CHARACTERIZATION OF THE ATOMIC SPACE H' FOR
NON DOUBLING MEASURES IN TERMS OF A GRAND
MAXIMAL OPERATOR

XAVIER TOLSA

ABSTRACT. Let u be a Radon measure on R¢, which may be non dou-
bling. The only condition that p must satisfy is the size condition
w(B(z,7r)) < Cr™, for some fixed 0 < n < d. Recently, the author
introduced spaces of type BMO(p) and H'(u) with properties similar to
ones of the classical spaces BMO and H'! defined for doubling measures.
These new spaces proved to be useful to study the LP (1) boundedness
of Calderén-Zygmund operators without assuming doubling conditions.
In this paper a characterization of this new atomic Hardy space Hl(,u)
in terms of a maximal operator Mg is given. It is shown that f belongs
to H'(p) if and only if f € L*(u), [ fdp =0 and Maf € L' (u), as in
the usual doubling situation.

1. INTRODUCTION

The aim of this paper is to characterize the atomic Hardy space H;;zo(u)
introduced in [To3] in terms of a grand maximal operator. Throughout all
the paper p will be a (positive) Radon measure on R? satisfying the growth
condition

(1.1) pu(B(x,r)) < Cor" for all z € supp(u), r > 0,

where n is some fixed number with 0 < n < d. We do not assume that p is
doubling (u is said to be doubling if there exists some constant C' such that
w(B(x,2r)) < C u(B(z,r)) for all x € supp(u), r > 0).

The doubling condition on p is an essential assumption in most results
of classical Calderon-Zygmund theory. Nevertheless, recently it has been
shown that many results in this theory also hold without the doubling as-
sumption. For example, in [Tol] a T'(1) theorem and weak (1,1) estimates
for the Cauchy transforms are obtained. For general Calderén-Zygmund
operators (CZO’s) a T'(1) theorem in [NTV1], and weak (1,1) estimates and
Cotlar’s inequality in [NTV2] are proved. A T'(b) is also given in [NTV3].
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For more results, see [MMNO], [NTV4], [OP], [To2], [To3|, [To4] and [Ve],
for example.

In [To3] some variants of the classical spaces BMO(u) and H'(u) are
introduced. These variants are denoted by RBMO(u) and H;;/go(,u) respec-
tively. There, it is shown that many of the properties fulfiled by BMO (1) and
H'(u1) when p is doubling are also satisfied by RBMO (1) and Hiigo(,u) with-
out assuming p doubling. For example, the functions from RBMO () fulfil
a John-Nirenberg type inequality (see Section 5 for the precise statement of
this inequality), RBMO () is the dual of H;;go(u), CZO’s which are bounded

in L2(p) are also bounded from H;t’go(u) into L'(p) and from L°(u) into
RBMO(11) and, on the other hand, any operator which is bounded from
H;t’go(u) into L'(p) and from L*(u) into RBMO(p) is bounded in LP(p),
1 <p<oo.

Let us remark that if p is non doubling and one defines BMO() and the
atomic space H, ;goo(u) = H'(u) exactly as in the classical doubling situation
(see [GR], [Jo] or [St], for instance), then these spaces still fulfil some of the
properties stated above [MMNO]. However a basic one fails: CZO’s may
be bounded in L?(x) but not from H;fo(u) into L' () or from L°°(u) into
BMO(p1) (see [Ve] and [MMNOJ). For this reason, if one wants to study
the LP-boundedness of CZO’s, the spaces BMO(u) and H;goo(,u) are not
appropriate. This is the main reason for the introduction of RBMO(u) and
Hp® () in [To3).

Before stating our main result, we need some notation and terminology.
By a cube Q@ C R? we mean a closed cube centered at some point in supp(u)
with sides parallel to the axes. Its side length is denoted by ¢(Q) and its
center by zg. Given p > 0, we denote by pQ the cube concentric with @
with side length p¢(Q). Recall that a function f € L], (u) belongs to the
classical space H ;t’oo(,u) if it can be written as f = Y. A;ja;, where A\; € R
are numbers such that ), [\;| < co and a; are functions called atoms such
that

1. there exists some cube @; such that supp(a;) C @,
2. /ai dp =0,
3. Nlaill ooy < m(Qi)1

In order to recall the precise definition of H;t’go (1) we have to introduce
the coefficients K¢ g. Given two cubes @Q C R, we set

1
Koxe1e [
N Qr\Q 17— 2"

where QR is the smallest cube concentric with ) containing R.
For a fixed p > 1, a function b € L} (p) is called an atomic block if

loc

1. there exists some cube R such that supp(b) C R,

2. /bdu:O,
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3. there are functions a; supported on cubes @; C R and numbers
Aj € R such that b= 22, \ja;, and

lajll Loy < (1(pQj) Kq;,r)
bliztiey = 22 1Ml
J
(to be rigorous, we should think that b is not only a function, but a ‘structure’

formed by the function b, the cubes R and @)}, the functions a;, etc.). Then,
we say that f € Hiégo (p) if there are atomic blocks b; such that

(1.2) F=3 o,
=1

with |b7j|H1,00( < oo (notice that this implies that the sum in (1.2)
atb

-1

We denote

converges in L!(x)). The Hatb () norm of f is
||f”Hi£°(“) = lan ‘bz‘Hiio(/J‘)’
3

where the infimum is taken over all the possible decompositions of f in
atomic blocks.

The definition of Hi;go(y) does not depend on the constant p > 1. The
H;t’go(u) norms for different choices of p > 1 are equivalent. Nevertheless,
for definiteness, we will assume p = 2 in the definition.

Compare the definitions of the spaces Ha;™ (1) and H > (1): Tn H™ (1)
the cancellation condition 2 and the size condition 3 are imposed over the
atoms a;. On the other hand, in Hitgo( ) the cancellation condition 2 is
imposed over the atomic blocks b;, and the size condition 3 is satisfied by
the “components” a; ; of b; separately for each j. It is not difficult to check
that H.>(p) = Hi;io(,u) if u(B(z,7)) ~ r for all x € supp(u), r > 0 (the
notation A =~ B means that there exists some constant C' > 0 such that
C'A< B<CA, that is A < B < A). If the latter condition does not
hold, then H;*° (1) may be different from Hiigo(u), even when p is doubling
(see [To3]).

Now we are going to introduce the * grand’ maximal operator Mg, which
is the main tool in our characterization of H" i ().

Definition 1.1. Given f € L} (1), we set

/fsodu

where the notation ¢ ~ x means that ¢ € L'(x) N C'(R?) and satisfies
(D) el <1,

2) 0<0l) < =0

Mg f(x) = sup

oz

for all y € RY, and
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1 d
WforallyGR

In this paper we will prove the following result.

3) [¢'(y)l <

Theorem 1.2. A function f belongs to H;;ZO(M) if and only if f € L*(p),
J fdu=0 and Mg f € L*(1). Moreover, in this case

1Al gy 118 + 1M 1.

Theorem 1.2 can be considered as a version for non doubling measures
of some results that are already known in more classical situations. When
i is the Lebesgue measure on the real line, a characterization of H, ;Igoo(u)
such as the one of Theorem 1.2 was proved by Coifman [Co]. This result
was extended to the Lebesgue measure on R? by Latter [La]. Let us remark
that in these cases, in the definition of Mg, for each x it is enough to take
the supremum over functions ¢z, 7 > 0, of the form

‘pm,r(y) = Tidw <y — x) )

r

where 0 £ ¢ € S is some fixed function.
If

(1.3) w(B(z,r)) ~r" for all z € supp(p), r > 0,

then supp(u) is a homogeneous space in the sense of [CW]. For general
homogeneous spaces satisfying (1.3), Coifman, Meyer and Weiss showed that
there exists a description of H, ;t’oo (1) in terms of a grand maximal operator
(see [CW] for this result and for the detailed definition of homogeneous
spaces). They observed that a proof of this description by Carleson [Ca]
using the duality H*°(u)-BMO(u) in the case where p is the Lebesgue
measure on R™ can be easily extended to the more general situation of
homogeneous spaces.

For a measure p on R? which is doubling but which may not satisfy (1.3),
Macias and Segovia ([MS1], [MS2]) obtained a characterization of H ™ (1)
by means of a grand maximal operator too (see also [Uc]). They showed
that if p is doubling, then taking a suitable quasimetric one can assume
that (1.3) holds. Their result applies not only to doubling measures on R?,
but to more general homogeneous spaces. On the other hand, since H ;goo(u)
may be different from H;;go(,u) if u is a doubling measure on R? which does
not satisfy (1.3), the result of Macias and Segovia (in the precise case that
we are considering) cannot be derived as a particular instance of Theorem
1.2.

The absence of any regularity condition on p, apart from the size condition
(1.1), makes impossible to extend the classical arguments to the present
situation without major changes. We will not consider any quasimetric on
R different from the Euclidean distance and we are not able to reduce our
case to a situation where (1.3) holds.
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Let us remark that the results of [Col, [La], [MS1] and [MS2] concern not
only the Hardy space H' but also the Hardy spaces HP, with 0 < p < 1.
However, it is not possible to extend our proof of Theorem 1.2to 0 < p < 1
because we have obtained it by duality (following the same approach as
Carleson [Cal).

The paper is organized as follows. In Section 2 we deal with some pre-
liminary questions. In Section 3 we show that the grand maximal operator
Mg is bounded from Hijtgo(u) into L'(p), which proves the “only if” part of
Theorem 1.2 (the easy implication). In the remaining sections of the paper
we prove the other implication. In Section 4 we explain how this can be
proved by duality. A suitable version for our purposes of John-Nirenberg
inequality if obtained in Section 5. In Section 6 some kind of dyadic cubes
are constructed, and in the following section a suitable approximation of
the identity adapted to the measure u is obtained. Section 8 contains a
construction which is the core of the proof of the “if” part of Theorem 1.2.
Finally, Section 9 is an Appendix where we prove a density result which is
necessary in the proof by duality of the “if” part of Theorem 1.2.

2. PRELIMINARIES

The letter C' will be used for constants that may change from one occur-
rence to another. Constants with subscripts, such as C7, do not change in
different occurrences.

We will assume that the constant Cj in (1.1) has been chosen big enough
so that for all the cubes Q C R¢ we have

(2.1) u(Q) < Co Q)"
Given a function f € L] (1), we denote by mq f the mean of f over Q with

loc

respect to p, i.e. mgf = ﬁ fQ fdpu.

Definition 2.1. Given o > 1 and 3 > o™, we say that the cube Q C R? is
(a, B)-doubling if p(aQ) < 5 u(Q).

Remark 2.2. As shown in [To3], due to the fact that p satisfies the growth
condition (1.1), there are a lot “big” doubling cubes. To be precise, given
any point = € supp(u) and ¢ > 0, there exists some («, 3)-doubling cube @
centered at x with [(Q) > c. This follows easily from (1.1) and the fact that
8> a.

On the other hand, if § > o<, then for p-a.e. x € R? there exists a
sequence of («, 3)-doubling cubes {Q}x centered at z with ¢(Qy) — 0 as
k — 00. So there are a lot of “small” doubling cubes too.

For definiteness, if o and (8 are not specified, by a doubling cube we mean
a (2,291)-doubling cube.

Now we are going to recall the definition of RBMO(p). In fact, in Section
2 of [To3] several equivalent definitions are given. Maybe the easiest one is
the following. Let f € L} (u). We say that f € RBMO(u) if there exists

loc
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some constant C such that for any doubling cube @)

(2.2) /Q 1 — mofldu < G ul(Q)

and
(2.3) Imqf —mprf| < Ci Kgr for any two doubling cubes @ C R.

The best constant C is the RBMO(;1) norm of f, that we denote as || f||«.

