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Abstract. These notes are the lecture notes of a series of talks given at the
Universidad de Sevilla in December 2003. We survey some results of Calderón-
Zygmund theory with non doubling measures, and we apply them to prove
the semiaddivity of the analytic capacity γ+. We provide a quite elementary
proof which does not use the T (1) theorem. We also review other recent
results in connection with the comparability between analytic capacity and
the capacity γ+.

1. Introduction

The main purpose of this expository paper is to discuss and review several re-
sults on Calderón-Zygmund theory with non doubling measures (also known as
non homogeneous Calderón-Zygmund theory) and to show how these results can be
applied to problems related to analytic capacity.

In recent years it was shown that many results on Calderón-Zygmund theory
remain valid if one does not assume that the underlying measure of the space is
doubling. Recall that a Borel measure µ on Rd is said to be doubling if there exists
some constant C > 0 such that

µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ supp(µ), r > 0.

One of the main motivations for extending the classical theory to the non doubling
context was the solution of several questions related to analytic capacity, like Vi-
tushkin’s conjecture or Painlevé’s problem. In this type of problems, one considers
an arbitrary compact set E in the complex plane and one is interested in finding a
Radon measure µ supported on it such that the Cauchy transform Cµ (see Section
2 for the precise definition) is bounded on L2(µ). It may happen that the only non
zero measures with these properties are non doubling.

In order to study n-dimensional Calderón-Zygmund operators (CZO’s) in Rd,
with 0 < n ≤ d, we will consider measures µ satisfying the growth condition

(1) µ(B(x, r)) ≤ C0 rn for all x ∈ Rd, r > 0.

Let us remark that this is a quite natural condition, because it is necessary for the
L2(µ) boundedness of any CZO whose kernel k(x, y) satisfies |k(x, y)| ≥ C|x−y|−n

(see [Dd2, Theorem III.1.4]).
One of the main difficulties that arises when one deals with a non doubling

measure µ is due to the fact that the non centered maximal Hardy-Littlewood
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operator

Mnc
µ f(x) := sup

{
1

µ(B̄)

∫

B̄

|f | dµ : B̄ closed ball, x ∈ B̄

}

may fail to be of weak type (1, 1) (the superindex “nc” stands for non centered).
Sometimes the centered version of the operator, that is

Mµf(x) = sup
r>0

1
µ(B(x, r))

∫

B(x,r)

|f | dµ,

is a good substitute of Mnc
µ f , because using Besicovitch’s covering theorem one can

show that Mµ is bounded from L1(µ) into L1,∞(µ), and in Lp(µ), for 1 < p ≤ ∞.
However, one cannot always use the centered maximal Hardy-Littlewood operator
instead of the non centered one. In these cases, other arguments (usually more
involved) are required.

This paper is not intended to be a complete survey neither on Calderón-Zygmund
theory with non doubling measures nor on analytic capacity. We recommend the
interested reader to have a look at the surveys [Dd3], [Ma2], [Ve3], [MTV2], for
example.

Regarding non homogeneous Calderón-Zygmund theory, we will focus our at-
tention on some of the results more directly connected to analytic capacity. In
Section 3, for example, we will review the proof of the weak (1, 1) boundedness
of CZO’s which are bounded in L2(µ), using a Calderón-Zygmund type decompo-
sition adapted to the non doubling context. We will also give the detailed proof
of Cotlar’s inequality, which we think that is particularly simple and illuminating.
We will state and discuss (but not prove) the T (1) theorem. On the other hand,
for reasons of brevity and simplicity we will not pay much attention to T (b) type
theorems, although they are important results which play a very important role in
connection with analytic capacity. We ask the reader the to forgive us about this
question. Similarly, we will only make some brief comments about other results
dealing with the space RBMO, Hardy spaces, commutators, weights, etc.

The second part of the paper is dedicated to analytic capacity. In Section 4,
we review some properties of analytic capacity and its connection with the Cauchy
transform, Menger curvature, and rectifiability. In Section 5 we obtain several
characterizations of the analytic capacity γ+ using some of the results proved or
described previously about non homogeneous Calderón-Zygmund theory. In par-
ticular, from one of these characterizations the semiadditivity of γ+ follows in a
straightforward way. Moreover, we provide a quite elementary proof of the semiad-
ditivity of γ+ which does not use the T (1) theorem (although we also explain the
argument which uses the T (1) theorem).

The proof of the semiadditivity of γ and its comparability with γ+ requires much
more work and it is out of the scope of this paper. Nevertheless, the last section
contains some comments about this topic and related results.

Acknowledgements. I would like to thank Genaro López for his kind invitation
to give the lectures from which these notes arose, and the entire Department of
Mathematical Analysis of the Universidad de Sevilla for his hospitality during my
visit in December 2003.
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2. Preliminaries

An open ball centered at x with radius r is denoted by B(x, r), and a closed ball
by B̄(x, r). By a cube Q we mean a closed cube with sides parallel to the axes. We
denote its side length by `(Q) and its center by xQ.

A Radon measure on Rd has growth of degree n (or is of degree n) if there exists
some constant C0 such that µ(B(x, r)) ≤ C0r

n for all x ∈ Rd, r > 0. When n = 1,
we say that µ has linear growth. If there exists some constant C such that

C−1r ≤ µ(B(x, r)) ≤ Cr for all x ∈ supp(µ), 0 < r ≤ diam(supp(µ)),

then we say that µ is n-dimensional AD-regular
The space of finite complex Radon measures on Rd is denoted by M(Rd). This

is a Banach space with the norm of the total variation: ‖µ‖ = |µ|(Rd).
We say that k(·, ·) : Rd×Rd \{(x, y) ∈ Rd×Rd : x = y} → C is an n-dimensional

Calderón-Zygmund kernel if there exist constants C > 0 and η, with 0 < η ≤ 1,
such that the following inequalities hold for all x, y ∈ Rd, x 6= y:

|k(x, y)| ≤ C

|x− y|n , and

|k(x, y)− k(x′, y)|+ |k(y, x)− k(y, x′)| ≤ C|x− x′|η
|x− y|n+η

if |x− x′| ≤ |x− y|/2.

(2)

Given a positive or complex Radon measure µ on Rd, we define

(3) Tµ(x) :=
∫

k(x, y) dµ(y), x ∈ Rd \ supp(µ).

We say that T is an n-dimensional Calderón-Zygmund operator (CZO) with kernel
k(·, ·). The integral in the definition may not be absolutely convergent if x ∈
supp(µ). For this reason, we consider the following ε-truncated operators Tε, ε > 0:

Tεµ(x) :=
∫

|x−y|>ε

k(x, y) dµ(y), x ∈ Rd.

Observe that now the integral on the right hand side converges absolutely if, for
instance, |µ|(Rd) < ∞.

Given a fixed positive Radon measure µ on Rd and f ∈ L1
loc(µ), we denote

Tµf(x) := T (f dµ)(x) x ∈ Rd \ supp(f dµ),

and
Tµ,εf(x) := Tε(f dµ)(x).

