

µ
(

2R ∩
{ N∑
p=1

|gpk| 6= 0
})
≤ C µ(2R) ≤ C µ(R).

�

8.5. Proof of Claim 3. We only need to check that
m∑
k=1

C8A

∫
|ϕz,k(x)− ϕz,k(y)| dµ(z) ≤ A

100
.

Let x0 ∈ supp(µ) be such that x, y ∈ 2Qx0,m. Obviously, we can assume
`(Qx0,m) > 0. For each k ≤ m we set∫

|ϕz,k(x)− ϕz,k(y)| dµ(z) =
∫

Rd\Q̌1
x0,k

+
∫
Q̌1

x0,k

= I1,k + I2,k.

Let us estimate the integrals I1,k. Notice that if x, y ∈ 2Qx0,m, then
x, y ∈ 2Qx0,k ⊂ 1

2Q̌
1
x0,k

. Thus |x− z| ≈ |y − z| ≈ |x0 − z| for z ∈ Rd \ Q̌1
x0,k

.
So by (d) of Lemma 7.8 we have

I1,k ≤ C α−1
2

∫
Rd\Q̌1

x0,k

|x− y|
|x− z|n+1

dµ(z)

≤ C α−1
2

`(Qx0,m)
`(Q̌1

x0,k
)
.(8.16)

In case k > m, by Lemma 6.4 we get

I1,k ≤ C α−1
2

`(Qx0,m)
`(Qx0,k)

≤ C13 α
−1
2 2−γ (m−k)A.

Therefore,

(8.17) C8A
m∑
k=1

I1,k ≤ C8 α
−1
2 A

m−1∑
k=1

2−γ (m−k)A + C8C13 α
−1
2 A

`(Qx0,m)
`(Q̌1

x0,m)
.

The first sum on the right hand side is ≤ C α−1
2 A 2−γ A, and for A big

enough and α2 > 1 is ≤ 1 ≤ A/400. The second term on the right hand side



NON DOUBLING H1 IN TERMS OF A MAXIMAL OPERATOR 39

is also ≤ A/400 if we choose α2 big enough (or α1 big enough since then
`(Q̌x0,m)� `(Q̌1

x0,m)). Thus

C8A

m∑
k=1

I1,k ≤
A

200
.

We consider now the integrals I2,k. By Lemma 7.8,

|ϕ′(u)| ≤ C α−1
2

`(Q̌1
x0,k

)n+1

for all u ∈ Qx0,k. Therefore,

I2,k ≤ C α−1
2

∫
Q̌1

x0,k

|x− y|
`(Q̌1

x0,k
)n+1

dµ(z) ≤ C α−1
2

`(Qx0,m)
`(Q̌1

x0,k
)
.

This is the same estimate that we have obtained for I1,k in (8.16), and then
we also have

C8A

m∑
k=1

I2,k ≤
A

200
,

if we choose A and α2 (or α1) big enough. �

9. Appendix

In this section we will prove the following result, which is used in Section
4 to show that Theorem 1.2 follows from the Main Lemma.

Lemma 9.1. Consider f ∈ L1(µ) with
∫
f dµ = 0 and MΦf ∈ L1(µ). Then

there exists a sequence of functions fk, k ≥ 1, bounded with compact support
such that

∫
fk dµ = 0, fk → f in L1(µ) and ‖MΦ(f − fk)‖L1(µ) → 0.

So if we consider the space

H1
Φ(µ) =

{
f ∈ L1(µ) :

∫
f dµ = 0, MΦf ∈ L1(µ)

}
,

with norm ‖f‖H1
Φ(µ) = ‖f‖L1(µ) +‖MΦf‖L1(µ), then Lemma 9.1 asserts that

functions in H1
Φ(µ) which are bounded and have compact support are dense

in H1
Φ(µ). In particular, H1

Φ(µ) ∩H1,∞
atb (µ) is dense in H1

Φ(µ).
In this section we will assume that the center of any cube Q may be

any point of Rd, not necessarily belonging to supp(µ). As in the previous
sections, the sides of the cubes are parallel to the axes and they are closed.

Let us introduce some additional notation. For ρ > 1, we set

M(ρ)f(x) = sup
Q3x

1
µ(ρQ)

∫
Q
|f | dµ.