Given any pair of constants 0 < «, 8, with 8 > «', if in the definition of
RBMO () we ask (2.2) and (2.3) to hold for (¢, )-doubling cubes (instead
of doubling cubes), we will get the same space RBMO (), with an equivalent
norm [To3]. In fact, RBMO(u) can be defined also without talking about
doubling cubes: Given some fixed constant p > 1, f € RBMO(u) if and only
if there exists a collection of numbers {fg}g (i.e. for each cube @ some
number fg) and some constant Cy such that

/Q £(2) — foldu(z) < Cop(pQ) for any cube Q  RY

and,
|fo — frl| £ Ca Ko r for any two cubes @ C R.

The best constant Cy is comparable to the RBMO(p) norm of f given by
(2.2) and (2.3).

Recall that given two cubes Q C R, Qg stands for the smallest cube
concentric with @ containing R. Without assuming @@ C R, we will denote
by Qg the smallest cube concentric with ) containing @) and R.

Definition 2.3. Consider two cubes Q, R C R? (we do not assume Q C R
or R C Q). We denote

1 1
5(Q, R) = - L |
(@ F1) = o </QR\Q e O d““”)

Notice that {(Qr) =~ {(Rg) =~ {(Q) + ¢(R) + dist(Q, R), and if Q C R,
then Rg = R and ¢(R) < {(Qr) < 2((R).

It is clear that if Q C R, then Ko = 1+ §(Q, R). Quite often we will
treat points x € supp(u) as if they were cubes (with ¢(x) = 0). So for
x,y € supp(p) and some cube @, the notations §(z, Q) and d(x,y) make
sense. In some way, they are particular cases of Definition 2.3. Of course, it
may happen d(z, Q) = oo or d(z,y) = oc.

In the following lemma we show that J(-,-) satisfies some very useful
properties.

Lemma 2.4. The following properties hold:
(a) If £(Q) = ¢(R) and dist(Q, R) S U(Q), then 6(Q,R) < C. In partic-
ular, 0(Q, pQ) < Cop2™ p" for p > 1.
(b) Let Q@ C R be concentric cubes such that there are no doubling cubes
of the form 2FQ, k > 0, with Q C 2*Q C R. Then, §(Q,R) < Cs.
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(¢) If Q C R, then

5(Q,R) < C (1 —|—logﬁéé§;> :

(d) If PC Q C R, then
0(P, R) — [6(P,Q) + 6(Q, R)]| < <.

That is, with a different notation, §(P, R) = 0(P,Q) + 6(Q, R) £ 0.
If P and Q are concentric, then gy = 0: 6(P,R) = 6(P,Q)+0(Q, R).
(e) For P,Q,R C R,

IP,R)<Cy +0(P,Q)+(Q,R).

The constants that appear in (b), (c), (d) and (e) depend on Cy,n,d. The
constant C in (a) depends, further, on the constants that are implicit in the
relations =, <.

Let us insist on the fact that a notation such as a = b + &£ does not mean
any precise equality but the estimate |a — b| < e.

Proof. The estimates in (a) are immediate. The proof of (b) is also an
easy estimate, which can be found in [To3, Lemma 2.1], for example. The
arguments for (c) are also quite standard. We leave the proof for the reader.

Let us see that (d) holds. If P and @) are concentric, the identity §(P, R) =
(P,Q)+46(Q, R) is a direct consequence of the definition. In case P and Q
are not concentric we have to make some calculations:

1
RA\Q

- 5PQ+ [ L du(y).

Pr\Pg |Y — 2P|"

du(y)

So we must show that

1
S = / T du(y) —46(Q,R)| < C.
Pr\Pg ly — 2P|
We set
1 1 1
S < / — du(y)+/ < —+ n) du(y)
Po\Q@ |y—ZQ| PrAQR ly — zp| ’y—ZQ|
1 1
+/ — = —| du(y)
rRi\Py | [y — 2P |y — 2q
= 51+ 59+ 855.

The integral Ss is easily estimated above by some constant C|, since |y —
zp|, ly — zg| < CU(R) for y € PRAQR. An analogous calculation yields
S1 < C. For S35 we have

|zp — 2q |zp — 2q
S3 < C ———dp(y) < C ——F < C,
ly—zaol>e(@)/2 |V — 2" ®) 4(®)
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and we are done with (d).
We leave the proof of (e) for the reader too. O

Notice that if we set D(Q,R) =1+ 6(Q, R) for Q # R and D(Q,Q) = 0,
then D(-,) is a quasidistance on the set of cubes, by (e) in the preceding
lemma.

From (a) and the fact that Qr and Rg have comparable sizes and Qg N
Rg # @, we get that Qg and Rg are close in the quasimetric D(-,-). Also,
if we denote by @ the smallest doubling cube of the form 2¥Q, k > 0, by (b)
we know that @ is not far from @ (using again the quasidistance D). So @
and @ may have very different sizes, but we still have D(Q, @) <C.

In Remark 2.2 we have explained that there a lot of big and small doubling
cubes. In the following lemma we state a more precise result about the
existence of small doubling cubes in terms of §(-,-).

Lemma 2.5. There exists some (big) constant n > 0 depending only on Cy,
n and d such that if Ry is some cube centered at some point of supp(u) and
a > 1, then for each x € Ry Nsupp(u) such that §(x,2Ry) > « there exists
some doubling cube QQ C 2Ry centered at x satisfying

(2.4) 0(Q,2Ro) — af < e,
where €1 depends only on Cy, n and d (but not on «).

Proof. Let Q1 be the biggest cube centered at 2 with side length 27% ¢(Ry),
k > 1, such that 6(Q1,2Rp) > a. Then, §(2Q1,2Ry) < a. Otherwise, k =1
and since £(Q1) = ¢(Ry)/2 and £(Q1,r,) < 4¢(Ry) we get

L ) < Co%fﬁwn

which contradicts the choice of ()1, assuming n > Cy 16™.
Now we have 6(Q1,2Rp) < a+ §(Q1,2Q1) < a+ Cy16™. Thus
‘(5(@1, QR()) — Oé’ S C(] 16"™.

Let Q be the smaller doubling cube of the form 2¥ @i, k& > 0. Then
(Q1,Q) < Cs. Also, £(Q) < £(Rp). Otherwise, Ry C 3Q and

6(Q1,2R0) < 6(Q1,3Q) =6(Q1,Q) +4(Q,3Q) < C5+ 6" Co.

This is not possible if we assume 1 > C3 + 6™ Cy.
Now (@ satisfies the required properties, since it is doubling, it is contained
in 2Ry, and

‘5(627 2R0) - O‘(|

5(Q1,2Ro0) < /

T n =y 16”,
0(Q1)/2<ly—2l,y€Q1 ry 1Y — Z["

< 16(Q,2Ry) — 6(Q1,2Ro)| + |6(Q1,2Rp) — «f
< 0(Q,Q1) +Cpl6™ < C5+ Cpl6" =: ;.
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As in (d) of Lemma 2.4, instead of (2.4), often we will write 6(Q,2Ry) =
aEeq.
Notice that by (e) and (a) of Lemma 2.4, we get

’5(Q7 RO) - CV’ < ’(5(@7 2R0) - Ck’ + ’(5(@7 2R0) - 5(Q7 RO)‘
< &1+ 6(Ro,2Rp) + Cy
< e+ C+Cy =6l

However we prefer the estimate (2.4), because we have @ C 2Ry but Q ¢ Ry,
in general. So the cube 2Ry, in some sense, is a more appropriate reference.

Results analogous to the ones in Lemma 2.5 can be stated about the
existence of cubes () centered at some point z € Ry with Q D Ry, but since

we will not need this fact below, we will not show any precise result of this
kind.

If @ C R are doubling cubes and f € RBMO(u), then |mgf — mpf| <
(1+0(Q,R)) || f]l+- Without assuming @@ C R, we have a similar result:

Proposition 2.6. Let Q, R C R? be doubling cubes. If f € RBMO(u), then

imQf —mrf| < (C+25(Q,R)) [ f]«

Proof. Suppose, for example, £(Rg) > ¢(Qr). Then, Qr C 3Rq.

Let 3Rg be the smallest doubling cube of the form 2¥3Rg, k > 0. We
have

3(R,3Rq) = §(R, R) + 8(Rq,3Rq) < (R, Q) + C.
Thus
(2.5) Imrf —msp fl < 1+ C+ (R, Q) [|f]«
We also have
5(Q,3Rg) < C +6(Q,3Rg) + §(3R0,3Rg) < C + 6(Q, Qr) + 6(Qr, 3Rq).
Since Qr and Rg have comparable sizes, 6(Qr,3Rg) < C, and so

5(Q,3Rg) < C +6(Q, R).

Therefore,
(2.6) mQf —mgp fl < (1+C+5(Q, R)) || £l
By (2.5) and (2.6), the proposition follows. O

3. THE EASY IMPLICATION OF THEOREM 1.2

In this section we will prove the “only if” part of Theorem 1.2.

Lemma 3.1. The operator Mg is bounded from Hi;go(u) into L'(p).
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Proof. Let b=, \ja; be an atomic block supported on some cube R, with
Ai € R, where a; are functions supported on cubes ; C R such that ||a;]|co <
(14 0(Qs, R)) 1(2Q4)) . We will show that [[Mgb|| 11,y < C 3, [Ail.

First we will estimate the integral fRd\2R Mgb dyu. For z € R\ 2R and
¢ ~ x, since [bdp =0, we have

[rodn] = | [ o0) o) - pler) auto)

{(R)

1 < b —=d .
(31) < ¢ [ bl = duty)
Thus

{(R)
Mabdy < Cb / ——————du(x
LMot < Clbligy [ o s duto
(3.2) < Ol <C S I

Now we will show that
(3.3) / Mga; dp < C,

2R

and we will be done. If x € 2Q); and ¢ ~ z, then

' / wdu1 < Cllaillzmg 1l < € lasllze .

So
/2Q Moya;dp < Cllai| Lo () 1(2Qi) < C.

For z € 2R\ 2Q; and ¢ ~ x, we have

1
sodul < Clla; _
[ < Clad =
Therefore,
1
Mga;dp < Cllai| / —— du(z)
/2R\2Qi L 2R\2Q; [T — 2q;["
(3.4) < Cllaillpry (1+6(Qi, R)) < C,
and (3.3) follows. O

4. AN APPROACH BY DUALITY FOR THE OTHER IMPLICATION

We have to show that if f € L*(u), [ fdpu =0 and Mef € L' (), then
fe H;;;o(u). We will obtain this result by duality, following the ideas of
Carleson [Cal. So we will prove
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Lemma 4.1 (Main Lemma). Let f € RBMO(u) with compact support
and [ fdp=0. There exist functions hy, € L (u), m > 0, such that

(4.1) F) = ho() + Y / (@) hon(y) duy),

with convergence in L'(u) where, for each m > 1, Oym ~ Y, and

(4.2) > [l < C ISl
m=0

Let us see that from this lemma the “if” part of Theorem (1.2) follows.
Consider f € L'(u) such that [ fdu =0 and Mg f € L'(u). Assume first
that f € L*°(u) and has compact support. In this case, f € H;;/ZO(,LL) and
so we only have to estimate the norm of f.