The last definition makes sense for all x ∈ Rd if, for example, f ∈ L1(µ). We say
that Tµ is bounded on L2(µ) if the operators Tµ,ε are bounded on L2(µ) uniformly
on ε > 0. Analogously, with respect to the boundedness from L1(µ) into L1,∞(µ).
We also say that T is bounded from M(Rd) into L1,∞(µ) if there exists some
constant C such that for all ν ∈ M(Rd) and all λ > 0,

µ{x ∈ Rd : |Tεν| > λ} ≤ C‖ν‖
λ

uniformly on ε > 0.
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The Cauchy transform is the CZO on C originated by the kernel

k(x, y) :=
1

y − x
, x, y ∈ C.

It is denoted by C. That is to say,

Cµ(x) :=
∫

1
y − x

dµ(y), x ∈ C \ supp(µ).

As usual, in the paper the letter ‘C’ stands for an absolute constant which
may change its value at different occurrences. On the other hand, constants with
subscripts, such as C1, retain its value at different occurrences. The notation A . B
means that there is a positive absolute constant C such that A ≤ CB. Also, A ≈ B
is equivalent to A . B . A.

3. Calderón-Zygmund theory with non doubling measures

In this section we will review some results about Calderón-Zygmund theory for
non doubling measures µ in Rd satisfying the growth condition (1) that will be
useful in connection with analytic capacity. First, we will describe a Calderón-
Zygmund decomposition suitable for this type of measures, and then we will show
how one can use it to prove that a CZO which is bounded on L2(µ) is also of weak
type (1, 1). Further, we will prove Cotlar’s inequality, and we will talk about the
T (1) theorem, and other results.

Preliminarily, in next subsection, we deal with the existence and properties of
the so called doubling cubes, which play a very important role in this theory.

3.1. Doubling cubes. Given α > 1 and β > αn, we say that Q is (α, β)-doubling
if µ(αQ) ≤ β µ(Q), where αQ is the cube concentric with Q with side length
α `(Q). For definiteness, if α and β are not specified, by a doubling cube we mean
a (2, 2d+1)-doubling cube.

Before proving Theorem 3, we state some remarks about the existence of doubling
cubes.

Because µ satisfies the growth condition (1), there are a lot of “big” doubling
cubes. To be precise, given any point x ∈ supp(µ) and c > 0, there exists some
(α, β)-doubling cube Q centered at x with l(Q) ≥ c. This follows easily from (1)
and the fact that β > αn. Indeed, if there are no doubling cubes centered at x with
l(Q) ≥ c, then µ(αmQ) > βmµ(Q) for each m, and letting m → ∞ one sees that
(1) cannot hold.

There are a lot of “small” doubling cubes too: if β > αd, then for µ-a.e. x ∈ Rd

there exists a sequence of (α, β)-doubling cubes {Qk}k centered at x with `(Qk) → 0
as k →∞. This is a property that any Radon measure on Rd satisfies (the growth
condition (1) is not necessary in this argument). The proof is an easy exercise on
geometric measure theory that is left for the reader.

Observe that, by the Lebesgue differentiation theorem, for µ-almost all x ∈
Rd one can find a sequence of (2, 2d+1)-doubling cubes {Qk}k centered at x with
`(Qk) → 0 such that

lim
k→∞

1
µ(Qk)

∫

Qk

f dµ = f(x).
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As a consequence, for any fixed λ > 0, for µ-almost all x ∈ Rd such that |f(x)| > λ,
there exists a sequence of cubes {Qk}k centered at x with `(Qk) → 0 such that

lim sup
k→∞

1
µ(2Qk)

∫

Qk

|f | dµ >
λ

2d+1
.

In next lemma we prove a very useful estimate from [DM] involving non doubling
squares which relies on the idea that the mass µ which lives on non doubling squares
must be small.

Lemma 1. If Q ⊂ R are concentric cubes such that there are no (α, β)-doubling
cubes (with β > αn) of the form αkQ, k ≥ 0, with Q ⊂ αkQ ⊂ R, then,∫

R\Q

1
|x− xQ|n dµ(x) ≤ C1,

where C1 depends only on α, β, n, d and C0.

Proof. Let N be the least integer such that R ⊂ αNQ. For 0 ≤ k ≤ N we have
µ(αkQ) ≤ µ(αNQ)/βN−k. Then,

∫

R\Q

1
|x− xQ|n dµ(x) ≤

N∑

k=1

∫

αkQ\αk−1Q

1
|x− xQ|n dµ(x)

≤ C

N∑

k=1

µ(αkQ)
`(αkQ)n

≤ C

N∑

k=1

βk−N µ(αNQ)
α(k−N)n `(αNQ)n

≤ C
µ(αNQ)
`(αNQ)n

∞∑

j=0

(
αn

β

)j

≤ C.

¤

3.2. Calderón-Zygmund decomposition.

Lemma 2 (Calderón-Zygmund decomposition). Assume that µ satisfies (1). For
any f ∈ L1(µ) and any λ > 0 (with λ > 2d+1 ‖f‖L1(µ)/‖µ‖ if ‖µ‖ < ∞) we have:

(a) There exists a family of almost disjoint cubes {Qi}i (that is,
∑

i χQi ≤ C)
such that

(4)
1

µ(2Qi)

∫

Qi

|f | dµ >
λ

2d+1
,

(5)
1

µ(2ηQi)

∫

ηQi

|f | dµ ≤ λ

2d+1
for η > 2,

(6) |f | ≤ λ a.e. (µ) on Rd \⋃
i Qi.

(b) For each i, let Ri be a (6, 6n+1)-doubling cube concentric with Qi, with
l(Ri) > 4l(Qi) and denote wi = χQiP

k χQk
. Then, there exists a family of

functions ϕi with supp(ϕi) ⊂ Ri and with constant sign satisfying

(7)
∫

ϕi dµ =
∫

Qi

f wi dµ,
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(8)
∑

i

|ϕi| ≤ B λ

(where B is some constant), and

(9) ‖ϕi‖L∞(µ) µ(Ri) ≤ C

∫

Qi

|f | dµ.

The lemma above was obtained in [To3], where it was used to prove that if a
linear operator is bounded from a suitable space of type H1 into L1(µ) and from
L∞(µ) into a space of type BMO, then it is bounded in Lp(µ), for 1 < p < ∞.
This Calderón-Zygmund decomposition has also shown to be useful in a variety of
other situations (see, for example, [To4], [HY], [HMY1]).

3.3. Weak (1,1) boundedness of Calderón-Zygmund operators. The result
below was first obtained in [NTV2], although a previous proof valid only for the
Cauchy transform appeared in [To1]. Below we reproduce the proof of [To4], which
is different from the one of [NTV2] and it is based on the Calderón-Zygmund
decomposition of Lemma 2.

Theorem 3. Let µ be a Radon measure on Rd satisfying the growth condition (1).
If T is an n-dimensional Calderón-Zygmund operator which is bounded in L2(µ),
then it is also bounded from M(Rd) into L1,∞(µ). In particular, it is of weak type
(1, 1). (as far as we know)

Proof. We will show that Tµ is of weak type (1, 1). By similar arguments, one gets
that T is bounded from M(Rd) into L1,∞(µ). In this case, one has to use a version
of the Calderón-Zygmund decomposition in the lemma above suitable for complex
measures (see the end of the proof for more details).