This non centered maximal operator is bounded above by the operator de-
fined as

M (ρ)f(x) = sup
ρ−1Q3x

1
µ(Q)

∫
Q
|f | dµ.
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This is the version of the Hardy-Littlewood operator that one obtains taking
supremums over cubes Q which may be non centered at x but such that
x ∈ ρ−1Q. Recall that since 0 < ρ−1 < 1, one can apply Besicovitch’s
Covering Theorem and then one gets that M (ρ) is of weak type (1, 1) and
bounded in Lp(µ), p ∈ (1,∞]. As a consequence, M(ρ) is also of weak type
(1, 1) and bounded in Lp(µ), p ∈ (1,∞]

Remark 9.2 (Whitney covering). Let Ω ⊂ Rd be open, Ω 6= Rd. Then Ω
can be decomposed as Ω =

⋃
i∈I Qi, where Qi, i ∈ I, are cubes with disjoint

interiors, with 20Qi ⊂ Ω and such that, for some constants β > 20 and
D ≥ 1, β Qk ∩ Ωc 6= ∅ and for each cube Qk there are at most D cubes
Qi with 10Qk ∩ 10Qi 6= ∅ (in particular, the family of cubes {10Qi}i∈I has
finite overlapping).

In [To3] a decomposition of Calderón-Zygmund type adapted for non
doubling measures was introduced. This decomposition was used to prove
an interpolation theorem between (H1

atb(µ), L1(µ)) and (L∞(µ), RBMO(µ)).
In [To4] it was shown that this decomposition was also useful for proving
that CZO’s bounded in L2(µ) are of weak type (1, 1) too, as in the dou-
bling case (this result had been proved previously in [NTV2] using different
techniques). To prove Lemma 9.1 we will use the following variant of the
Calderón-Zygmund decomposition of [To3].

Lemma 9.3. Let f ∈ L1(µ) with
∫
f dµ = 0 and MΦf ∈ L1(µ). For any

λ > 0, let Ωλ =
{
x ∈ Rd : M(2)f(x) > λ

}
. Then Ωλ is open and |f | ≤ 2d+1 λ

µ-a.eq. in Rd \ Ωλ. Moreover, if we consider a Whitney decomposition of
Ωλ into cubes Qi (as in Remark 9.2), then we have:

(a) For each i there exists a function wi ∈ C∞(Rd) with supp(wi) ⊂ 3
2Qi,

0 ≤ wi ≤ 1, ‖w′i‖∞ ≤ C `(Qi)−1 such that
∑

iwi(x) = 1 if x ∈ Ωλ.
(b) For each i, let Ri be the smallest (6, 6n+1)-doubling cube of the form

6kQi, k ≥ 1, with Ri ∩ Ωc
λ 6= ∅. Then there exists a family of

functions αi with supp(αi) ⊂ Ri satisfying

(9.1)
∫
αi dµ =

∫
f wi dµ,

(9.2) ‖αi‖L∞(µ) µ(Ri) ≤ C ‖αi‖L1(µ)

and

(9.3)
∑
i

|αi| ≤ B λ

(where B is some constant).
(c) f can be written as f = g + b, with

g = f
(

1−
∑
i

wi

)
+
∑
i

αi
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and

b =
∑
i

(f wi − αi),

and then ‖g‖L∞(µ) ≤ C λ and supp(b) ⊂ Ωλ.

Proof. The set Ωλ is open because M(2) is lower semicontinuous. Since for
µ-a.e. x ∈ Rd there exists a sequence of (2, 2d+1)-doubling cubes centered
at x with side length tending to zero, it follows that for µ-a.e. x ∈ Rd

such that |f(x)| > 2d+1λ there exists some (2, 2d+1)-doubling cube Q with∫
Q |f | dµ/µ(Q) > 2d+1λ and so M(2)f(x) > λ.

The existence of the functions wi of (a) is a standard known fact. The
assertion (c) follows from the other statements in the lemma. So the only
question left is the statement (b).

Notice that, since Ri ∩ Ωc
λ 6= ∅, we have

(9.4)
∫
Ri

|f | dµ ≤ λµ(2Ri)

for each i.
To construct the functions αj we would like to start by the smallest cube

Ri, and go on with the bigger cubes Rj following an order of non decreasing
sizes. Since in general there does not exist a cubeRi with minimal side length
in the family {Ri}∞i=1, we will have to modify a little the argument. For each
fixed N we will construct functions αNi , 1 ≤ i ≤ N , with supp(αNi ) ⊂ Ri,
satisfying (9.1), (9.2) and (9.3). Finally, applying weak limits when N →∞,
we will get the functions αi.