Since RBMO(p) is the dual of Hit’go(,u) [To3], given f € L(u), by the
Hahn-Banach theorem we have

| fll 1000, = sup [(f, g)l-
Hato ) g

Since [ fdp = 0, we can assume that g has compact support and [ g dp = 0.
Then, applying the Main Lemma to g we get

f o)l < '/fhod/t‘ ¥

m(T) hin(y) () dp(z) du(y)
mz:;//soy y () duly

Since | [ @) f(2) dul@)] < Maf(y), we have

A

oo < 1 ol + Y, [ Mot @) 1hn0)] duto)
m=1

> bl

m=1

IN

I F11 21wy 1ol zoe () + 1 Ma fll L1 ()

Lo ()

IA

C (If ey + 1Mo fllLigw) gl

That is, [|fl 1.0, < © (11 Ly + 1M fll L1 () -

In the general case where we don’t know a priori that f € H;;go(u), we
can consider a sequence of functions f,, bounded with compact support such
that [ fodu =0, f, — f in L'(p) and |[Me(f — fu)llLi(w — 0, and then
we apply the usual arguments. The existence of such a sequence is showed
in Lemma 9.1, in the Appendix.

The rest of the paper, with the exception of the Appendix, is devoted to
the proof of the Main Lemma.
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5. THE INEQUALITY OF JOHN-NIRENBERG

In [To3] it is shown that the functions of the space RBMO(u) satisfy a
John-Nirenberg type inequality. Let us state the precise result.

Theorem 5.1. Let Q C R? be a doubling cube. If f € RBMO(u), then

—C
Wz € Q: |f —mof| > A} < Csu(Q) exp< |f6|A), x>0,

where Cs,Cg > 0 are constants that only depend on Cy, n, d.

In the proof of the Main Lemma we will need a version of the above
inequality which appears to be stronger (although it is equivalent). In this
section we will state and prove this new version of John-Nirenberg inequality.

Definition 5.2. Given a doubling cube @, we denote by Z(Q, \) the set of
points z € @ such that any doubling cube P with z € P and ¢/(P) < /(Q)/4
satisfies [mpf — mqgf| < A

In other other words, @ \ Z(Q, ) is the subset of @ such that for some
doubling cube P with z € P and ¢(P) < ¢(Q)/4 we have

mpf —mqgf| > A

Proposition 5.3. Let Q C R? be a doubling cube. If f € RBMO(u), then

W(Q\ Z(Q,N) < CLu(Q) exp (ﬁﬁk) L aso

where C%,Cg > 0 are constants that only depend on Cy, n, d.

Proof. The arguments are quite standard. For any x € Q \ Z(Q, \) there
exists some cube P, which contains z, with ¢(FP,) < ¢(Q)/4 and such that
|mp, f —mqf| > A. Then by Besicovitch’s Covering Theorem, there are
points z; € Q \ Z(Q, A) such that

Q\ Z(Q,\) cUzPi,

and so that the cubes 2F;, ¢ = 1,2,..., form an almost disjoint family.
Observe that the Covering Theorem of Besicovitch cannot be applied to the
cubes P, (they are non centered), however we have applied it to the cubes
2P,, which are non centered too, but fulfil the condition

T € %QPQE.

That is, the point z is “far” from the boundary of 2P,. Under this condition,
Besicovitch’s Covering Theorem also holds.
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Since, for each i, {(P;) < ¢(Q)/4 and P, N Q # @, it is easily seen that
2P; C £Q. Then,
> (2R

MR\ Z(Q,N)
5 [ exw15(0) — mar 1) exp(-AR) duta)

IN

IN

IN

[0 17(0) = mafl ) exp(-AF) o),
where k is some constant that will be fixed below. Now, we have

exp (|f(@) ~ mafIk) < exp (If(@) = mzofIk) exp (Imzqf — maf|k)
exp (|£(2) = m3gfIk) exp (Cf]- k).

The last inequality follows from |m ng —mqgf| < C|f|l« (notice that the
cube 7Q is (§,2¢71)-doubling).

Therefore, by Theorem 5.1 (which also holds for cubes that are (2,29+1)-

doubling instead of (2,2%*1)-doubling, with constants C; and C, instead of
Cj and C3) we have

w(@Q\ Z(Q. )
< Cesp(AR) e (Clf]0) [ e <|f(w) — iz k:) ()

4

IN

= Cexp(=Ak) exp (C|f]+ k)
X/o M{:EEZQ:eXpOf(a:)—mZQﬂk)>t} dt

~_ (@
< CuiQ) exp(-AR) exp (C 1. 8) [ Crewp (W) dt.

So if we choose k := Cy /2| f||+, we get

ez seuiar e (53) <omaon (52
[l

6. THE “DYADIC” CUBES

In [Cal, Carleson proves a result analogous to the one stated in the Main
Lemma for p being the Lebesgue measure on R%. He uses dyadic cubes of
side length 2=™4, where A is some big positive integer. In our proof, we will
also consider some cubes which will play the role of the dyadic cubes with
side length 274 of Carleson. In this section we will introduce these new
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“dyadic” cubes and we will show some of the properties that they satisfy
and that will be needed in the proof of the Main Lemma.

As in [Ca], we will take some big positive integer A whose precise value
will be fixed after knowing or choosing several additional constants. In
particular, we assume that A is much bigger than the constants ¢y, €1 and
n of Section 2.

Definition 6.1. Suppose that the support of the function f of the Main
Lemma is contained in a doubling cube Ry. Let m > 1 be some fixed integer
and = € supp(p) N Ro. If §(x,2Ry) > m A, we denote by Q. a doubling
cube (with Q4 > 0) such that

(6'1) ‘5(Qx,ma 2R0) - mA‘ <er.

Also, D;,, = {Qi,m}ier,, is a subfamily with finite overlap of the cubes Qz m,
such that each cube Q; ,m = Qy, m is centered at some point y; € supp(u) Ry
with §(y;, 2Rp) > m A, and

{z € supp(p) N Ry : 0(z,2Rp) > m A} C U Qim
i€l
(this family exists because of Besicovitch’s Covering Theorem).

If §(x,2Rp) < mA, we set Qpm = {x}. We denote by D, the family of
cubes Qg m = {z} such that 0(z,2Ro) < mA and @ & U Qim- We set
D, =D, UD).

The cubes Qzm, © € supp(p) N Ry (not necessarily from the family D,,)
are called cubes of the m-th generation.

Obviously, the whole family of cubes in D,,, has also finite overlap. Notice
that if « is a point in supp(p) such that 6(z,2Ry) = oo, then 4(Qgm) > 0
for all m > 1. Otherwise, there exists some mg such that ¢(Qg,m,) = 0 for
all m > my.

It is easily seen that if A is big enough, then ¢(Qzm+1) < €(Qz.m)/10 (a
more precise version of this result will be proved in Lemma 6.3 below). So
UQqem) — 0 as m — oo.

If A is much bigger than 1 and Q. # {x}, then 6(Qym,2Ry) =~ mA.
However, the estimate (6.1) is much sharper. This will very useful in our
construction.

Lemma 6.2. Assume that P and Q) are cubes contained in 2Ry whose cen-
ters are in Ry. Let S be a cube such that P,QQ C S C 2Ry.

(a) If [6(P,2Ro) — 6(Q,2Ro)| < B3, then
|0(P,S) —d(Q,S)| < B+ 2¢0.
(b) If [6(P,S) — 6(Q, S)| < 3, then
|0(P,2Rp) — 6(Q,2R0)| < B + 2¢0.

In particular, this lemma can be applied to cubes P and () belonging to
the same generation m, with § = 2¢; (assuming ¢(P), £(Q) # 0).
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Proof. Both statements are a straightforward consequence of (d) in Lemma
2.4, since
d(P,2Ry) = (5(P, S) + (5(5, 2Ry) £ €0
and
5(Q,2Ro) = 6(Q, ) + 6(S, 2Ro) *+ <o.
g

The constants €y and 1 should be understood as upper bounds for some
“errors” and deviations of our construction from the classical dyadic lattice.

We will need the following result too.

Lemma 6.3. Assume that A is big enough. There exists some v > 0 such
that Z'f Qx,m mQy,m+l 7& g, x,y € supp(u), then E(Qy,erl) < 2_7A€(Qx,m)-

Proof. We can assume Qy m+1 # {y}. Let B > 1 be some fixed constant.

If 6(Qym+1) > B~ (Qzm), then Qu,m C 3B Qym+1- So, if R, is a cube

centered at x with side length 6B £(Qy.m+1), we have Qum, Qym+1 C Ra.
By (c) of Lemma 2.4 we get

5(Qy,m+1,Rz) <C (1 +log (8 (Ry)

L8 ) <o)

Since
(5(Qy,m+1> 2R0) = 5(Qy,m+1a Rx) + 5(R27 2R0) + €0,
if we set B = 274, we obtain

0(Ry,2Rp) > (m+1)A—¢e1 —eg—C(1++vAlog2).
Then for v small enough we have
0(Rz,2Rp) > (m+1)A—¢e; —g9—C — %A > mA + e1.
This implies 6(Qz,m,2Rp) > mA + e1, which is not possible. O
As a consequence, we obtain

Lemma 6.4. Assume that A is big enough. If x,y € supp(u) are such that
Qun N Qyunik £ D (with k> 1), then £(Qymik) < 277 0(Qum).

Proof. By the previous lemma, £(Qy, j+1) < 2*7A€(Qy’j) and £(Qy,m+1) <
2774 U(Qum)- This gives £(Qym+1) < 277 A% 0(Qum). 0

7. AN APPROXIMATION OF THE IDENTITY

The proof of the Main Lemma will be constructive. At the level of cubes
of generation m we will construct a function h,, yielding the “potential”

Upn () = / Gy (@) o) dia(y)

(to be precise, instead of one function h,,, for each m we will have N func-

tions Al ..., hN but this is a rather technical detail that we can skip now).
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The potentials U,,, will compensate the large values of f at the scale of cubes
of the generation m. So the arguments will be similar to the ones of [Ca].

However, in our situation several problems arise, in general, because of
the absence of any kind of regularity in the measure p (except the growth
condition (1.1)). For example, in [Ca] the potentials Uy, are convolutions
with approximations of the identity: U,, = @m * hyp,. Using the previous
notation, we have

Pyam(2) = Pm(y — ) = 24" (2™ (y — x)).

This is not our case. The measure y is not invariant by translations and we
don’t know how it behaves under dilations (notice that if i were doubling, we
would have some information, at least, about the behaviour under dilations).
We need to use functions ¢y, such that [[¢yml[z1(,) =1 (or at least equal
to some value close to 1). So ¢,/ , cannot be obtained as a translation of
©y.m for y # y, neither as a dilation of ¢,/ ;, k # m. In this section we will
show how these problems can be overcome.

We denote
o :=10eg + 10e1 + 12"F1C,.

We introduce two new constants oy, as > 0 whose precise value will be
fixed below. For the moment, let us say that g, 1, Cy,0 K a1 <€ as < A.

Definition 7.1. Let y € supp(p). We denote by Q;’m, @;m, Q;m, @Z,m’

g’m some doubling cubes (with positive side length) centered at y such
that
0(Qy,m,2R0) =mA*eq,
5(Q11/,m, 2Ry) =mA — a1 + &1,
5(A;,m,2R0) =mA—a —o*eq,
(7.1) 5(Q§7m,2R0) =mA—a; —aytey,
5(@y’m,2R0) =mA—a1 —ay—0*Leq,
5(Qz’m,2R0) =mA—a1 —ay—20+¢e;
By Lemma 2.5 we know that if d(y,2Rp) > m A, then all the cubes Q;m,

Agl/,m7 Qz,mv @ff,m, Qg’,ym exist. Otherwise only some (or none) of them may
exist. If any of these cubes does not exists, we let this cube be the point

{y}-

Notice that we can only assume that the estimates in (7.1) }lold for the
cubes @ which are different from {y} (i.e. with £(Q) > 0). Soif Q,,,,, = {y},
say, then, we only know that §( Nl 2Ry) <mA—a; —0o+e.

y,m’

Lemma 7.2. Lety € supp(u). If we choose the constants ay, ag and A big
enough, we have

1 N1 2 2 3
(72) Qy,m C Qy,m C Qy;rn C Qy,m C Qyﬂn C Qy,m C Qy,mfl-
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Proof. Notice first that for oy, ag and A big enough, then the numbers
that appear in the right hand side of the estimates in (7.1) form an strictly
decreasing sequence. That is,

mA—e; > mA—ay +eq,
mA—oa1—e1 > mA—a1 —o+eq,
mA—oa1—0c—e1 > mA—oa] —as+é1
mA—oa1—as—¢e1 > mA—a1 —ag — 0 +e1,
mA—o1—ay—0—¢e1 > mA—a1 —ay — 20+ e,
mA—a;—ay—20—¢e7 > (m—1)A+e;.
Let us check the inclusion @ém C Q;m, for example. Suppose first that
2 #{y}, then
o( ym,QRo) mA—ao] —ag £eq.
If @;m = {y}, the inclusion is obvious. Otherwise,
o( ym,QRg) mA—og —oxe.
Then o( ym,QRo) > 6(Q?
yam = {y}. Then,
5(y,2Ro) <mA—a1 —ag+e.