Let f ∈ L1(µ) and λ > 0. It is straightforward to check that we may assume
λ > 2d+1‖f‖L1(µ)/‖µ‖. Let {Qi}i be the almost disjoint family of cubes of Lemma
2. Let Ri be the smallest (6, 6n+1)-doubling cube of the form 6kQi, k ≥ 1. Then
we can write f = g + b, with

g = f χRd\S
i Qi

+
∑

i

ϕi

and
b =

∑

i

bi :=
∑

i

(wi f − ϕi) ,

where the functions ϕi satisfy (7), (8) (9) and wi = χQiP
k χQk

.
By (4) we have

µ
(⋃

i

2Qi

)
≤ C

λ

∑

i

∫

Qi

|f | dµ ≤ C

λ

∫
|f | dµ.

So we have to show that

(10) µ
{

x ∈ Rd \
⋃

i

2Qi : |Tµ,εf(x)| > λ
}
≤ C

λ

∫
|f | dµ.

Since
∫

bi dµ = 0, supp(bi) ⊂ Ri and ‖bi‖L1(µ) ≤ C
∫

Qi
|f | dµ, using condition 2

in the definition of a Calderón-Zygmund kernel (which implies Hörmander’s condi-
tion), we get ∫

Rd\2Ri

|Tµ,εbi| dµ ≤ C

∫
|bi| dµ ≤ C

∫

Qi

|f | dµ.
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Let us see that

(11)
∫

2Ri\2Qi

|Tµ,εbi| dµ ≤ C

∫

Qi

|f | dµ

too. On the one hand, by (9) and using the L2(µ) boundedness of T and that Ri

is (6, 6n+1)-doubling we get
∫

2Ri

|Tµ,εϕi| dµ ≤
(∫

2Ri

|Tµ,εϕi|2 dµ

)1/2

µ(2Ri)1/2

≤ C

(∫
|ϕi|2 dµ

)1/2

µ(Ri)1/2

≤ C

∫

Qi

|f | dµ.

On the other hand, since supp(wif) ⊂ Qi, if x ∈ 2Ri \ 2Qi, then |Tµ,εf(x)| ≤
C

∫
Qi
|f | dµ/|x− xQi

|n, and so
∫

2Ri\2Qi

|Tµ,ε(wi f)| dµ ≤ C

∫

2Ri\2Qi

1
|x− xQi |n

dµ(x)×
∫

Qi

|f | dµ,

By Lemma 1, the first integral on the right hand side is bounded by some constant
independent of Qi and Ri, since there are no (6, 6n+1)-doubling cubes of the form
6kQi between 6Qi and Ri. Therefore, (11) holds.

Then we have∫

Rd\S
k 2Qk

|Tµ,εb| dµ ≤
∑

i

∫

Rd\S
k 2Qk

|Tµ,εbi| dµ

≤ C
∑

i

∫

Qi

|f | dµ ≤ C

∫
|f | dµ.

Therefore,

(12) µ
{

x ∈ Rd \
⋃

i

2Qi : |Tµ,εb(x)| > λ
}
≤ C

λ

∫
|f | dµ.

The corresponding integral for the function g is easier to estimate. Taking into
account that |g| ≤ C λ, we get

(13) µ
{

x ∈ Rd \
⋃

i

2Qi : |Tµ,εg(x)| > λ
}
≤ C

λ2

∫
|g|2 dµ ≤ C

λ

∫
|g| dµ.

Also, we have ∫
|g| dµ ≤

∫

Rd\S
i Qi

|f | dµ +
∑

i

∫
|ϕi| dµ

≤
∫
|f | dµ +

∑

i

∫

Qi

|f | dµ ≤ C

∫
|f | dµ.

Now, by (12) and (13) we get (10).

If we want to show that T is bounded from M(Rd) into L1,∞(µ), then in Lemma
2 and in the arguments above f dµ must be substituted by dν, with ν ∈ M(Rd), and
|f | dµ by d|ν|. Also, condition (6) of Lemma 2 should be stated as “On Rd\⋃i Qi, ν
is absolutely continuous with respect to µ, that is ν = f dν, and moreover |f(x)| ≤ λ
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a.e. (µ) x ∈ Rd \⋃
i Qi”. With other minor changes, the arguments and estimates

above work in this situation too. ¤

3.4. Cotlar’s inequality. This inequality involves some maximal operators which
we proceed to define. The centered maximal Hardy-Littlewood operator applied to
ν ∈ M(Rd) is, as usual,

Mµν(x) = sup
r>0

1
µ(B̄(x, r))

∫

B̄(x,r)

d|ν|.

A useful variant of this operator is the following:

M̃µν(x) = sup

{
1

µ(B̄(x, r))

∫

B̄(x,r)

d|ν| : r > 0, µ(B̄(x, 5r)) ≤ 5d+1µ(B̄(x, r))

}
.

The non centered version of M̃µ is

Nµν(x) = sup
{

1
µ(B̄)

∫

B̄

d|ν| : B̄ closed ball, x ∈ B̄, µ(5B̄) ≤ 5d+1µ(B̄)
}

.

For f ∈ L1
loc(µ) we set Mµf ≡ Mµ(fdµ), M̃µf ≡ M̃µ(fdµ), and Nµf ≡ Nµ(fdµ),

The operators Mµ and M̃µ are bounded in Lp(µ), and from M(Rd) into L1,∞(µ).
This fact can be proved using Besicovitch’s covering theorem for Mµ and M̃µ, and
Vitali’s covering theorem with balls B(x, 5r) in the case of Nµ.

If T is a CZO, the maximal operator T∗ is

T∗ν(x) = sup
ε>0

|Tεν(x)| for ν ∈ M(Rd), x ∈ Rd,

and the δ-truncated maximal operator T∗,δ is

T∗,δν(x) = sup
ε>δ

|Tεν(x)| for ν ∈ M(Rd), x ∈ Rd.

We also set Tµ,∗ f ≡ T∗ (f dµ) and Tµ,∗,δ f ≡ T∗,δ (f dµ) for f ∈ L1
loc(µ).

Theorem 4 (Cotlar’s inequality). Let µ be a positive Radon measure on Rd with
growth of degree n. If the T is an n-dimensional CZO bounded from M(Rd) into
L1,∞(µ), then for 0 < s ≤ 1 we have

(14) T∗,δ ν(x) ≤ Cs

(
M̃µ(|Tδν|s)(x)1/s + Mµν(x)

)
, for ν ∈ M(Rd), x ∈ Rd,

where Cs depends only on the constant C0 in (1), s, n, d, and the norm of the Tδ

from M(Rd) into L1,∞(µ).

Cotlar’s inequality with non doubling measures is due to Nazarov, Treil and
Volberg [NTV2], although not in the form stated above, which is from [To2]

To prove Theorem 4 we will need some lemmas. The first one is Kolmogorov’s
inequality whose proof can be found in [Ma1, p. 299].

Lemma 5. Let µ be a positive Radon measure on Rd and f : Rd −→ C a Borel
function in L1,∞(µ). Then for 0 < s < 1 and for any µ-measurable set A ⊂ Rd

with µ(A) < ∞,
(

1
µ(A)

∫

A

|f |sdµ

)1/s

≤ (1− s)−1/s ‖f‖L1,∞(µ)

µ(A)
.

Also, we have the following result.
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Lemma 6. Let 0 < r < R, with R = 5Nr. If 5d+1µ(B̄(x, 5k−1r)) ≤ µ(B̄(x, 5kr))
for k = 2, . . . , N , then we have

|TRν(x)− Trν(x)| . µ(B̄(x,R))
R

Mµν(x),

for each ν ∈ M(Rd).

