THE 71 THEOREM

V. CHOUSIONIS AND X. TOLSA

INTRODUCTION

These are the notes of a short course given by X. Tolsa at the Universitat Autono-
ma de Barcelona between November and December of 2012. The notes have been
typed by V. Chousionis.

We present a “dyadic proof” of the classical T'1 theorem of David and Journé. We
have preferred to state the T'1 theorem in terms of the boundedness over characteris-
tic functions of cubes rather than in terms of the typical conditions 71,7*1 € BMO,
which is the usual approach in the literature. Nevertheless, no attempt at originality
is claimed.

The notation used below is standard. We use the shortcuts LP or C*° for LP(R")
or C*°(R"), as well as other analogous terminology. As usual, the letter C' denotes
some constant that may change its value at different occurrences, and typically
depends on some absolute constants and other fixed parameters.

1. STATEMENT AND REDUCTIONS

A kernel K : R" x R"\ {(z,y) : « = y} — R is called Calderén-Zygmund
standard, or simply standard, if there exist constants C, d > 0 such that for all
distinct z,y € R™ and for all 2’ such that |z — 2| < @,

(i) [K(z,y)] <

|z —y|"

110
(i) |K(z,y) — K(«', y)| + [K(y,z) + K(y,2)[ < C |

|z —x
‘.Z' _ y‘n+6 ’
From now on K will always denote a standard kernel.

Given a function f € C§° we define

Tf(z) = / K(e.y)f(y)dy for = & supp(f).

We then say that 7" is Calderén-Zygmund operator (CZO) with kernel K(-,-). If
f € LP, for some 1 < p < oo, we define the truncated singular integrals T, associated
with the standard kernel K by
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The operator T is said to be bounded in L? if there exists some constant C' not
depending on ¢ such that

IT-(F)ll2 < Cllf2

for all f € L?. The definition of the L? boundedness of T in terms of the truncated
operators 1. is convenient because it avoids the delicate question of the existence of
principal values for T'f.

By T* we denote the CZO associated with the kernel K (z,y) = K (y, x), further-
more it holds that, for f,g € C§°,

(T2f.9) = (. Teg).
The following theorem provides checkable criteria for the L?-boundedness of CZO’s.
Theorem 1 (David-Journé). Let T be a CZO as above. Then T is bounded in L?

if and only if there exists some constant C' > 0 such that
(i) sup.. | Texqllz < Cm(Q)'/?
(i) sup.sg [ T2xqll2 < Cm(Q)?
for all cubes Q.
The first step consists of regularizing the kernel. We define a function ¢ : R —
R, ¢ € C*, 0 < ¢ <1, such that ¢ = 01in [-1/2,1/2] and ¢ = 1 in R\ [-1,1].
Given the function ¢ we regularize the kernel K at level € by

K.(x,y) = K(z,y)¢ (@) :

Notice that K.(z,y) = K(z,y) when |z —y| > ¢ and K.(x,y) = 0 when |z —y| < 5.
It follows easily that K is also a standard kernel with constants not depending on
e. Next we consider the operators associated to K.

T f(x) = / R, 9) f(y)dy.

Notice that, for K.(z,y) = K(2,y)X (> (|2 — ¥|),

Tf(0) - Tof(a)] < / K.(z,y) — K-(2,9)IIf )|y

5<|z—yl<e
< C
~ (e/2)
where M denotes the usual Hardy-Littlewood maximal operator. Since M is bounded
in LP for all 1 < p < oo we deduce that T, is bounded in LP, uniformly on ¢, if and

only if the operators T, are bounded in LP uniformly on ¢.
In the same manner, for R > 2¢, we can define the kernels

S ) [ () P

/| |y < CM )




THE 71 THEOREM 3

and the corresponding operators

T nf(z) = / K. pl,y) f(y)dy.

Since R > 2¢ it follows that i, R = i — TR therefore if 7, »: LP — LP is bounded
for all € > 0 then 7. i is bounded as well for all positive R, e such that R > 2e.

Furthermore, if i’ r is bounded in L? uniformly on ¢ and R, then i is bounded
uniformly on e. To see this, let f € L? and write

T.f(z) = Torf(x) + Trf(z).