2Ry), and so @;m C Q;m. Assume now

ymo

In this case there is not any cube Q\;m satisfying
(5( ym,QR()) mA—al—a:tsl,

and so, by our convention, Q%m = {y}. That is, the inclusion holds in any
case.
The other inclusions are proved in a similar way. O

For a fixed m, the cubes lez m may have very different sizes for different

y’s. The same happens for the cubes Q2 Nevertheless, in the following
lemma we show that we still have some kmd of regularity. This regularity
property will be essential for our purposes.

Lemma 7.3. Let x,y be points in supp(u). Then,
(a) If Q;m N le/,m #+ &, then Q - Qy ms i particular x € @;m
(b) If Q?},m N Q.Z,m #+ & ,then ijm C Q%m, in particular © € @zm
So, although we cannot expect to have the equivalence
YEQyym S EQy
we still have something quite close to it, because the cubes Qi,m and @im

are close one each other in the quasimetric D(-,-), since 5(Qi’m,@;’m) is
small (at least in front of A). Of course, the same idea applies if we change
1 by 2 in the superscripts of the cubes.
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Proof of Lemma 7.3. Let us proof the statement (a). The second statement
is proved in an analogous way. Let =,y be as in (a). If {( gl;m) > 0(Qy.,) (in

particular, Q, ,, # {y}), then Q},, C 3Q,,, C @;m (the latter inclusion
holds provided 6(QL, . 2Ry) < 8(QL,  2Rg) — 6"Cp).

y,m> y,m?
Assume now £(Qy ,,) < ( i,m) If Q}., = {2}, then = = y and the result
is trivial. If Q1 ,, # {«}, we denote by P, a cube centered at y with side
length 34(Q} ,,,)- Then, Q;,, C P, C 6QL,, and so 6(Q} ., P,) < 12" Cy.

x,m x,m x,m>
Thus

5(P,,2Ro) 5(QL s 2R0) — 6(Qx s Py) — €0

> x,m z,m
> 0(Qgm,2R0) — 12" Co — £
> mA—o]—o0+eg.
Therefore, @;m # {y} and @;m D> PyD QL. O

Now we are going to define the functions ¢, ,,. First we introduce the
auxiliary functions 1y p,.

Definition 7.4. For any y € supp(p) N2Ry, the function 1, is a function
such that

: 4 L
“>°§¢%m“)§mm<a ;w"wy—xw>

(2) @Z’y,m(fﬂ) = m ifz € @g,m \ Q;,ma
(3) supp(y,m) C @}

, _ 1 1
(4) ‘wy,m<$)’ S 012 min <£( 1 )n+1’ |y _ x|n+1>'

y?m

It is not difficult to check that such a function exists if we choose Cio big
enough. We have to take into account that 2Q§’m C Q;m. This is due to

the fact that §(Q2,,,2Q2,,) < 4"Co < 8(Q2 s Q3 i £(Q2,,) # 0.

y?m,

In the definition of vy, if Q;,m = {y}, then one must take 1/€(Qzl/7m) =

co. If éim = {y}, then we set 1, ,,, = 0. This choice satisfies the conditions
for the definition of v, ,,, stated above.

Choosing as big enough, the largest part of the L'(u) norm of v, ,,, will
come from the integral over Q;)m \ le,,m We state this in a precise way in
the following lemma.

Lemma 7.5. There exists some constant €9 depending on n, d, Cy, g, €1
and o (but not on o, o nor A) such that if Q ., # {y}, then

(7.3) 1y mll e — az| < e

and

(7.4) lll?by,mllm(u) - / _ % du(z)| < e
Q2 ,\QL ly — 2|
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The proof of this result is an easy calculation that we will skip. A direct
consequence of it is

lim 1/ ;du(x) =1

Qa2—00 (9 Qg’m\@;,m |y — ZE|n
for y € supp(p) such that 6(y,2Rg) > m A.

Definition 7.6. Let w; ,, be the weight function defined for y € Uie% Qim
(these are the cubes of Dy, with £(Q; ) > 0) by

Wim(Y) = = .
o D ier XQym()

If y € supp(p) N 2Ry belongs to some cube Q; ,,, centered at some point y;,
with £(Qim) > 0, then we set

‘Py,m($) = a51 Z wi,m(y) 7/}yi,m(33)'

If y does not belong to any cube Qj, with £(Q;.,) > 0 (this implies
d(y,2Ro) < mA and Qy.m = {y}), then we set

Py () = 0z ym(@).
Setting w;m(y) = XQ;.. (¥) if £(Qim) = 0, we can write

‘Py,m(x) = Oz2_1 Z wi,m(y) ¢yi,m(l')>

for any y.

Let us remark that a more natural definition for ¢, , would have been
the choice @y m(z) = a5’ 1y m(z) for all y. However, as we shall see, for
some of the arguments in the proof of the Main Lemma below (in Subsection
8.2), the choice of Definition 7.6 is better.

In order to study some of the properties of the functions ¢y ,,, we need
to introduce some additional notation.

~

Definition 7.7. Given = € supp(u), we denote by )3 a doubling cube

z,m

centered at z such that o( 03 2Ry) =mA—a; —as — 30 £e;. Also, we

x,m>

denote by Qvglgm and égljm some doubling cubes centered at x such that

(S(Vl 2R0)=T)’LA—O¢1+U:|:€1,

r,m>

(5(:1 2R0)ZWLA—O¢1—|—20:|:€1

x,m>
(the idea is that the symbols = and ~ are inverse operations, modulo some

small errors). If any of the cubes Q}Em, C:Qém, @%Cm does not exist, then we
let it be the point x.
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So, when 6(x, 2Ry) is big enough, one should think that @%Um is a cube a

little bigger than @im, while Q}cm is a little smaller than Q;m. Also, C:lecm

is a little smaller than Q:}:m, but still much bigger than Q.

Lemma 7.8. Let x,y € supp(u). For a; and ag big enough, we have:
(@) If x € Quom and y & @imm, then @ym(z) = 0. In particular,
oym(z) =0ify ¢ Qi,m'
—1
(b) Ify € lec’m, then @y m(x) < C ?é%.
Qg m)"
(c) Let e3 > 0 be an arbitrary constant. If ay is big enough (depending
on g3, Co, n, d but not on az), then
az! (1+24/2)
ly — [

ify & QLo

‘Py,m(l') <
and
Pym(T) > —=F—— "

ifye @i, \ QL

(d) If z € Qug,m, then

1 1
/ -1 :
z)| < Ca; " min - , .
|S0y,m( )| — 2 <£(Q%O7m)n+l ‘y — x‘n-i—l)
Notice that, in Definition 7.4 of the functions 1, ,,, the properties that
define these functions are stated with respect to cubes centered at y ( zl/,m’
Z,m’ sz) In this lemma some analogous properties are stated, but
these properties have to do with cubes centered at x or containing = (Qz,m.,

31 2 3
x,m> Qx,m’ Qz,m)

Proof. (a) Let zg € supp(p) and « € Qzym- If vy m(z) # 0, there exists
some ¢ with y € Q; ;m = Qy,.m and x € lem Then Qio,m N Q3i’m #*
@ and soy € thm cQ3 (as in Lemma 7.3).

xo,m
(b) Let y € Q}tm and let y; be such that y € @, ,»- We know that

1
0(Qy;m)™

Yi,m

<,0yi7m($) < C’a;l

So we are done if we see that ¢( ézm) > (( Vglcm)
As in Lemma 7.3, we have

51 51 51 51 1
YEQum= Qym N o # D= Qo © Ly -

Thus K(Viym) <0QL ).

Yi,m
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Let us see the first inequality. If y ¢ Qi,m and y belongs to some
cube Qy,.m with £(Qy, m) > 0, then x ¢ C}}hm because otherwise,
as in Lemma 7.3, we would get Q;Zm C Qim However, since we
assume o > o, the cube Q}hm is bigger than @, ,» and contains y.
Soy € Q}cm, which is a contradiction.

Since x ¢ Qvllhm and this cube is much bigger than Qy, m, if a1 is
big enough we get
oyt <a51(1+53)
lyi —a™ =y —af

As this holds for all ¢ with w; ,,(y) # 0, we obtain

-1
a; (1+e3)
<2
QO%W(IIZ‘) — ’y _ g;’"

This inequality also holds if £(Qy, m) = 0 with e3 = 0, since in this
case y; = v.

We consider now the second inequality in (c). Let y € supp(u) be
such that y € Q2 \ @im If y € Qy;m with £(Qy,; m) > 0 for some
i, by Lemma 7.3 we get x € @2“” \ Q;m Since this is satisfied for
all 4 such that w; ., (y) # 0,

-

Py,m Zwlm y —ZL’|”

If o has been chosen big enough, then £(Q}, ,,) > £(Qy, m) and one
has

ot 0oy (L—e3/2)
lyi —al" = fy—z®
Thus
ay ' (1—e3/2)
ly—az*
Ifye @2, \QL,, and y € Q;m with £(Q; ) = 0, then by Lemma

7.3 we also get x € sz \ @ (in particular @gm # {y}). Then
(7.5) holds in this case too (with 3 = 0).

Py,m (z) >

Suppose first that y € Q1 In this case we must show that

To,m*
-1
Qg

UQ%, )™
Let y; be such that y € @, m. We know that

[y m(@)| < C

|y m (@) < Cw-
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By the definition of ¢,(z), it is enough to see that £(Q) ,,) >

V \ym) =
U(Q3ym)- This follows from the inclusion Q. ,, D @3, ,, which
holds because y € le;,m N Qiom and then we can apply Lemma 7.3
(in fact, a slight variant of Lemma 7.3).

Suppose now that y & Q! It is enough to show that

To,m*

|oyem (@) < C
We are going to see that

ly —yil <y —a|/2.

1
zo,m

Assume |y — y;| > |y — x|/2. Then, since z € 3Q
enough),

(for ay big

U Qy;m) > c! ly — x| > c! £ 2 )-

To,m
Notice that from the first inequality in (7.7) we get dist(z, Qy, m) <
C €(Qy;.m)- In this situation we have QL . C C Qy,.m C le;,m This

To,m

is not possible, since by Lemma 7.3 we would have Qiom D Qzlnm’
and then we would get Q;O,m = le;lm This would imply zg = y;
and also g = y; = Q}Emm = Q}hm, and then y = y; which is a
contradiction because we are assuming that (7.6) does not hold.

So (7.6) is true and |y; — z| ~ |y — x|. Thus

/
[Py m (@)] < C ly — a[n L

Since this holds for any 4 such that y € Qy, ., we get

O

Some of the estimates in the preceding lemma will be used to prove next
result, which was one of our main goals in this section.