Compare this result with Lemma 1. In both cases one assumes that there exists
a sequence of concentric non doubling balls or squares. Moreover, the proofs are
similar.

Proof. We set B̄k = B̄(x, 5kr) and K0 = µ(B̄(x,R))/R. Then we have

|TRν(x)− Trν(x)| =

∣∣∣∣∣
∫

r<|y−x|≤5N r

k(x, y) dν(y)

∣∣∣∣∣

.
N∑

k=1

∫

5k−1r<|y−x|≤5kr

1
|y − x|n d|ν|(y)

.
N∑

k=1

|ν|(B̄k)
(5kr)n

=
N∑

k=1

|ν|(B̄k)
(5k−NR)n

.(15)

Also, notice that

µ(B̄k) ≤ 5(k−N)(d+1)µ(B̄N ) = 5(k−N)(d+1)RK0.

Therefore,
1

5(k−N)nRn
≤ K0

5(k−N)(d+1−n)

µ(B̄k)
,

and by (15),

|TRν(x)− Trν(x)| . K0

N∑

k=1

5(k−N)(d+1−n)|ν|(B̄k)
µ(B̄k)

. K0

N∑

k=1

5(k−N)(d+1−n)Mµν(x) . K0Mµν(x)

¤

Combining Lemma 6 with the usual arguments we are going to prove Cotlar’s
inequality (14).

Proof of Theorem 4 Let ε > δ and x ∈ Rd. Since µ has growth of degree n, there
exists some n ≥ 1 such that

(16) µ(B̄(x, 5nε)) ≤ 5d+1µ(B̄(x, 5n−1ε))

(see Subsection 3.1). We assume that n is the least integer ≥ 1 such that (16)
holds. Set ε′ = 5nε. By Lemma 6,

|Tεν(x)− Tε′/5ν(x)| ≤ CMµν(x).

Also, it is straightforward to check that |Tε′/5ν(x)−Tε′ν(x)| ≤ CMµν(x). Therefore,

|Tεν(x)− Tε′ν(x)| ≤ CMµν(x).
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Thus it only remains to show that

(17) |Tε′ν(x)| ≤ Cs

(
M̃µ(|Tδν|s)(x)1/s + Mµν(x)

)
.

Since

(18) µ(B̄(x, ε′)) ≤ 5d+1µ(B̄(x, ε′/5)),

we can apply the usual argument, as in [Ma1], pp. 299-300, to prove (17). We set

dν1 = χB̄(x,ε′)dν, dν2 = dν − dν1.

For y ∈ B̄(x, ε′/5), since ε′ > 5δ we have Tε′ν2(x) = Tδν2(x) = Tν2(x) and
Tδν2(y) = Tν2(y). Using (1) it is easy to check that |Tδν2(y)−Tδν2(x)| ≤ CMµν(x).
Therefore,
(19)
|Tε′ν(x)| = |Tδν2(x)| ≤ |Tδν2(y)|+ C2Mµν(x) ≤ |Tδν1(y)|+ |Tδν(y)|+ C2Mµν(x).

Assume first s = 1. If Tε′ν(x) 6= 0, let 0 < λ < |Tε′ν(x)|. For y ∈ B̄(x, ε′/5),
by (19) either C2Mµν(x) > λ/3 or |Tδν(y)| > λ/3 or |Tδν1(y)| > λ/3. Therefore,
either

λ < 3C2Mµν(x),

or

B̄(x, ε′/5) = {y ∈ B̄(x, ε′/5) : |Tδν(y)| > λ/3} ∪ {y ∈ B̄(x, ε′/5) : |Tδν1(y)| > λ/3}.
But we have

µ{y ∈ B̄(x, ε′/5) : |Tδν(y)| > λ/3} ≤ 3
λ

∫

B̄(x,ε′/5)

|Tδν|dµ

≤ 3
λ

µ(B̄(x, ε′/5)) M̃µ(Tδν)(x),

and by the boundedness of Tδ from M(Rd) into L1,∞(µ) and (18),

µ{y ∈ B̄(x, ε′/5) : |Tδν1(y)| > λ/3} . ‖ν1‖
λ

=
|ν|(B̄(x, ε′))

λ

. µ(B̄(x, ε′/5))
λ

Mµν(x).

In any case we obtain λ < 3M̃µ(Tδν)(x) + CMµν(x). Since this holds for 0 < λ <
|Tε′ν(x)|, (17) follows when s = 1.

Assume now 0 < s < 1. From (19) we get

|Tε′ν(x)|s ≤ |Tδν1(y)|s + |Tδν(y)|s + CMµν(x)s.

Integrating with respect to µ and y ∈ B̄(x, ε′/5), dividing by µ(B̄(x, ε′/5)) and
raising to the power 1/s we obtain

|Tε′ν(x)| ≤ Cs




(
1

µ(B̄(x, ε′/5))

∫

B̄(x,ε′/5)

|Tδν1|sdµ

)1/s

+

(
1

µ(B̄(x, ε′/5))

∫

B̄(x,ε′/5)

|Tδν|sdµ

)1/s

+ Mµν(x)


 .(20)
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By (18), the second term on the right hand side of (20) can be estimated by
M̃µ(|Tδν|s)(x)1/s. On the other hand, the first term is estimated using Kolmogorov’s
inequality, the boundedness of Tδ from M(Rd) into L1,∞(µ), and (18):
(

1
µ(B̄(x, ε′/5))

∫

B̄(x,ε′/5)

|Tδν1|sdµ

)1/s

.
‖Tδν1‖L1,∞(µ)

µ(B̄(x, ε′/5))
. ‖ν1‖

µ(B̄(x, ε′/5))
. Mµν(x).

Now (17) follows. ¤
A direct consequence of Cotlar’s inequality and Theorem 3 is the following result.

Theorem 7. Let µ be a Radon measure on Rd of degree n. If T is an n-dimensional
CZO bounded in L2(µ), then Tµ,∗ is bounded in Lp(µ), p ∈ (1,∞), and from M(Rd)
into L1,∞(µ).

Proof. By Theorem 3, interpolation, and duality, Tµ is bounded in Lp(µ), p ∈
(1,∞), and from M(Rd) into L1,∞(µ). Then, by Cotlar’s inequality it is clear that
T∗,δ is bounded in Lp(µ), p ∈ (1,∞), uniformly on δ > 0. Hence, by monotone
convergence, T∗ is also bounded in Lp(µ), p ∈ (1,∞). The boundedness of T∗ from
M(Rd) into L1,∞(µ) follows as in the classical doubling case, using Kolmogorov’s
inequality and taking into account that the non centered version of the maximal
operator M̃µ (which is Nµ) is bounded from M(Rd) into L1,∞(µ). See [To2] for the
details. ¤

3.5. The T (1) theorem and other results. Let us introduce some notation and
definitions. Given ρ > 1, we say that f ∈ L1

loc(µ) belongs to the space BMOρ(µ) if

sup
Q

1
µ(ρQ)

∫

Q

|f −mQ(f)| dµ < ∞,

where the supremum is taken over all the squares in Rd and mQ(f) is the µ-mean
of f over Q.

Following [NTV1], a Calderón-Zygmund operator Tµ is said to be weakly bounded
if ∣∣〈Tµ,εχQ, χQ〉

∣∣ ≤ Cµ(Q) for all the cubes Q ⊂ Rd, uniformly on ε > 0.