The functions αNi that we will construct will be of the form αNi = aNi χAN
i

,
with aNi ∈ R and ANi ⊂ Ri. To avoid a complicate notation, suppose that
the cubes Ri, 1 ≤ i ≤ N , satisify `(Ri) ≤ `(Ri+1) (we can assume this
because we are taking a finite number of cubes). We set AN1 = R1 and

αN1 = aN1 χR1 ,

where the constant aN1 is chosen so that
∫
Q1
f w1 dµ =

∫
αN1 dµ.

Suppose that αN1 , α
N
2 . . . , αNk−1 (for some k ≤ N) have been constructed,

satisfy (9.1) and
∑k−1

i=1 |αi| ≤ B λ, where B is some constant (which will be
fixed below).

Let Rs1 , . . . , Rsm be the subfamily of cubes Ri, 1 ≤ i ≤ k − 1, such that
Rsj ∩ Rk 6= ∅. As l(Rsj ) ≤ l(Rk) (because of the non decreasing sizes of
Ri), we have Rsj ⊂ 3Rk. Taking into account that for i = 1, . . . , k − 1∫

|αNi | dµ ≤
∫
|f wi| dµ
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by (9.1), and using that Rk is (6, 6n+1)-doubling and (9.4), we get∑
j

∫
Rsj

|αNsj
| dµ ≤

∑
j

∫
|f wsj | dµ

≤ C

∫
3Rk

|f | dµ ≤ Cλµ(6Rk) ≤ C14λµ(Rk).

Therefore,

µ
{∑

j |α
N
sj
| > 2C14λ

}
≤ µ(Rk)

2
.

So we set
ANk = Rk ∩

{∑
j |α

N
sj
| ≤ 2C14λ

}
,

and then µ(ANk ) ≥ µ(Rk)/2.
The constant aNk is chosen so that for αNk = aNk χAN

k
we have

∫
αNk dµ =∫

f wk dµ. Then we obtain

|aNk | ≤
1

µ(ANk )

∫
|f wk| dµ ≤

2
µ(Rk)

∫
|f wk| dµ

≤ 2
µ(Rk)

∫
1
2
Rk

|f | dµ ≤ C15λ

(this calculation also applies to k = 1). Thus,

|αNk |+
∑
j

|αNsj
| ≤ (2C14 + C15)λ.

If we choose B = 2C14 + C15, (9.3) follows for the cubes R1, . . . , Rn.
Now it is easy to check that (9.2) also holds. Indeed we have

‖αNi ‖L∞(µ) µ(Ri) ≤ C |aNi |µ(ANi ) = C

∣∣∣∣∫
Qi

f wi dµ

∣∣∣∣ ≤ C ‖αNi ‖L1(µ).

Finally, taking weak limits in the weak-∗ topology of L∞(µ), one easily
obtains the required functions αi. The details are left to reader. A similar
argument can be found in the proof of Lemma 7.3 of [To3]. �

Using the decomposition above we can prove Lemma 9.1 partially. This
will be the first step of its proof.

Lemma 9.4. The subspace H1
Φ(µ) ∩ L∞(µ) is dense in H1

Φ(µ).

Proof. Given f ∈ H1
Φ(µ), for each integer k ≥ 0, we consider the generalized

Calderón-Zygmund decomposition of f given in the preceding lemma, with
λ = 2k. We will adopt the convention that all the elements of that decom-
position will carry the subscript k. Thus we write f = gk + bk, as in (c) of
Lemma 9.1. We know that gk is bounded and satisfies

∫
gk dµ = 0 (because∫

bk dµ = 0). We will show that gk → f in L1(µ) and ‖MΦ(gk−f)‖L1(µ) → 0
as k →∞ too.
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It is not difficult to check that bk tends to 0 in L1(µ). Indeed, if we set
Ωk =

{
M(2)f(x) > 2k

}
, then µ(Ωk) → 0 as k → ∞, because f ∈ L1(µ).

Thus ∫
|bk| dµ ≤ 2

∑
i

∫
|f wi,k| dµ ≤ C

∫
Ωk

|f | dµ k→∞−−−→ 0,

and so gk → f in L1(µ).
Let us see that ‖MΦbk‖L1(µ) → 0 as k →∞. We denote bi,k = f wi,k−αi,k.

Then we have
‖MΦbk‖L1(µ) ≤

∑
i

‖MΦbi,k‖L1(µ).