Lemma 7.9. For any €3 > 0, if a1 and oy are big enough, for all x €
supp(u) we have

(7.8)

/ oy (@) di(y) < 1+ &3,
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If x € supp(u) is such that there exists some cube Q € Dy, with Q > x and
Q) > 0 (in particular if §(x,2Rg) > m A), then

(7.9) l—e3< / Pym () du(y)

Let us observe that if p were invariant by translations and ¢y m(z) =
©m(y—z), then (7.8) and (7.9) would hold with e3 = 0 (choosing ||y m|l 1 ()
=1).

Proof. Let us see (7.9) first. So we assume that there exist some cube
Qim € Dy, containing x with ¢(Q; ) > 0. Since x € Q; m C Q! . we have

i,m)?
V},m C Q%,,- In particular, £(QL,,) > 0. By Lemma 7.5 and the second
inequality of (c) in Lemma 7.8 we get

/ Pym () duly) > /Q : (G ©ym(z) du(y)

-1
(0% (1 — &3 2)
> / I n/ dp(y)
Q2,\@L,, Y=l

> a2_1 (g —2e9) (1 —e3/2).

So (7.9) holds if we take ay big enough.
Consider now (7.8). By (a) in Lemma 7.8 have

/ Py,m () du(y) = /A Py,m () du(y).
Q3
Thus we can write
(1.10) [ yonle) duty) = /@%m\% Pym(2) diy) + /Q | Pana) o)

Let us estimate the first integral on the right hand side of (7.10). Using
the first inequality in (c) of Lemma 7.8 we obtain

—1
o 1+e3/2
/A  pym(@)du(y) < /A ) Mdu(y)
Q3. \OL Q3.,\QL,,  lv—x|

= 5(@:}:,771’ @i,m) a51 (1 + 63/2)
(7.11) < ayt(ag+4do+2er)(1+e3/2).

Let us consider the last integral in (7.10) (only in the case QL ,, # {z}).
By (b) in Lemma 7.8 we have

C —1
(7.12) /Q Gym(@) dply) < /Q gy ) < CCoas

From (7.11) and (7.12) we get (7.8). O

1
x,m
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8. PROOF OF THE MAIN LEMMA

8.1. The argument. As stated above, A is a large positive integer that
will be fixed at the end of the proof. We assume that the support of f is
contained in some doubling cube Ry, and for each integer m > 1 we consider
the family D,,, of “dyadic” cubes Q; m, ¢ € I,,, introduced in Definition 6.1,
and we set D = |J,,,~1 Dm- Recall that the elements of D may be cubes with
side length 0, i.e. points.

For each m we will construct functions g¢,, and b,,. The function g,
will be supported on a subfamily DS of the cubes in D,,. On the other
hand, b,, will be supported on a subfamily D2 of the cubes in D,,. We set
D¢ =J, ~,; DS and DB =J, -, DE. The cubes in DY will be called good
cubes and the ones in D bad cubes (let us remark that in the family D,,,
in general, there are also cubes which are neither good nor bad).

From g, and b,,, we will obtain the following potentials:

USi(z) = /wy,m(w)gm(y)du(y),

UB(x) = / Gy (1) bua() dia(y),
Un(z) = US(z)+Us(z).

This potentials will be successively subtracted from f. We will set
fmy1(z) = f(x) — ?Zn: Uj(x) = fn(z) — Un(x)
j=1
and
(8.1) ho=f — i Un = W%gnoo fm-
m=1

The support of the functions g,,, by, Ug , Ug will be contained in 2Ry.
By induction we will show that the functions g¢,,, by, U, and f, fulfil
the following properties:

(@) |gml, |bm| < Cs A| ]|
(b) |mq fm+1| < Al fll« if Q@ € Dy, and £(Q) > 0.
() If gm # 0 on Q, Q € Dy, with £(Q) > 0, then |mgfmt1| <

7
— Al f]l«
T Al 8
(d) If Q € Dy, and |mq frm| < 2—0A||f||*, then U, =0 and g, = b, =0
on Q.

(e) If Q € Dy, and §(Q,2Ro) < (m — 15) A (so £(Q) = 0), then Uy, =0
and g, = b, =0 on Q.

Finally, we will see that our construction satisfies the following properties
too:
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(f) If 6(z,2Ry) < oo, then |ho(z)] < Co A||f||«, and if Q@ € D,, and
£(Q) =0, then [mq fm+1] = | fm+1(2)] < Co Al ]|

(g) For each m, there are functions g, ..., g such that
N
(g1) Us(z) = / b () b (y) du(y), where @l is defined be-
p=1
low.

(g-2) lgm| <2Cs A|/f|ls forp=1,..., N,
(g.3) The functions Z;\le |gm| have disjoint supports for different
m’s.
(h) The family of cubes D that support the functions b, m > 1,

satisfies the following Carleson packing condition for each cube R €
D,,, with ¢(R) > 0:

(8:2) Y. Q) < Cu(R).

Q: QNR#AYD
QeDE k>m

Let us remark that if some cube @ coincides with a point {z}, then we
set mgfm = fm(z). Also, the notation for the sum in (h) is an abuse of
notation. This sum has to be understood as

S ou@= Y wQ+ Y u{re2Rr: {a}eDf}.

Q:QC2R QR:4(Q)>0,QC2R k>m
QEDP k>m QEDP k>m

On the other hand, the number N that appears in (g) is the number of
disjoint families of cubes given in the Covering Theorem of Besicovitch,
which only depends only on d.

The functions ¢ ,, of (g) are defined as follows. We set D,, = D} U
- U DN where each subfamily D}, is disjoint (recall that the cubes of Dy,
originated from Besicovitch’s Covering Theorem). Then we set

@Z,m (z) = @y;m(T)

if y € Qim with Qi € Dy, and ¢l (z) = 0 if there does not exist any
cube of the subfamily D5, containing .

First we will show that if there exist functions g,, and by, satisfying (a)—
(h) then the Main Lemma follows, and later we will show the existence of
these functions.

It is not difficult to check that if (4.1) and (4.2) hold, then the sum of
(8.1) converges in L] (u) (this is left to the reader). Since the support of
all the functions involved is contained in 2Ry, the convergence is in L*(p).

Let us see now that if (b) and (f) hold, then |[|ho| () < CA[f]
Because of (f), we only have to see that |hg(x)| < C A||f||« for z € supp(u)
such that é(x,2Ry) = oo. In this case, if Q € Dy is such that x € @, then

Q) > 0.
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For A > 0, we denote
Fo = {x € supp(u) : 6(,2Ro) = oo, [h(x)[ > A|[f[l+ + A}.
Given k, ko > 1, take my, such that || fr, — hollz1(.) < 27k=ko and set
Fi = {z € supp(p) : 3Q € D1, € Q, Imq(ho)| > Allf ||« + A}
k

By the Lebesgue differentiation theorem, we have u(Fp \ Fi} = 0 (this
theorem can be applied to the cubes @) € D which are non centered because
they are doubling). Consider @ € Dy, —1 such that |mg(ho)| > A fll« + A.
Since |mq(fm)| < AJf]l- for Q € Doy [by (b)] and

Imq(ho)| < [mq(ho = fumy)| + Im@(fm)],

we deduce that |mq(ho—fm,)| > A. Thus, ifx € Fy, then |mg(ho— fm, )| > A
for some dyadic cube which contains x and some £ > 1. By the usual
arguments (using the fact that our dyadic cubes are doubling),

h — fm 1 2—k3—k‘0 2—k‘0
k k

A

Since this holds for any integer kg, we have u(Fy) = 0 for all A > 0. Thus,
|h(z)| < Al fl|« for p-a.e. = € supp(p) such that §(x,2Ry) = oc.

Observe that the functions gh, in (g.1) originate the same potential as g,.
In fact, they will be constructed modifying slightly the function g,, in such
a way that they are supported in disjoint sets for different m’s. By (g.2) we
have

N
SN Ikl < 2N Cs Al £

m p=1

The supports of the functions b,, may be not disjoint. To solve this prob-
lem, we will construct “corrected” versions (b, p = 1,...,N) of wj m, bp.
Moreover, as in the case of g,,, the modifications will be made in such a way
that the potentials UZ will not change.

8.2. The “correction” of b,,. We assume that the functions b,,, m > 1,
have been obtained and they satisfy (a)-(h). We will start the construction
of some new functions (the corrected versions of w; y, by,) in the small cubes,
and then we will go over the cubes from previous generations. However, since
there is an infinite number of generations, we will need to use a limiting
argument.

For each j we can write the potential originated by b; as

UP (@) =3 o) / wi () b () du(y).

i€l
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m

i for j=m, m—1, ..., 1,

For a fixed m > 1 we are going to define functions v
and all ¢ € I;. The functions v}"; will satisfy

(8.3) supp(v;;) C Qi

where Q; ; € D? ; the sign of v;"; will be constant on Q; ;, and

(8.4) / ol () duly) = / wi () bj(v) du(y).

Moreover, we will also have

(8.5) sznﬂ < Cr Al f]]«
j=14€l;
We set v, (y) = wim(y)bm(y) for all i € I,. Assume that we have
obtained functions v} - V]}4q for all the ¢’s, fulfiling (8.3), (8.4),

,Um
i,m?
and such that

t,m—17"

Y > i< BA|fl

j=k+1i€l,
where B is some constant that will be fixed below. We are going to construct
v;-”’k NOW.

Let Qi, r € Dy, be some fixed cube from the k-th generation. Assume first
that @;, x is not a single point. Since the cubes in the family DB satisfy the
packing condition (8.2), for any ¢t > 0 we get

wveQuas 3 S ) >}

j=k+1i€l;

1 m
< XY ld)
j=k+1iel; ’ Qig.k
1 m
< XY bl
j=kt1icl; ) Qio-k
Cs Al f|l« Ci2 Al [«
< GAllle s g < @28l g,
Q: QNQ; k#D
QeDP, j>k

Therefore, if we choose t = 2C13 A || f||« and we denote
m
= {reQus X Shnmit),
j=k+1icl;

we have u(V;™,) > 1(Qig k). If we set O = Gk XV, 0 Where ¢ ) € R s
such that (8.4) holds for i = i, then

1
mol< () be()] dp(y) < 2Cs Al
il < s [ s )l duty) <265 A )
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By the finite overlap of the cubes in D,]f , we get

> il <C2Cs Al £,
iOZQiO,kGDE
UQig,k)#0
where Cp is the overlap constant in the Covering Theorem of Besicovitch.
Now if we take B := 2Cp Cys + 2C12, we will have

(8.6) Yoo okl D Dol < BA|If].

1o: Qio,kepf Jj=k+1icl;
UQig,k)#0

In case Qi is a single point {y}, then we set v;i', (y) = wiy k() b (y) =
bi(y). All the cubes of the generations k41, ..., m that intersect Q;, 1, = {y}
coincide with {y} by Lemma 6.3. From (e) we get that by11(y) = brr2(y) =
+++ =0, which is the same as saying that v}, (y) = v]} ,(y) = --- =0 for
all . So we have

m

(8.7) SN )l = )| < Cs A fll« < BA|f].

j=k il

From (8.6) and (8.7) we get

DD il < BA||fl

j=k i€l

Operating in this way, the functions vigs J=m,m—1,...,1, i € Ij, wil
satisfy the conditions (8.3), (8.4) and (8.5) (with C11 = B).