Notice that if Tµ is antisymmetric, then the left hand side above equals zero and
so Tµ is weakly bounded.

Now we are ready to state the T (1) theorem:

Theorem 8. Let µ be a Radon measure on Rd of degree n, and let T be an n-
dimensional Calderón-Zygmund operator. The following conditions are equivalent:

(a) Tµ is bounded on L2(µ).
(b) Tµ is weakly bounded and, for some ρ > 1, we have that Tµ,ε(1), T ∗µ,ε(1) ∈

BMOρ(µ) uniformly on ε > 0.
(c) There exists some constant C3 such that for all ε > 0 and all the cubes

Q ⊂ Rd,

‖Tµ,εχQ‖L2(µ|Q) ≤ C3µ(Q)1/2 and ‖T ∗µ,εχQ‖L2(µ|Q) ≤ C3µ(Q)1/2.

The classical way of stating the T (1) theorem is the equivalence (a) ⇔ (b).
However, for some applications it is sometimes more practical to state the result in
terms of the L2 boundedness of Tµ and T ∗µ over characteristic functions of cubes,
i.e (a) ⇔ (c).
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Theorem 8 is the extension of the classical T (1) theorem of David and Journé
to measures of degree n which may be non doubling. The result was proved by
Nazarov, Treil and Volberg in [NTV1], although not exactly in the form stated
above. An independent proof for the particular case of the Cauchy transform was
obtained almost simultaneously in [To1]. For the equivalence of conditions (b) and
(c) above, the reader should see [To6, Remark 7.1 and Lemma 7.3]. Other (more
recent) proofs of the T (1) theorem for non doubling measures are in [Ve2] (for the
particular case of the Cauchy transform) and in [To6].

Let us remark that the boundedness of Tµ on L2(µ) does not imply the bounded-
ness of Tµ from L∞(µ) into BMO(µ) (this is the space BMOρ(µ) with parameter
ρ = 1), and in general Tµ,ε(1), T ∗µ,ε(1) 6∈ BMO(µ) uniformly on ε > 0. See [Ve2]
and [MMNO]. On the contrary, one can show that if Tµ is bounded on L2(µ), then
it is also bounded from L∞(µ) into BMOρ(µ), for ρ > 1, by arguments similar to
the classical ones for homogeneous spaces. However, the space BMOρ(µ) has some
drawbacks. For example, it depends on the parameter ρ and it does not satisfy the
John-Nirenberg inequality. To solve these problems, in [To3] a new space called
RBMO(µ) has been introduced. RBMO(µ) is a subspace of BMOρ(µ) for all
ρ > 1, and it coincides with BMO(µ) when µ is an AD-regular measure. More-
over, RBMO(µ) satisfies a John-Nirenberg type inequality, and all CZO’s which
are bounded on L2(µ) are also bounded from L∞(µ) into RBMO(µ). For these
reasons RBMO(µ) seems to be a good substitute of the classical space BMO for
non doubling measures of degree n. For the precise definition of RBMO(µ) and its
properties, see [To3].

Much more results on Calderón-Zygmund theory with non doubling measures
have been proved recently. For example, several T (b) type theorems have been
obtained in [DM], [Dd4], [NTV3], [NTV4], [NTV5]. There are also results concern-
ing Hardy spaces [To5]; weights [GCM1], [MM], [OP]; commutators [CS], [HMY2],
[To3]; multilinear commutators [HMY1]; fractional integrals [GCM2], [GCG1]; Lip-
schitz spaces [GCG2]; Triebel-Lizorkin spaces [HY]; etc.

4. Analytic capacity

4.1. Definition. The analytic capacity of a compact set E ⊂ C is

(21) γ(E) := sup |f ′(∞)|,
where the supremum is taken over all analytic functions f : C\E−→C with |f | ≤ 1
on C \ E, and f ′(∞) = limz→∞ z(f(z)− f(∞)).

The notion of analytic capacity was introduced by Ahlfors [Ah] in the 1940’s in
order to study the removability of singularities of bounded analytic functions. A
compact set E ⊂ C is removable for bounded analytic functions if for any open set
Ω containing E, every bounded function analytic on Ω\E has an analytic extension
to Ω. Ahlfors showed that E is removable if and only if γ(E) = 0.

Painlevé’s problem consists of characterizing removable singularities for bounded
analytic functions in a metric/geometric way. By Ahlfors’ result this is equivalent
to describe compact sets with positive analytic capacity in metric/geometric terms.

Vitushkin in the 1950’s and 1960’s showed that analytic capacity plays a central
role in problems of uniform rational approximation on compact sets of the complex
plane. Many results obtained by Vitushkin in connection with uniform rational
approximation are stated in terms of γ. See [Vi2], or [Ve1] for a more modern
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approach, for example. Further, because its applications to this type of problems
he raised the question of the semiadditivity of γ. Namely, does there exist an
absolute constant C such that

γ(E ∪ F ) ≤ C(γ(E) + γ(F )) ?

4.2. Basic properties of analytic capacity. One should keep in mind that, in
a sense, analytic capacity measures the size of a set as a non removable singularity
for bounded analytic functions. A direct consequence of the definition is that

E ⊂ F ⇒ γ(E) ≤ γ(F ).

Moreover, it is also easy to check that analytic capacity is translation invariant:

γ(z + E) = γ(E) for all z ∈ C.

Concerning dilations, we have

γ(λE) = |λ|γ(E) for all λ ∈ C.

Further, if E is connected, then

diam(E)/4 ≤ γ(E) ≤ diam(E).

The second inequality follows from the fact that the analytic capacity of a closed
disk coincides with its radius, and the first one is a consequence of Koebe’s 1/4
theorem (see [Ga, Chapter VIII] for the details, for example).

4.3. Relationship with Hausdorff measure. The relationship between Haus-
dorff measure and analytic capacity is the following:

• If dimH(E) > 1 (here dimH stands for the Hausdorff dimension), then
γ(E) > 0. This result follows easily from Frostman’s Lemma.

• γ(E) ≤ H1(E), where H1 is the one dimensional Hausdorff measure, or
length. This follows from Cauchy’s integral formula, and it was proved
by Painlevé about one hundred years ago. Observe that, in particular we
deduce that if dimH(E) < 1, then γ(E) = 0.

By the statements above, it turns out that dimension 1 is the critical dimension in
connection with analytic capacity. Moreover, a natural question arises: is it true
that γ(E) > 0 if and only if H1(E) > 0?

Vitushkin showed that the answer is no. Indeed, he constructed a compact set
in C with positive length and vanishing analytic capacity. This set was purely
unrectifiable. That is, it intersects any rectifiable curve at most in a set of zero
length. Motivated by this example (and others, I guess) Vitushkin conjectured that
pure unrectifiability is a necessary and sufficient condition for vanishing analytic
capacity, for sets with finite length.

Guy David [Dd4] showed in 1998 that Vitushkin’s conjecture is true:

Theorem 9. Let E ⊂ C be compact with H1(E) < ∞. Then, γ(E) = 0 if and only
if E is purely unrectifiable.