The estimates for each term ‖MΦbi,k‖L1(µ) are (in part) similar to the ones
in Lemma 3.1 for estimating MΦ over atomic blocks. We write

‖MΦbi,k‖L1(µ) ≤
∫

Rd\2Ri,k

MΦbi,k dµ

+
∫

2Ri,k

MΦ(f wi,k) dµ+
∫

2Ri,k

MΦαi,k dµ(9.5)

Taking into account that
∫
bi,k dµ = 0, it is easily seen that∫

Rd\2Ri,k

MΦbi,k dµ ≤ C ‖bi,k‖L1(µ) ≤ C ‖f wi,k‖L1(µ)

(the calculations are similar to the ones in (3.1) and (3.2)).
Let us consider the last term on the right hand side of (9.5) now. By (9.1)

and (9.2) we get∫
2Ri,k

MΦαi,k dµ ≤ ‖αi,k‖L∞(µ)µ(2Ri,k) dµ ≤ C ‖f wi,k‖L1(µ).

We split the second integral on the right hand side of (9.5) as follows:∫
2Ri,k

MΦ(f wi,k) dµ =
∫

2Ri,k\2Qi,k

+
∫

2Qi,k

.

As in (3.4), we have∫
2Ri,k\2Qi,k

MΦ(f wi,k) dµ ≤ C ‖f wi,k‖L1(µ)

∫
2Ri,k\2Qi,k

1
|x− zQi,k

|n
dµ(x)

≤ C ‖f wi,k‖L1(µ) (1 + δ(Qi,k, Ri,k))

≤ C ‖f wi,k‖L1(µ).

Finally we have to deal with
∫

2Qi,k
MΦ(f wi,k) dµ. Consider x ∈ 2Qi,k and

ϕ ∼ x. Then

(9.6)
∣∣∣∣∫ ϕ (f wi,k) dµ

∣∣∣∣ =
∣∣∣∣∫ (ϕwi,k) f dµ

∣∣∣∣ ≤ CMΦf(x),
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because C ϕwi,k ∼ x for some constant C > 0. Indeed, for y ∈ Rd we have

0 ≤ wi,kϕ(y) ≤ ϕ(y) ≤ 1
|y − x|n

and

|(ϕwi,k)′(y)| ≤ |ϕ′(y)wi,k(y)|+ |ϕ(y)w′i,k(y)|

≤ 1
|y − x|n+1

+
C

|y − x|n
|w′i,k(y)|.

Recall also that |w′i,k(y)| ≤ C`(Qi,k)−1 and supp(wi,k) ⊂ 2Qi,k. Then we get
|w′i,k(y)| ≤ C |y − x|−1 for all y ∈ Rd. Thus |(ϕwi,k)′(y)| ≤ C |y − x|−n−1.
So (9.6) holds and then∫

2Qi,k

MΦ(f wi,k) dµ ≤ C
∫

2Qi,k

MΦf dµ.

When we gather the previous estimates, we obtain

‖MΦbi,k‖L1(µ) ≤ C ‖f wi,k‖L1(µ) + C

∫
2Qi,k

MΦf dµ.

Taking into account the finite overlap of the cubes 2Qi,k (recall that they
are Whitney cubes covering Ωk), we get

‖MΦbk‖L1(µ) ≤ C
∫

Ωk

(|f |+MΦf) dµ k→∞−−−→ 0,

and we are done. �

Proof of Lemma 9.1. Take f ∈ H1
Φ(µ) ∩ L∞(µ). Consider the infinite in-

creasing sequence of the cubes Qk = 4Nk [−1, 1]d that are (4, 4n+1)-doubling.
Let w be a C∞ function such that χ[−1,1]d(x) ≤ w(x) ≤ χ[−2,2]d(x) for all x.
We denote wk(x) = w(4−Nkx) (so χQk

(x) ≤ wk(x) ≤ χ2Qk
(x)) and we set

fk = wk f −
χQk

µ(Qk)

∫
wk f dµ.

It is clear that fk is bounded, has compact support and converges to f in
L1(µ) as k →∞. We will prove that

‖MΦ(f − fk)‖L1(µ) ≤ C

∣∣∣∣∫ wk f dµ

∣∣∣∣+ C

∫
Rd\4Qk

MΦf dµ(9.7)

+
∫

4Qk

MΦ((1− wk) f) dµ.

Finally we will show that the terms on the right hand side of (9.7) tend to
0 as k →∞ and we will be done.

Let us consider first the integral of MΦ(f − fk) over Rd \ 4Qk. We set∫
Rd\4Qk

MΦ(f − fk) dµ ≤
∫

Rd\4Qk

MΦf dµ+
∫

Rd\4Qk

MΦfk dµ.
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We only have to estimate the last integral on the right hand side. Take
x ∈ Rd \ 4Qk, ϕ ∼ x and let y0 ∈ 2Qk be the point where ϕ attains its
minimum over 2Qk (recall that we assume ϕ ≥ 0 and ϕ ∈ C1). We denote
ck =

∫
wk f dµ/µ(Qk) and then we set∫

fk ϕdµ =
∫
f(y) (ϕ(y)− ϕ(y0)) dµ(y)

=
∫
wk(y) f(y) (ϕ(y)− ϕ(y0)) dµ(y)

− ck
∫
Qk

(ϕ(y)− ϕ(y0)) dµ(y) = I1 − I2.