Now we can take a subsequence {my} such that for all i € I; (i.e. for
all the cubes of the first generation) the functions {v;'}*}x converge weakly
in L*(p) to some function v;; € L*(p). Let us remark that the sequence
{my }r. can be chosen independently of i since, by the Besicovitch’s Covering
Theorem, there is a bounded number N of subfamilies Di, ... ,’D{V of Dy
such that each subfamily DY is disjoint. If we denote by D} ‘B the subfamily
of bad cubes of DY, we can write

N
m m

E Vi1 = E § V15

i€l p=1; QmEDIf’B
and we can choose {my, }; such that, for each p, B U, {* converges

kSk ) ) i Qi,lGIsz’ i,1
weakly to Zz Qs eDP B Vil
In a similar way, we can consider another subsequence of {my, }; of {my}

such that for all ¢ € I5 the functions {vzgkj }; converge weakly in L™ () to
some function v;2 € L*>(p). Going on with this process, we will obtain
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functions v; ;, 7 > 1, that satisfy (8.3), (8.4) (without the superscript m)

and
oo

(8.8) ZZ|U”| < Cr Al f]]«
j=1i€el;
Also, we have
UP@) = 3 eus(a) [ viso) duty).
i€l
We denote D%B =DP N Dﬁ and

W)= Y. vim(y).
iZQi,me'DgﬁB
Recall also that @} m(z) = @y, m(z) if y € Qipm with Q;mm € Dh, and
¢ m(x) = 0 if there does not exist any cube of the subfamily DE, containing
y. Then we have

N
UB@) =3 [ () o) ).
p=1
Now we set hh, = gh, + b, and we get

N oo
@) = ho@) + 3% / 8 () W2 () dia(y),

p=1m=1
with C ¢y ~ y for some constant C' > 0, and

N oo
[hol + Y D Ihb,| < C A [,

p=1m=1
and the Main Lemma follows, by (g) and (8.8).

8.3. The construction of g,, and b,,. In this subsection we will construct
inductively functions g, and by, satisfying the properties (a)—(e). We will
check in Subsection 8.4 that these functions fulfil (f)-(h) too.

Assume that ¢1,...,9m—1 and by,...,b,_1 have been constructed and
they satisfy (a)—(e). Let Q,, be the set of points « € supp(u) with 6(x, 2Rg) >
m A such that that there exists some Q € D,,, £(Q) > 0, with @ > x and
Imq fm| > %A. For each z € €2,,,, we consider a doubling cube S, ,,, centered
at « such that §(Szm,2Rp) = mA — a1 — ag — a3 £ €1, where a3 is some
big constant with 10as < a3 < A, whose precise value will be fixed below.
One has to think that S ,, is much bigger than Q%m but much smaller than
Qzm—1 (observe that all these cubes have positive side length).

Now we take a Besicovitch covering of €, with cubes of type Sy m, * €
Q.

O € Sjim,
J
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where S}, stands for ij,m, with z; € €,,,. We say that a cube Q € Dy, is
good (i.e. Q € DS) if

3
Q C U ESj,ma
j
and we say that it is bad (i.e. Q € DB) if it is not good and

Q cJ2Sim.
J

Both good and bad cubes are contained in Uj 25 m. Roughly speaking,
the difference between good and bad cubes is that bad cubes may be sup-
ported near the boundary of | ; 285,m, while the good ones are far from the
boundary.

Now we define g,, and b,,:

9m = Z Wi,m TMQ; (fm),

i Qi,mepg

by = Z Wim MQ; (fm)

i5Qi,mGID§1

Because there is some overlapping among the cubes in D,,, we have used
the weights w; ,,, in the definition of these functions. However one should
think that g,, and b, are approximations of the mean of f over the cubes
of DS and DE, respectively.

The following remark will be useful.

Claim 1. Let Qpm € Dy, be such that either g, # 0, by, Z 0 or Uy, # 0

on Qnm- Then there exists some j such that sz C 4Sjm and so Qpm C
48 m.

Proof. In the first two cases Qp,m N2S;,m # @ for some j. In the latter case,
by (a) of Lemma 7.8 and our construction, there exists some j such that

Qo "1 28m # 2.

So in any case Q%vm N 28, # @ for some j. Arguing as in Lemma 6.3,
for a3 big enough, it is easily checked that E(@%m) < U(Sjm)/4, and so
Q3. C ASjm. O

Let us see now that (e) is satisfied.

Claim 2. If Q € Dy, and §(Q,2Rg) < (m — 75) A (so £(Q) = 0), then
Un=9gm =bn =0 0nQ andQ%DﬁUDﬁ.
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Proof. Assume that Q = {x} and that either g,, Z 0, b,, Z 0 or Uy, Z 0 on
Q, or Q € DS UDE. By the preceding claim, Q C 45, for some j. Then,
5(%, 2R0) = (5(.%, 4Sj’m> + (5(4Sj7m, QR()) + &g
> 5(4Sj7m, 2R0) — &0
1
> 5(Sj7m, 2Ry) — 8" Cp —eg > <m — 10> A.
U

The following estimate will be necessary in many steps of our construction.

Claim 3. Let QQ be some cube of the m-th generation and x,y € 2Q. Then,
if g1y -y Gm and by, ... by, satisfy (a), then

A

; k(@) = Ur(9)| < 355 £l

We postpone the proof of Claim 3 until Subsection 8.5. Let us see that
(a) holds.

Claim 4. If Q € DS UDE | then Imgfm| < Co Al|fll«. Also, |gml, |bm| <
Cs Al fll+

Proof. First we will prove the first statement. By Claim 2, we know that
§(Q,2Rg) > (m — &) A. Let R € Dy,—1 be such that QN R # @. We
must have {(R) > 0. Otherwise, @ = R and §(R,2Rg) > (m — ) A >
(m —1) A+ e, which is not possible.

Since £(Q) < ¢(R)/10, we have Q C 2R. We know |mpfm| < Al fl«
because (b) holds for m — 1. By Claim 3 (for m — 1 and R) we get

|mem| < |mem| + |mem - mem|

m—1 —1

imRfm| + |mqf —mgef|+ )mQ< Uk) - mR( Uk)‘
k=1 1

VAN
= 3

< CAflls +Imqf — mrfl.

The term |mgf — mpf| is also bounded above by C' A || f||« because @ and
R are doubling, f € RBMO(u), and it is easily checked that §(Q, R) < C A.

The estimates on g, and b,, follow from from the definition of these
functions and the estimate |mq fm| < Cy A ||f||« for Q € DG UDE. O

Let us prove (d) now.
8
Claim 5. If Q € Dy, and |mqgfm| < %AHfH*, then Uy, = 0 and g, =
bm =0 on Q.

Proof. Suppose that Q@ = Qnm € Dy, is such that either g,, # 0, b,, #Z 0
or Up # 0 on Qp . By Claim 1 we have Q. C 4Sj,, for some j. By
construction, the center of S;,, belongs to some cube Q; ., with |mg, . fm| >
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SAf|l«. It is easily seen that 6(Qnm,4Sjm), 0(Qim,4Sjm) < C' + o +
o + 3. Thus

ImQ, = Mm@y fI < (C" + 201 4 2003 + 203) || -

Since @, and Qp, are contained in a common cube of the generation
m — 1, by Claim 3 we get

|in,mfm - mQh,mfm| < |in,mf - mQh,mf|

m—1 m—1
+ ‘in,'m (Z Uk) - mQh,m <Z Uk) ‘
k=1 k=1
(C" + 21 + 209 + 2a3 + A/100) || f |-
1
— A .
S Al

IN

IN

and so
3 1 8
> -—-— — .
meunfnl 2 (3= 1) Al > 35 411,

O
The statement (c) is a consequence of the fact that if Q € Dg, then @ is
far from the boundary of Uj 2S;m. Then Up, is very close to mq f,, on Q,

since we only integrate over cubes of DG UDZ in order to obtain Uy, (z) for
r € Q. On the other hand, if Q € D2, this argument does not work because
@ may be near the boundary of Uj 25;.m, and so it may happen that we

integrate on some cubes from Dy, \ (D& UDE) for obtaining Uy, (z), = € Q.
Let us see (¢) in detail.
Claim 6. If Q € DS, and £(Q) > 0, then |mq fmi1| < o5 A| £+

Proof. Consider Q;m € DTC,’;. We want to see that U,, is very close to
mq; ,, fm on this cube. By (a) of Lemma 7.8 we have to deal with the

cube @fm

Let us see that if P € D, is such that PN @f’m # @, then P € DG UDE.
Notice that P C @?;m Now, by the definition of good cubes, there exists
some j such that Q;., N %Sj,m # @, which implies @%m N %Sj’m # . For
a3 big enough, we have E(A%m) < L(Sjm), and then @?;m C 2Sjm. So
PecDSUDB.

Let us estimate the term

sup  |(gm(y) + bm(y)) — mq, ,, fm!-
yeQ?,,

Recall that

gm@W) +bm@) = D whmy) Mgy, S
h: Qpn.m€DGUDE
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By the arguments above, if y € @f’m and wp, m,(y) # 0, then @, has been
chosen for supporting g,, or by, i.e. Qum € DS UDE. Then,

gm(y) + bm(y) - in,mfm = Z wh,m(y) (mQh,mfm - in,mfm)'
h: Qh,meDm

By Claim 3 we obtain

1
‘mQh,mfm - in,mfm’ S m AHfH* + ’mQh,mf - sz,mf‘

1
- <mA+c+2a<thm,Qi,m)) T

1
< —A *
< Al

(we have used that 6(Qp m, Qim) < C, with C depending on a1, ag). Then
we get

(9) 9m(5) + bn(y) — 1@y Fnl < 55 Al e

For x € Q;m, we have
’Um(x) - sz’,mfm’ < ‘Um(x) - in,mfm /(Py,m(x) dﬂ(?J)'

(8.10) + [y \1 - [ eum@ du(y)‘ .

Let us estimate the first term on the right hand side. By (8.9) and (7.8) we
obtain

‘Um@s) — 0 b [ pun(a) du(y)’

= |/C/2\3 (pyﬂn(:(}) (gm(y) + b (y) — in,mf'ﬂl) du(y)

i,m

1
< (1 — Al £l
< (1) 5 Al
On the other hand, by (7.8), (7.9) and Claim 4, the second term on the right
hand side of (8.10) is bounded above by €3 Cg A || f||«. Thus we have

1 7
. m < 1 - C A *<7A *9
gy fmia] < (14 20) 55+ 20Ch ) Al < 5 AN

if we choose €3 small enough. O

Now we are going to show that (b) also holds.
Claim 7. If Q € Dy, and £(Q) > 0, then |mq fm+1]| < A| fl]«-
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Proof. If Q € DS, we have already seen that Mm@ fms1] < 55 A fl-
If Q € Dy \ Dm then @ NU; Sjm = @ (because £(Q) < £(S)n) and
Q7 U; 3Sjm)- By construction, we have

(8.11) Imq fm] < %A 1 1]+

If Uy, =0 on Q, then [mg fmi1| = [mofm| < 2 A| flls.
Now we consider the case Q = Qp m N Uj Sjm = @ such that Uy, # 0 on

@. By Claim 1 there exists some j with @%m C 4Sjm. Recall that by (a)
of Lemma 7.8, if x € Qjm, we have

Un(@) = [ 0m(@) (am(0) + b ) dil).

h,m

So if pym(z) # 0 and y € Q;m, we have Q;pm N @%’m # &. Therefore,
Qim C éghm Then,

N N A
5@%muQmm)§(7+5K%muQ%mﬁ4ﬂ%Qmm7Q%m)<(7+2a1+2a2<;iﬁ

Therefore, |mg, .. f —mq,.fl < 100 || fll«- By Claim 1 we get
’sz,mfm - mQh,mfm| S |sz,mf - mQh mf|

m—1 m—1
k=1 k=1
1
(8.12) < ANl
Recall also that, by (d),
(8.13) Mm@y fnl 2 55 S Al

— 20
From the definition of g,,, b, and (8.12), (8.13), we derive that mq, ,, fm

and Up,(z) have the same sign.
On the other hand, from (8.11) and (8 12) we get

il < —=A|lfl«.
mQunfml < 50 Allf
So by the definition of g,, and b, we have
bm oo < - A %5
lgm + bmllzooy < o5 AllF
and by (7.8) we obtain
(8.14)

4
Un(@)] < 35 Alfl [ Gum(@)dutw) < (14 22) 5 AN < 4111,

(assuming e3 small enough). By (8.11), (8.14) and since my, ,,, fm and Uy, (z)
have the same sign, (b) holds also in this case. O
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Therefore, (a)—(e) are satisfied.