Let us remark that the “if” part of the theorem is not due to David (it fol-
lows from Calderón’s theorem on the L2 boundedness of the Cauchy transform on
Lipschitz graphs). The “only if” part of the theorem, which is more difficult, is
the one proved by David. See also [MMV], [DM] and [Lé] for some preliminary
contributions to the proof.
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Theorem 9 is the solution of Painlevé’s problem for sets with finite length. The
analogous result is false for sets with infinite length. For this type of sets there is
no such a nice geometric solution of Painlevé’s problem, and we have to content
ourselves with a characterization such as the one in Corollary 18 below (at least,
for the moment).

4.4. The capacity γ+ and the Cauchy transform. The capacity γ+ of a com-
pact set E ⊂ C is

(22) γ+(E) := sup{µ(E) : supp(µ) ⊂ E, ‖Cµ‖L∞(C) ≤ 1}.
That is, γ+ is defined as γ in (21) with the additional constraint that f should
coincide with Cµ, where µ is some positive Radon measure supported on E (observe
that (Cµ)′(∞) = −µ(C) for any Radon measure µ). To be precise, there is another
little difference: in (21) we asked ‖f‖L∞(C\E) ≤ 1, while in (22) ‖f‖L∞(C) ≤ 1 (for
f = Cµ). Trivially, we have γ+(E) ≤ γ(E).

The following lemma relates weak (1, 1) estimates for the Cauchy integral oper-
ator with L∞ estimates (which in its turn are connected with γ+ and γ).

Lemma 10. let µ be a Radon measure with linear growth on C. The following
statements are equivalent:

(a) The Cauchy transform is bounded from M(C) into L1,∞(µ).
(b) For any set A ⊂ C there exists some function h supported on A, with

0 ≤ h ≤ 1, such that
∫

h dµ ≥ C−1µ(A) and ‖Cε(h dµ)‖L∞(C) ≤ C for all
ε > 0.

The constant C in (b) depends only on the norm of the Cauchy transform is bounded
from M(C) into L1,∞(µ), and conversely.

This lemma is a particular case of a result which applies to more general linear
operators. The statement (b) should be understood as a weak substitute of the
L∞(µ) boundedness of the Cauchy integral operator, which does not hold in general.

We will prove the easy implication of the lemma, that is, (b) ⇒ (a). For the
other implication, which is due to Davie and Øksendal [DØ] the reader is referred
to [Ch, Chapter VII].

Proof of (b) ⇒ (a). It is enough to show that for any complex measure ν ∈ M(C)
and any λ > 0,

µ{x ∈ C : Re(Cεν(x)) > λ} ≤ C‖ν‖
λ

.

To this end, let us denote by A the set on the left side above, and let h be a function
supported on A fulfilling the properties in the statement (b) of the lemma. Then
we have

µ(A) ≤ C

∫
h dµ ≤ C

λ
Re

(∫
(Cεν)h dµ

)
=
−C

λ
Re

(∫
Cε(h dµ) dν

)
≤ C‖ν‖

λ
.

¤

Remark 11. Notice that if E supports a non zero Radon measure µ with linear
growth such that the Cauchy integral operator Cµ is bounded on L2(µ), then there
exists some nonzero function h with 0 ≤ h ≤ χE such that ‖Cε(h dµ)‖L∞(C) ≤ C
uniformly on ε, by Theorem 3 and the preceding lemma. Letting ε → 0, we infer
that |C(h dµ)(z)| ≤ C for all z 6∈ E, and so γ(E) > 0.
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A more precise result will be proved in Theorem 14 below.

4.5. The curvature of a measure. Given three pairwise different points x, y, z ∈
C, their Menger curvature is

c(x, y, z) =
1

R(x, y, z)
,

where R(x, y, z) is the radius of the circumference passing through x, y, z (with
R(x, y, z) = ∞, c(x, y, z) = 0 if x, y, z lie on a same line). If two among these points
coincide, we let c(x, y, z) = 0. For a positive Radon measure µ, we set

c2
µ(x) =

∫ ∫
c(x, y, z)2 dµ(y)dµ(z),

and we define the curvature of µ as

(23) c2(µ) =
∫

c2
µ(x) dµ(x) =

∫ ∫ ∫
c(x, y, z)2 dµ(x)dµ(y)dµ(z).

The notion of curvature of measures was introduced by Melnikov [Me] when he was
studying a discrete version of analytic capacity, and it is one of the ideas which is
responsible of the big recent advances in connection with analytic capacity. The
notion of curvature is connected to the Cauchy transform by the following result,
proved by Melnikov and Verdera.

Proposition 12. Let µ be a Radon measure on C with linear growth. We have

(24) ‖Cεµ‖2L2(µ) =
1
6
c2
ε(µ) + O(µ(C)),

where c2
ε(µ) is the ε-truncated version of c2(µ) (defined as in the right hand side of

(23), but with the triple integral over {x, y, z ∈ C : |x− y|, |y− z|, |x− z| > ε}), and
|O(µ(C))| ≤ Cµ(C).

The identity (24) is remarkable because it relates an analytic notion (the Cauchy
transform of a measure) with a metric-geometric one (curvature). We give a sketch
of the proof.

Sketch of the proof of Proposition 12. If we don’t worry about truncations and the
absolute convergence of the integrals, we can write

‖Cµ‖2L2(µ) =
∫ ∣∣∣∣

∫
1

y − x
dµ(y)

∣∣∣∣
2

dµ(x) =
∫∫∫

1
(y − x)(z − x)

dµ(y)dµ(z)dµ(x).

By Fubini (assuming that it can be applied correctly), permuting x, y, z, we get,

‖Cµ‖2L2(µ) =
1
6

∫∫∫ ∑

s∈S3

1
(zs2 − zs1)(zs3 − zs1)

dµ(z1)dµ(z2)dµ(z3),

where S3 is the group of permutations of three elements. An elementary calculation
shows that ∑

s∈S3

1
(zs2 − zs1)(zs3 − zs1)

= c(z1, z2, z3)2.

So we get

‖Cµ‖2L2(µ) =
1
6

c2(µ).
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To argue rigorously, above one should use the truncated Cauchy transform Cεµ
instead of Cµ. Then we obtain

‖Cεµ‖2L2(µ) =
∫∫∫

|x−y|>ε
|x−z|>ε

1
(y − x)(z − x)

dµ(y)dµ(z)dµ(x)

=
∫∫∫

|x−y|>ε
|x−z|>ε
|y−z|>ε

1
(y − x)(z − x)

dµ(y)dµ(z)dµ(x) + O(µ(C)).(25)

By the linear growth of µ, it is easy to check that |O(µ(C))| ≤ µ(C). As above,
using Fubini and permuting x, y, z, one shows that the triple integral in (25) equals
c2
ε(µ)/6. ¤

Due to Proposition 12, the T (1) theorem for the Cauchy transform can be rewrit-
ten in the following way:

Theorem 13. Let µ be a Radon measure on C with linear growth. The Cauchy
transform is bounded on L2(µ) if and only if

c2(µ|Q) ≤ Cµ(Q) for all the squares Q ⊂ C.

Observe that this result is a restatement of the equivalence (a) ⇔ (c) in Theorem
8, by an application of (24) to the measure µ|Q, for all the squares Q ⊂ C.

5. Semiadditivity of γ+ and its characterization in terms of
curvature

We denote by Σ(E) the set of Radon measures supported on E such that
µ(B(x, r)) ≤ r for all x ∈ C, r > 0.