Let us consider the function ψ(y) = wk(y) (ϕ(y) − ϕ(y0)). This function
satisfies

0 ≤ ψ(y) ≤ ϕ(y)
and

|ψ′(y)| ≤ |wk(y)ϕ′(y)|+ |w′k(y)| |ϕ(y)− ϕ(y0)|

≤ 1
|y − x|n+1

+ C `(Qk)−1 `(Qk)
|y − x|n+1

= C
1

|y − x|n+1
.

Therefore C ψ ∼ x for some constant C > 0 and so |I1| ≤ CMΦf(x). For I2

we use a cruder estimate:

|I2| ≤ C |ck|µ(Qk)
`(Qk)

|y0 − x|n+1
.

Thus we obtain

MΦfk(x) ≤ CMΦf(x) + C |ck|µ(Qk)
`(Qk)

|y0 − x|n+1
.

Since ∫
Rd\4Qk

1
|y0 − x|n+1

dµ(x) ≤ C `(Qk)−1,

we get ∫
Rd\4Qk

MΦfk dµ ≤ C

∫
Rd\4Qk

MΦf dµ+ C |ck|µ(Qk)

= C

∫
Rd\4Qk

MΦf dµ+ C

∣∣∣∣∫ wk f dµ

∣∣∣∣ .(9.8)

Now we have to deal with
∫

4Qk
MΦ(f − fk) dµ. For x ∈ 4Qk we write

(9.9) MΦ(f − fk)(x) ≤MΦ((1− wk) f)(x) + MΦ

(
|ck|
µ(Qk)

χQk

)
(x).

Since MΦχQk
(x) ≤ 1 and Qk is (4, 4n+1)-doubling, we get

(9.10)
∫

4Qk

MΦ

(
|ck|
µ(Qk)

χQk

)
(x) dµ(x) ≤ C |ck| = C

∣∣∣∣∫ wk f dµ

∣∣∣∣ .
From (9.8), (9.9) and (9.10) we derive (9.7).
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Now we have to see that the terms on the right hand side of (9.7) tend to
0 as k →∞. Since f, MΦf ∈ L1(µ), by the dominated convergence theorem

lim
k→∞

∣∣∣∣∫ wk f dµ

∣∣∣∣+
∫

Rd\4Qk

MΦf dµ = 0.

Let us turn our attention to the third term on the right hand side of (9.7).
Take x ∈ 4Qk and ϕ ∼ x. It is easily seen that C wk ϕ ∼ x for some constant
C > 0. So we get MΦ(wk f)(x) ≤ CMΦf(x) and then for any x ∈ Rd,

χ4Qk
(x)MΦ((1−wk) f)(x) ≤ χ4Qk

(x) (MΦf(x)+MΦ(wk f)(x)) ≤ CMΦf(x).

Therefore, if we show that χ4Qk
(x)MΦ((1 − wk(x)) f)(x) tends to 0 point-

wise as k → ∞, we will be done by a new application of the dominated
convergence theorem.

For a fixed x ∈ Rd, let k0 be such that x ∈ 1
2Qk for k ≥ k0. Notice that

if ϕ ∼ x and y 6∈ Qk, then |ϕ(y)| ≤ C/`(Qk)n. Thus∣∣∣∣∫ ϕ(x)(1− wk(x)) f(x) dµ(x)
∣∣∣∣ ≤ ‖f‖L1(µ) ‖(1− wk)ϕ‖L∞(µ)

≤ C
‖f‖L1(µ)

`(Qk)n
.

Then we get

χ4Qk
(x)MΦ((1− wk(x)) f)(x) ≤ C

‖f‖L1(µ)

`(Qk)n
k→∞−−−→ 0.

�

References

[Ca] L. Carleson. Two remarks on H1 and BMO, Advances in Math. 22 (1976),
269-277.

[Co] R.R. Coifman. A real variable characterization of Hp, Studia Math. 51 (1974)
269-274.

[CW] R.R. Coifman, G. Weiss. Extensions of Hardy spaces and their use in analysis,
Bull. Amer. Math. Soc. 83 (1977), 569-645.
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