8.4. Proof of (f), (g) and (h). The statement (f) is a direct consequence
of the following.

Claim 8. If §(x,2Ry) < oo, and if Q = {x} € D, (i.e. £(Q) = 0), then
ho() = fmt1(x) and |ho(z)| < Co A| £
Proof. Take m such that (m — 1) A < d(z,2Rp) < mA. By (e) we get

Un+k(x) = 0 for k > 1. Therefore, fi11(z) = fmi2(z) = -+ = ho(x). By
(a) we have

[frt1 (@) < [fn (@) + U (2)] < [fin ()] +2Cs (1 + 3) Al f]]
So we only have to estimate | fp,(x)].
Take Qz’,m—l € D,,—1 with x € Qi,m—l- Since g(Qi,m—l) > 0, by (b) we
have |mgq, ., fm| < Al f|l+. Applying Claim 3 we get

MG sfm — Fn(@)| < M@y, — @)+ 155 1]

¢ (1480 Qi) + 15 ) 11

It is easily checked that d(z, Qim—1) < A+ o +e1. Then we get | f ()]
CA|fl-

Now we turn our attention to (g). Given some good cube Q;,,, € DS with
Qi m) > 0, we denote

Zin = Z(Qim» Al f1]/30)
(see Definition 5.2; roughly speaking Z; ,, is the part of Q;,, where f does
not oscillate too much with respect to mgq, ,, f). If Qim € DS and U(Qim) =
0, we set Z; , = Qim. The set Z;,, has a very nice property:

Claim 9. Let k > m and Q;m € DSL. If P € Dy, is such that PN Z;  # 9,
then g, = b, =0 on P andP%D,?UDE.

Proof. Consider first the case ¢(Q; ) = 0. If P € Dy, is such that PNQ; n, #
@, then £(P) < 4(Qim)/10 =0 and so P = Q; . Therefore,

IN

OIA

5(P,2Ro) <m A < <k _ 110> A,

By (e), we get by, = g, =0 on P.

Assume now 4(Q; ;) > 0. Let € PN Z; ,,. From the definition of Z; ,,,
we have

for any S € Dy,4j, j > 1, with x € S. Also, by Claim 6 we have

7
, <—A e
M@y fmtt] < 5o AlIf
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Consider now P11 € Dyq1 with x € Pp4q. Observe that (Pp,41) <
0(Qim)/10 and P41 C 2Q;,m. We have

Man+Lﬁn+ﬂ < VnQ@mthd|+'th@mf%H4,_7nf%+1fm+1

7
< oAl +Ime, f = me,.. f]

e (S5 - (S50

By (8.15) and Claim 3 we obtain |mp,, , frmt1| < 2%AH]‘H*. By (d), on
Py1 we have gmy1 = b1 = 0 and also Uy, 41 = 0. Thus,

fmt2 = frs1

on any cube P41 € Dy,11 containing x.
Take now Pp,12 € Dpyyo with € Py, 42. On this cube fp,412 = fit1, and
then we have

IN

IMQs frat 1] + IMQ; 0 frnt1 — M, 5 fnt1]

7
So A+ Ima, f = me, o f]

+ e (kz’"l o) - me,. (kil o)

Again by (d)7 we get gmi2 = bypyo = Upyo = 0 on Ppyyo. Thus, fiy3 =
fm1 on Ppo.

Going on, we will obtain g4 = bjntj = Upyj = 0 for all j > 1 on any
cube Pp,;; € Dy, containing x. O

Imp,, o frmial

IN

As a consequence of Claim 9, Z; ,, is a good place for supporting g,. If,
for each m, g, were supported on (J; Z; m, then the supports of g,,, m > 1,
would be disjoint for different m’s. This is the idea that Carleson used in
[Cal.

So we are going to make some “corrections” according to this argument.

We have
US(@) = 3 @um(@) [ wianl) am(w) du(o)
i€l
For each Q;, with £(Q;m) > 0 we set

) XZim (y)
N(Zi,m) ’

If 6(Qim) = 0, we set uim(y) = Wim(y) gm(y) = gm(y) (we do not change
anything in this case). Then US can be written as

US) = 3 ppum(e) / i (y) dp(y).

1€1m

Uim(y) = / Wi g dp
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As in the case of UZ in Subsection 8.2, if we set DS = DrE U uDNC
where each subfamily D%G is disjoint, we can write US in the following way:

N
Uy =3 / o () g (y) du(y)
p=1

with
Fw =D timy)
i Qim €D
and
@Z,m(l‘) = Spyi,m(z)

if y € Qim and Qim € Dh,.

By Proposition 5.3, if A is big enough we have pu(Z; ) > w(Qim)/2 (if
£(Qim) > 0). Then it easily checked that |[u;m | reo(u) < 2 [|gmllroe () for all

i. Thus, from (a), (g.2) follows. Moreover, because of Claim 9, (g.3) also
holds.

One of the differences between our construction and Carleson’s one is
that, because of the regularity of Lebesgue measure, Carleson can treat the
bad cubes in a way very similar to the way for the good ones. We have
not been able to operate as Carleson. However, as it has been shown in
Subsection 8.2, the packing condition (8.2) is also a good solution. Let us
prove that this condition is satisfied.

Claim 10. For any R € D,, with £(R) > 0, the bad cubes satisfy the packing
condition

> u(Q) < CuR).

Q: QNR#Y
QeDB k>m

Proof. Let k > m be fixed. We are going to estimate the sum

> @)

Q: QNR#AQ
QeDP

Let Q € DE be such that QNR # &. Since @ is a bad cube, there exists some
J such that 25;,NQ # @. Then we have Q C 4S5; . Since A > a1 +az+a3
and 45, N R # @, we get £(S; ) < ¢(R)/20, and so 45 C 2R.

By the finite overlapping of the cubes @) in Dy, we have

> w@ <on( U 2s)

Q: QNR#AD J: S,k C2R
QeDP

<C Z w2Sk) < C Z (Sjk)-

J: S kC2R J:SjkC2R
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Now, from the construction of g, it is easy to check that u(Sjx) < C M(Sj7kﬂ
{Z;:,V: gk # O}) This fact and the bounded overlapping of the cubes S ;.

give

> wQ < Cu(2mrn {i g1 #0}).

Q: QNR#Q p=1
QeDP

Summing over k > m, as the supports of the functions gg are disjoint for
different k’s, we obtain

> w@<c Y u(2r0 {i g}l #0}) < Cu2R) < Cu(R).

Q: QNR#AL k>m
QeDE k>m

8.5. Proof of Claim 3. We only need to check that

m A
2 : — < —.

Let xzg e supp(u) be such that z,y € 2Qz, m. Obviously, we can assume
(Qzy,m) > 0. For each k < m we set

/ (0 k(&) — ook (v)] dia(z) = / o / I+ Do
Rd\Q;O,k 1

z(,k
Let us estimate the integrals I; ;. Notice that if z,y € 2Q4, m, then
Z,Y € 2Qqzk C Qonk Thus |z — 2| = |y — 2| = |z — 2| for z € R*\ Q!
So by (d) of Lemma 7.8 we have

xo,k*

_ |z —yl
L, < Ca 1/ du(z
2 RAQL |z — 2|1 =)
g xo,m
(8.16) < C’a;lw.
g( xo,]{;)
In case k > m, by Lemma 6.4 we get
—1 U Qay,m) 1oy (m—
L p < Cayt =220 < Oygqy 27 (m=k) A
b= 2 E(on,k) =T
Therefore,
- U(Quy.m)
(8.17) CsA lek<cga2 A 2 mRA L G O a;lAg( o )
k=1 k=1 zo.m

The first sum on the right hand side is < Ca51A2_“/A, and for A big
enough and ay > 11is <1 < A/400. The second term on the right hand side
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is also < A/400 if we choose ag big enough (or aj big enough since then
(Qugm) > L :lvo’m)). Thus

= A
CBA ZIL]C § %
k=1

We consider now the integrals I5 ;. By Lemma 7.8,

' (u)| < C

for all u € @4, k. Therefore,

_ |z —y| _1 U(Qzp,m)
I, <Ca 1/ ———du(z) < Coay " —=—.
* e, U@ 2 Uk Y

This is the same estimate that we have obtained for I; ;, in (8.16), and then
we also have

- A
Cs A L < —
8 ; 2,k > 2007

if we choose A and «ay (or aq) big enough. O

9. APPENDIX

In this section we will prove the following result, which is used in Section
4 to show that Theorem 1.2 follows from the Main Lemma.

Lemma 9.1. Consider f € L'(u) with [ fdu =0 and Mef € L'(u). Then
there exists a sequence of functions fi, k > 1, bounded with compact support
such that [ fodu =0, fr — f in L'(p) and || Mo (f — Te)lzrwy — 0.

So if we consider the space

Hi(n) = {f € L'(w): [ Fdu=0, Mof € L' (1)},

with norm HfHHé(M) = | fllz1(u) + Mo fl| 11 (), then Lemma 9.1 asserts that

functions in H&) (1) which are bounded and have compact support are dense

in Hj(u). In particular, Hj(u) N Hi;go(u) is dense in Hj(u).

In this section we will assume that the center of any cube () may be
any point of R? not necessarily belonging to supp(y). As in the previous
sections, the sides of the cubes are parallel to the axes and they are closed.

Let us introduce some additional notation. For p > 1, we set
1
M) f(x) = sup / |fldp.
& @3z 1(PQ) Jg

This non centered maximal operator is bounded above by the operator de-
fined as

) £y — 1
M'P) f(x) ps%paxu(Q)/Q!f!du-
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This is the version of the Hardy-Littlewood operator that one obtains taking
supremums over cubes () which may be non centered at x but such that
z € p~'Q. Recall that since 0 < p~' < 1, one can apply Besicovitch’s
Covering Theorem and then one gets that M®) is of weak type (1,1) and
bounded in LP(p), p € (1,00]. As a consequence, M, is also of weak type
(1,1) and bounded in LP(u), p € (1, 0]

Remark 9.2 (Whitney covering). Let © C R¢ be open, Q # R? Then
can be decomposed as = | J;c; Q;, where Q;, i € I, are cubes with disjoint
interiors, with 20Q; C € and such that, for some constants § > 20 and
D > 1, 8Qr NQ° # @ and for each cube @y there are at most D cubes
Q; with 10Q; N 10Q; # @ (in particular, the family of cubes {10Q;};cs has
finite overlapping).

In [To3] a decomposition of Calderén-Zygmund type adapted for non
doubling measures was introduced. This decomposition was used to prove
an interpolation theorem between (H}, (1), L' (1)) and (L>°(u), RBMO(p)).
In [To4] it was shown that this decomposition was also useful for proving
that CZO’s bounded in L?(u) are of weak type (1,1) too, as in the dou-
bling case (this result had been proved previously in [NTV2] using different
techniques). To prove Lemma 9.1 we will use the following variant of the
Calderén-Zygmund decomposition of [To3].