Theorem 14. For any compact set E ⊂ C we have

γ+(E) ≈ sup
{
µ(E) : µ ∈ Σ(E), ‖Cεµ‖L∞(µ) ≤ 1∀ε > 0

}

≈ sup
{
µ(E) : µ ∈ Σ(E), ‖Cεµ‖2L2(µ) ≤ µ(E) ∀ε > 0

}

≈ sup
{
µ(E) : µ ∈ Σ(E), c2(µ) ≤ µ(E)

}

≈ sup
{
µ(E) : µ ∈ Σ(E), ‖Cµ‖L2(µ),L2(µ) ≤ 1

}
.

In the statement above, ‖Cµ‖L2(µ),L2(µ) stands for the operator norm of Cµ on
L2(µ). That is, ‖Cµ‖L2(µ),L2(µ) = supε>0 ‖Cµ,ε‖L2(µ),L2(µ).

Proof. We denote

S1 := sup
{
µ(E) : µ ∈ Σ(E), ‖Cεµ‖L∞(µ) ≤ 1∀ε > 0

}
,

S2 := sup
{
µ(E) : µ ∈ Σ(E), ‖Cεµ‖2L2(µ) ≤ µ(E)∀ε > 0

}
,

S3 := sup
{
µ(E) : µ ∈ Σ(E), c2(µ) ≤ µ(E)

}
,

S4 := sup
{
µ(E) : µ ∈ Σ(E), ‖Cµ‖L2(µ),L2(µ) ≤ 1∀ε > 0

}
.

We will show that γ+(E) . S1 . S2 . S3 . S4 . γ+(E). The inequality S3 . S4

requires more work than the others. We will give two proofs of it. One uses the
T (1) theorem and the other not (and so it is more elementary).

Proof of γ+(E) . S1. Let µ be supported on E such that ‖Cµ‖L∞(C) ≤ 1 with
γ+(E) ≤ 2µ(E). It is enough to show that µ has linear growth and ‖Cεµ‖L∞(µ) ≤ C
uniformly on ε > 0.
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First we will prove the linear growth of µ. For any fixed x ∈ C, by Fubini it
turns out that for almost all r > 0,∫

|z−x|=r

1
|z − x| dµ(z) < ∞.

For this r we have

µ(B(x, r)) = −
∫

|z−x|=r

Cµ(z)
dz

2πi
≤ r.

Now the linear growth of µ follows easily.
To deal with the L∞(µ) norm of Cε we use a standard technique: we replace Cε

by the regularized operator C̃ε, defined as

C̃εµ(x) =
∫

rε(y − x) dµ(y),

where rε is the kernel

rε(z) =





1
z

if |z| > ε,

z

ε2
if |z| ≤ ε.

Then, C̃εµ is the convolution of the complex measure µ with the uniformly contin-
uous kernel rε and so C̃εµ is a continuous function. Also, we have

rε(z) =
1
z
∗ χε

πε2
,

where χε is the characteristic function of B(0, ε). Since µ is compactly supported,
we have the following identity:

C̃εµ =
1
z
∗ χε

πε2
∗ µ =

χε

πε2
∗ Cµ.

This equality must be understood in the sense of distributions, with Cµ being a
function of L1

loc(C) with respect to Lebesgue planar measure. As a consequence, if
‖Cµ‖L∞(C) ≤ 1, we infer that ‖C̃εµ‖L∞(µ) ≤ 1 for all ε > 0.

Since µ has linear growth, we have

(26) |C̃εµ(x)− Cεµ(x)| = 1
ε2

∣∣∣∣∣
∫

|y−x|<ε

(y − x)dµ(y)

∣∣∣∣∣ ≤ C,

and so ‖Cεµ‖L∞(µ) ≤ C uniformly on ε > 0.

Proof of S1 . S2. Trivial.

Proof of S2 . S3. This is a direct consequence of Proposition 12.

Proof of S3 . S4 using the T (1) theorem. Let µ supported on E with linear growth
such that c2(µ) ≤ µ(E) and S3 ≤ 2µ(E). We set

A :=
{
x ∈ E : c2

µ(x) ≤ 2
}
.

By Tchebychev µ(A) ≥ µ(E)/2. Moreover, for any set B ⊂ C,

c2(µ|B∩A) ≤
∫∫∫

x∈B∩A

c(x, y, z)2 dµ(x)dµ(y)dµ(z) =
∫

x∈B∩A

c2
µ(x) dµ(x) ≤ 2µ(B).

In particular, this estimate holds when B is any square in C, and so Cµ|A is bounded
on L2(µ|A), by Theorem 13. Thus S4 & µ(A) ≈ S3.
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Proof of S3 . S4 without using the T (1) theorem. Take µ supported on E with
linear growth such that c2(µ) ≤ µ(E) and S3 ≤ 2µ(E). To prove S3 . S4 we will
show that there exists a measure ν supported on E with linear growth such that
ν(E) ≥ µ(E)/4 and ‖Cν‖L2(ν),L2(ν) ≤ C.

Given C4 > 0, let

Aε :=
{
x ∈ E : |Cεµ(x)| ≤ C4 and c2

µ(x) ≤ C2
4

}
.

Since
∫

c2
µ(x) dµ(x) = c2(µ) ≤ µ(E) and, by Proposition 12,

∫ |Cεµ|2 dµ ≤ Cµ(E),
we infer that µ(Aε) ≥ µ(E)/2 if C4 is chosen big enough, by Tchebychev.

We want to show that the Cauchy integral operator Cµ|Aε ,ε is bounded on
L2(µ|Aε

). To this end we introduce an auxiliary “curvature operator”: for x, y ∈ Aε,
consider the kernel k(x, y) :=

∫
c(x, y, z)2 dµ(z), and let T be the operator

Tf(x) =
∫

k(x, y)f(y) dµ(y).

By Schur’s lemma, T is bounded on Lp(µ|Aε
) for all p ∈ [1,∞], because for all

x ∈ Aε,∫
k(x, y) dµ|Aε

(y) =
∫

k(y, x) dµ|Aε
(y) =

∫

y∈Aε

c(x, y, z)2 dµ(y)dµ(z) ≤ c2
µ(x) ≤ C2

4 .

Given a non negative (real) function f supported on Aε, by arguments similar
to the ones in the proof of Proposition 12, we have

4
∫
|Cε(f dµ)|2 dµ =

∫∫∫
|x−y|>ε
|x−z|>ε
|y−z|>ε

c(x, y, z)2f(x)f(y) dµ(x)dµ(y)dµ(z)

− 2Re
∫

(Cεµ) Cε(f dµ) f dµ + O(‖f‖2L2(µ)).

See [Ve2, Lemma 1] for the details, for example. Thus,

(27)
∫
|Cε(f dµ)|2 dµ ≤ 1

4

∣∣〈Tf, f〉∣∣ +
1
2

∫ ∣∣(Cεµ) Cε(f dµ) f
∣∣ dµ + C‖f‖2L2(µ).

To estimate the first term on the right side we use the L2(µ|Aε
) boundedness of T

(recall that supp(f) ⊂ Aε):∣∣〈Tf, f〉∣∣ ≤ ‖Tf‖L2(µ) ‖f‖L2(µ) ≤ C‖f‖2L2(µ).

To deal with the second integral on the right side of (27), notice that |Cεµ| ≤ C4

on the support of f , and so∫ ∣∣(Cεµ) Cε(f dµ) f
∣∣ dµ ≤ C4

∫ ∣∣Cε(f dµ) f
∣∣ dµ ≤ C4‖Cε(f dµ)‖L2(µ)‖f‖L2(µ).

By (27) we get

‖Cε(f dµ)‖2L2(µ) ≤ C‖f‖2L2(µ) +
C4

2
‖Cε(f dµ)‖L2(µ)‖f‖L2(µ),

which implies that ‖Cε(f dµ)‖L2(µ) ≤ C‖f‖L2(µ).
So far we have proved the L2(µ|Aε

) boundedness of Cµ|Aε ,ε. If Aε were indepen-
dent of ε, we would set ν := µ|Aε

and we would be done. Unfortunately this is not
the case and we have to work a little more. We set

Bε :=
{
x ∈ E : |Cε,∗µ(x)| ≤ C5 and c2

µ(x) ≤ C2
5

}
,
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where C5 is some constant big enough (with C5 > C4) to be chosen below. By
Theorem 7 and the discussion above, we know that Cε,∗ is bounded from M(C) into
L1,∞(µ|Aε

) (with constants independent of ε). Thus,

µ
{
x ∈ Aε : |Cε,∗µ(x)| > C5

} ≤ Cµ(E)
C5

.

If C5 is big enough, the right hand side of the preceding inequality is ≤ µ(E)/4 ≤
µ(Aε)/2. Thus, µ(Bε) ≥ µ(E)/4.

We set
B :=

⋂
ε>0

Bε.

Notice that, by definition, Bε ⊂ Bδ if ε > δ and so we have

µ(B) = lim
ε→0

µ(Bε) ≥ 1
4

µ(E).

By the same argument used for Aε, it follows that Cµ|Bε ,ε is bounded on L2(µBε)
(with constant independent of ε), and thus Cµ|B is bounded on L2(µ|B). If we take
ν := µ|B , we are dome.

Proof of S4 . γ+(E). This is a direct consequence of Lemma 10 and the fact that
the L2(µ) boundedness of Cµ implies its boundedness from M(C) into L1,∞(µ), as
shown in Theorem 3. ¤

From the preceding theorem, since the term

sup
{
µ(E) : µ ∈ Σ(E), ‖Cµ‖L2(µ),L2(µ) ≤ 1

}

is countably semiadditive, we deduce that γ+ is also countably semiadditive.

Corollary 15. The capacity γ+ is countably semiadditive. That is, if Ei, i =
1, 2, . . ., is a countable (or finite) family of compact sets, we have

γ+

( ∞⋃

i=1

Ei

)
≤ C

∞∑

i=1

γ+(Ei).

Another consequence of Theorem 14 is that the capacity γ+ can be characterized
in terms of the following potential, introduced by Verdera [Ve2]:

(28) Uµ(x) = sup
r>0

µ(B(x, r))
r

+ c2
µ(x)1/2.

The precise result is the following.

Corollary 16. For any compact set E ⊂ C we have

γ+(E) ≈ sup
{
µ(E) : µ ∈ Σ(E), Uµ(x) ≤ 1∀x ∈ C}

.

The proof of this corollary follows easily from the fact that

γ+(E) ≈ sup
{
µ(E) : µ ∈ Σ(E), c2(µ) ≤ µ(E)

}
,

using Tchebychev. The details are left for the reader.
Let us remark that the preceding characterization of γ+ in terms of Uµ is inter-

esting because it suggests that some techniques of potential theory could be useful
to study γ+. See [To7] and [Ve2].
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6. The comparability between γ and γ+, and related results

6.1. Comparability between γ and γ+. In [To8] the following result has been
proved.

Theorem 17. There exists an absolute constant C such that for any compact set
E ⊂ C we have

γ(E) ≤ Cγ+(E).

As a consequence, γ(E) ≈ γ+(E).

An obvious corollary of the preceding result and the characterization of γ+ in
terms of curvature obtained in Theorem 14 is the following.

Corollary 18. Let E ⊂ C be compact. Then, γ(E) > 0 if and only if E supports
a non zero Radon measure with linear growth and finite curvature.

Since we know that γ+ is countably semiadditive, the same happens with γ:

Corollary 19. Analytic capacity is countably semiadditive. That is, if Ei, i =
1, 2, . . ., is a countable (or finite) family of compact sets, we have

γ
( ∞⋃

i=1

Ei

)
≤ C

∞∑

i=1

γ(Ei).

Notice that, by Theorem 14, to prove Theorem 17 it is enough to show that
there exists some measure µ supported on E with linear growth, satisfying µ(E) ≈
γ(E), and such that the Cauchy transform Cµ is bounded on L2(µ) with absolute
constants. To implement this argument, the main tool used in [To8] is the T (b)
theorem of Nazarov, Treil and Volberg [NTV3]. To apply this theorem, one has to
construct a suitable measure µ and a function b ∈ L∞(µ) fulfilling some suitable
para-accretivity conditions. The construction of µ and b is the main difficulty
which is overcome in [To8], by means of a bootstrapping argument which involves
the potential Uµ of (28).

Let us remark that the comparability between γ and γ+ had been previously
proved by P. Jones for compact connected sets by geometric arguments, very dif-
ferent from the ones in [To8] (see [Pa, Chapter 3]). On the other hand, the case of
Cantor sets was studied in [MTV1]. The proof of [To8] is inspired in part by the
ideas in [MTV1].

Corollary 18 yields a characterization of removable sets for bounded analytic
functions in terms of curvature of measures. Although this result has a definite
geometric flavour, it is not clear if this is a really good geometric characterization.
Nevertheless, in [To10] it has been shown that the characterization is invariant
under bilipschitz mappings, using a corona type decomposition for non doubling
measures. See also [GV] for an analogous result for some Cantor sets.

6.2. Other capacities. In [To9], some results analogous to Theorems 14 and 17
have been obtained for the continuous analytic capacity α. This capacity, intro-
duced by Vitushkin, is defined like γ in (21), with the additional requirement that
the functions f considered in the sup should extend continuously to the whole com-
plex plane. In particular, in [To9] it is shown that α is semiadditive. This result
has some nice consequences for the theory of uniform rational approximation on
the complex plane. For example, it implies the so called inner boundary conjecture.
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Volberg [Vo] has proved the natural generalization of Theorem 17 to higher
dimensions. In this case, one should consider Lipschitz harmonic capacity instead
of analytic capacity (see [MP] for the definition and properties of Lipschitz harmonic
capacity). The main difficulty arises from the fact that in this case one does not
have any good substitute of the notion of curvature of measures, and then one has
to argue with a potential very different from the one defined in (28). See also [MT]
for related results which avoid the use of any notion similar to curvature.

The techniques in Theorem 17 have also been used by Prat [Pr] and Mateu, Prat
and Verdera [MPV] to study the capacities γα associated to α-dimensional signed
Riesz kernels with α non integer:

k(x, y) =
y − x

|y − x|α+1
.

In [Pr] it is shown that sets with finite α-dimensional Hausdorff measure have
vanishing capacity γα when 0 < α < 1. Moreover, for these α’s it is proved in
[MPV] that γα is comparable to one of the non linear Wolff’s capacities. The case
of non integer α with α > 1 seems much more difficult to study, although in the
AD regular situation some results have been obtained [Pr]. The results in [Pr] and
[MPV] show that the behavior of γα with α non integer is very different from the
one with α integer.
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