Lemma 9.3. Let f € L'(u) with [fdu =0 and Maf € L'(u). For any
A>0,let Q) ={zeR?: M) f(x) > A}. Then Q) is open and | f| < 2041 )

p-a.eq. in R\ Qy. Moreover, if we consider a Whitney decomposition of
Q) into cubes Q; (as in Remark 9.2), then we have:

(a) For each i there exists a function w; € C*(RY) with supp(w;) C 3Q;,
0<w; <1, |[wllee <CUQ:) such that >, wi(z) =1 if x € Q).

(b) For each i, let R; be the smallest (6,6"1)-doubling cube of the form
6Qi, k > 1, with R; N QS # 9. Then there exists a family of
functions o; with supp(«y;) C R; satisfying

(9.1) [asdn= [ rwdn

(9.2) llvill ooy (Ri) < Cllell 1

and

(9:3) > lail < BA

(where B is some constant).
(¢) f can be written as f = g+ b, with

g:f(l—zwi)+z;ai

2
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and

b= (fw;—a),

and then [|g|| pe () < C A and supp(b) C €.

Proof. The set (2 is open because My is lower semicontinuous. Since for

p-a.e. x € R? there exists a sequence of (2,2971)-doubling cubes centered
at = with side length tending to zero, it follows that for p-a.e. z € R?
such that |f(x)] > 2%\ there exists some (2,297!)-doubling cube Q with
Jo fldn/m(@) > 2971\ and so Mg f(x) > A.

The existence of the functions w; of (a) is a standard known fact. The
assertion (c) follows from the other statements in the lemma. So the only
question left is the statement (b).

Notice that, since R; N QS # &, we have

(9.4) /R fldie < A(2)

for each 1.

To construct the functions «; we would like to start by the smallest cube
R;, and go on with the bigger cubes R; following an order of non decreasing
sizes. Since in general there does not exist a cube R; with minimal side length
in the family {R;}:°,, we will have to modify a little the argument. For each
fixed N we will construct functions ol¥, 1 < i < N, with supp(a¥) C R,
satisfying (9.1), (9.2) and (9.3). Finally, applying weak limits when N — oo,
we will get the functions «;.

The functions ozfv that we will construct will be of the form alN = aiv X AN

with alN € R and Afv C R;. To avoid a complicate notation, suppose that
the cubes R;, 1 < i < N, satisify /(R;) < ¢(R;+1) (we can assume this
because we are taking a finite number of cubes). We set AY = R; and

N N
&1 = a1 XRi»

where the constant a} is chosen so that le fwirdp= [l du.

Suppose that o, ol ... ,ozﬁl (for some k < N) have been constructed,

satisfy (9.1) and Zf:ll |a;] < B A, where B is some constant (which will be
fixed below).

Let Rq,, ..., Rs, be the subfamily of cubes R;, 1 < ¢ < k — 1, such that
Rs; N Ry # @. As I(Rs;) < I(Ry) (because of the non decreasing sizes of
R;), we have R, C 3Ry. Taking into account that for i =1,...,k —1

/Iafvduﬁ/\fwz’\du
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by (9.1), and using that Ry, is (6,6"!)-doubling and (9.4), we get

S [ edlde < 3 [ 17w lde
J 55 J

< O [ Ifldu < CWORY < Curu(Ry).
3Ry
Therefore,
R
u{zjyagy > 2014)\} < ’“‘(2’“).
So we set

Aév =R N {Zj\ag] < 2014/\},

and then pu(AY) > u(Ry)/2.
The constant a{f is chosen so that for a{fv = ag Xay we have fafcv du =
| fwi dp. Then we obtain

N 1 2
la | < W/Vwﬂduﬁw/ﬁwk’d#

W,
fldp < CisA
,U/(Rk) %Rk| ’ 15

(this calculation also applies to k = 1). Thus,

o |+ || < (2C14 + Cis) A
J

<

If we choose B = 2C14 + Cy5, (9.3) follows for the cubes Ry, ..., R,.
Now it is easy to check that (9.2) also holds. Indeed we have

la | 1(B2) < € la| (A = € /Q F s du' < O,

Finally, taking weak limits in the weak-* topology of L (u), one easily
obtains the required functions «;. The details are left to reader. A similar
argument can be found in the proof of Lemma 7.3 of [To3]. O

Using the decomposition above we can prove Lemma 9.1 partially. This
will be the first step of its proof.

Lemma 9.4. The subspace HL(p) N L () is dense in H(u).

Proof. Given f € H%) (1), for each integer k£ > 0, we consider the generalized
Calderén-Zygmund decomposition of f given in the preceding lemma, with
A\ = 2F. We will adopt the convention that all the elements of that decom-
position will carry the subscript k. Thus we write f = g + by, as in (c) of
Lemma 9.1. We know that gy, is bounded and satisfies [ g dp = 0 (because
[ br dp = 0). We will show that g — f in L'(x) and Mo (gr— f)llr () — 0
as k — oo too.
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It is not difficult to check that by tends to 0 in L'(x). Indeed, if we set
Q. = {Mp)f(x) > 2}, then p(€%) — 0 as k — oo, because f € L'(u).

Thus
k—
/Ibkldus22/|fwi,k|dugc/g |f| dp —= 0,
7 k

and so gx — f in L' (u).
Let us see that || Mab|[11(,) — 0ask — oo. We denote b; , = f w; p—i -
Then we have

[ Mabg| 1 < Z [ Mabi k|| 11 (1)

The estimates for each term |[Mgb; [/11(,) are (in part) similar to the ones
in Lemma 3.1 for estimating Mg over atomic blocks. We write

[Mabi k|l < / Mab; . dp
RA\2R,

(9.5) + / Mo (f wi ) dp +/ Mooy dp
2Ri,k 2Ri,k
Taking into account that [ b; , dp = 0, it is easily seen that

/ Mabi g dpt < C [bigllago < CIf wisllogo
RAN2R;

(the calculations are similar to the ones in (3.1) and (3.2)).
Let us consider the last term on the right hand side of (9.5) now. By (9.1)
and (9.2) we get

| Moaundi < lasal e on(2Rn) i < €1 winl v
i,k
We split the second integral on the right hand side of (9.5) as follows:

/ Mo (f wig)du 2/ +/ :
2R; i 2R; 1\2Qi k 2Qi.k

As in (3.4), we have
1

/ Mo(fwi)dn < Clfwinligy [ e du(a)
2R; 1k \2Qi k 2R; k\2Qi k ’1‘ ZQi,k‘

< Cllfwikllpr (1 +0(Qik, Rik))

<

C |l f wi gl £r(p)-

Finally we have to deal with fQQ X Mo (f w; ) dp. Consider z € 2Q); , and
@ ~ x. Then 7

08 | [etund =| [toun s < s,
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because C ¢ w; i, ~ x for some constant C' > 0. Indeed, for y € R? we have

1
0 <wikp(y) < ely) <
e(y) < ¢(y) T

and

[(ewir) W) < 19" (W) wikW)l + l(y) wi k()]
1 C
y—al T ly—al”
Recall also that |w; ; (y)| < CU(Q; )" and supp(w; ;) C 2Q; . Then we get
i, (y)] < Cly — x|~ for all y € RY. Thus |(pwik)'(y)| < Cly — [

So (9.6) holds and then

< w1 (y)]-

Ma(f wig)dp < C Mg f dp.
2Q;k 2Qi k

When we gather the previous estimates, we obtain

[Mabi k|l < Cllf wikllpi +C 0 Mo f dp.
ik

Taking into account the finite overlap of the cubes 2Q);j (recall that they
are Whitney cubes covering Qy), we get

k—oo
[Mabgl|ry <C /Q (If| + Mo f)dp — 0,
k

and we are done. O

Proof of Lemma 9.1. Take f € Hj () N L>(u). Consider the infinite in-
creasing sequence of the cubes Qj, = 4V [—1,1]? that are (4, 4"*1)-doubling.
Let w be a C*° function such that x[_q jja(z) < w(z) < x[_g94(z) for all z.
We denote wy(x) = w(4 M) (s0 X0, (%) < wi(z) < x20, (*)) and we set

_ _ XQk
Je =wi f 2(Qr) /wkfdu.

It is clear that fj is bounded, has compact support and converges to f in
LY(p) as k — oo. We will prove that

/wkfdu‘-f—C/ Mg fdu
RANAQy,

+ Mo ((1 —wy) f) dp.
4Qx

Finally we will show that the terms on the right hand side of (9.7) tend to

0 as k — oo and we will be done.
Let us consider first the integral of Mg (f — fi) over R?\ 4Q;. We set

/ Mcb(ffk)duﬁ/ Mcpfdu+/ Mo fy dp.
RAN4Qy, RANAQ), RANAQ),

9.7 Ma(f = fillry < C
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We only have to estimate the last integral on the right hand side. Take
r € R\ 4Qg, ¢ ~ z and let 3o € 2Q; be the point where ¢ attains its
minimum over 2Q; (recall that we assume ¢ > 0 and ¢ € C'). We denote

cr = [wi fdp/p(Qr) and then we set

/n¢m¢= /f@ﬂww@@wmmw
- /wawfwmww—wwwmmw

—%/<ﬂw—wm»www:h—b
Qk

Let us consider the function (y) = wi(y) (¢(y) — ¢(yo)). This function
satisfies

0 <¥(y) < o(y)
and

W' < Jwk(y) @ W)+ [wi W) le(y) — e(yo)]

1 UQg) 1
. — ¢ ! = .
gzt T ONQ)T e = O

Therefore C'1) ~ z for some constant C' > 0 and so |I;| < C Mg f(z). For I
we use a cruder estimate:

<

£(Qr)
L <Cle —
| 2’ = | k’:U’(Qk) ‘yO —_ x’n+1
Thus we obtain
(Qr)
Mg fr(x) < C Mg f(x) + C |cg| u(Qr) Yo — 2L
Since )
— _du(x) < C¢ -1
AMmWVMMIM)_ (@)
we get
/ Mafidy < C M f dp+ C lex] (@)
RIANAQy, RAN4Qy
(9.8) = C M@fdu+0’/wkfdu‘.
RAN4Qy

Now we have to deal with f4Qk~ Ms(f — fx) dp. For x € 4Q we write

|ck|

(9.9) Mﬂf—ﬂﬂ@éﬂhﬂﬂﬂ%ﬂﬂﬂ+ﬂ%(ﬂ@wxm>@)

Since Maxq, (z) <1 and Qy is (4,4""!)-doubling, we get

(9.10) A@M@Qﬁiﬂm>ummmscmvwﬂ/wfmy

From (9.8), (9.9) and (9.10) we derive (9.7).
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Now we have to see that the terms on the right hand side of (9.7) tend to
0 as k — oo. Since f, Mg f € L'(u), by the dominated convergence theorem

lim ‘/wkfd,u'—F/ Mg fdu=0.
k—oo RAN4AQy

Let us turn our attention to the third term on the right hand side of (9.7).
Take x € 4Q and ¢ ~ x. It is easily seen that C wy, o ~ x for some constant
C > 0. So we get Mg (wy, f)(x) < C Mg f(z) and then for any x € RY,

X4Q, (7) Mo ((1—wi) £)(2) < xa@, (%) (Mo f(2)+Mo(wy f)(x)) < C Mg f(z).

Therefore, if we show that xaq, () Ma((1 — wg(x)) f)(x) tends to 0 point-
wise as k — oo, we will be done by a new application of the dominated
convergence theorem.

For a fixed z € R?, let kg be such that z € %Qk for k > k. Notice that
if o~z and y & Qy, then |¢(y)| < C/(Qk)"™. Thus

‘/80(37)(1 —wi(x)) f(2) du(x)] < [ fllpr 11— wk) @llee

< ¢ ||f||L1(u)'
UQr)™
Then we get
et w—
xa, (@) Ma (1 = wi(2)) f)(2) < C i =250,
Q)
([
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