Further, taking into account that

[ 1Rl < ( / |f<5<x,y>\2dy) - ( / If(y)\2)1/2 <),

it follows that
Taf@|< [ |Rlon)f@ldy >0 as R
lz—y|>R/2
Then, by the dominated convergence theorem we deduce that, for any M > 1,
IT- fll 200y = lim || T2 rfllz2Boan < sup [Tz f|o-
R—oo R>2¢
Since this estimate is uniform on M, our claim is proven.
To summarize, if
IToxell: < Cm(Q)'? and || TZ xolls < Cm(Q)'?
for all cubes @) uniformly on ¢, we also have that
1T rxall: < C'm(Q)* and ||TZ pxall2 < C'm(Q)"/?

for all cubes () uniformly on ¢ and R. By the discussion above, the proof will be
complete if we show that the above condition implies that 7. g : L? — L?is bounded
uniformly on € and R.

Hence it is enough to prove the following.

Theorem 2 (Reduced restatement of Theorem 1). Let K be a standard Calderén-
Zygmund kernel satisfying ||K||o < Cp and K(x,y) = 0 whenever |z — y| > R for
some R > 0. Let T be the associated integral operator:

Tf(x) = /K(x,y)f(y) dy for f €L € R™. (1)

If furthermore

(i) [ITxqll2 < C1m(Q)"? and

(i) [T*xqllz < Cim(Q)"?
for all cubes @, then ||T|[2-z> < Cy with Oy depending on C; but independent of
Co and R.
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Remark that in (1) we assume the identity to hold for all x € R", not only for
x away from suppf. Indeed, the above assumptions on the kernel ensure that the
integral that defines T'f(z) is absolutely convergent for all x € R" and f € LP,
I <p<oo:

1/p
[i swlas =i, ([ iseara) T <cmrc, <
z—y|<R
Further, the fact that
/|K(a:,y)|dy <CCyR"<oo foralzxeR"

and the analogous estimate interchanging x and y guaranty that 7" is bounded in
L?. Indeed, for f € L,

\ﬂMMs/mwwww@gmu/mmmw
< CCy R [[fllw.

and analogously for the L' bound. By interpolation, we get the LP boundedness
of T for all p € [1,00], and in L? in particular. Clearly, the bound we obtain for
|T|| 12— 12 in this way depends on Cj and R. To prove the theorem, our objective is
to obtain some bound for ||T'||z2_. 2 independent of Cy and R.

2. THE OPERATORS A

Let D denote the family of dyadic cubes of R™ and let Dy C D be the subfamily
of dyadic cubes with side length [(Q) = 27%. For Q € D and f € L} we define

0 if x ¢ Q,
mpf —mgf ifx € P and P is ason of @,

loc

Agf(r) = {

where mq f is the average of f on (). The following proposition gathers several
elementary but useful properties of the operators Ag.

Proposition 3. For Q,R€ D and f € L},

(1) suppAqf C Q,

(2) Ag is constant in every son of @),

(3) [Aqf =0,

(4) (AQf ARg> = 0 whenever ) # R,

(5) O AQ = AQ

(6) AQ L? — L? is bounded and Aj = Ay.

For simplicity from now on we will denote || - ||z := || - ||.

Proposition 4. If f € L? then f = Zer Agqf, the convergence is unconditional
in L? and moreover [|f[* = 3" ocp 1Aq fI1*.
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Proof. The essential step consists in showing that
DA P < IIfIP (2)
QeD

To see this, let F' C D be finite and set g = f — > _ocp Agf. Then g L Y- Agf
because by (4),(5) and (6) of Proposition 3:

(F=D 00fD>  Af) =D (1 A0f) =Y (Agf, Agf) = 0.

QEF QeF QeF QeF
Hence || f[I* = [lg]* + X ger 1A f]]? and
> Ao fI? < IFI
QEF

Therefore since this holds for any finite subset F' C D, (2) follows.

Now we order D = {Q1, @2, ... } and we have to prove that lim,, oo > oo Ao, f =
fin L?. First we let A = UgenAy, where Ay, are the classes of functions with compact
support such that they are constant on some dyadic cube in D, and furthermore
they have zero mean on each orthant. Then we notice that the result is true for the
class of functions A and furthermore A is dense in L2.

For any € > 0 and all f € L? there exists a function g € A such that || f —g|| < e.
We write D" Ag, f=> 0 Do, (f—g)+ D> 10, Ag,g and we deduce using (2) that

F=Y A f|[ < If =gl +lg= > Al + D Aqlg— f)‘
i=1 i=1 i=1

" " 1/2
=If=gll+|g->_ Al + (Z 1Aq, (g — f)\|2)

i=1 i=1
<2 f =gl +1{lg— Ay

i=1
<2+ g_ZAQig y

i=1
and the proof is complete after letting m — oc. O

3. PROOF OF THE T'1 THEOREM

We will prove that
(T f, 9 < CllfIIgll, (3)
for f = ZQeFl Agf, g = ZQ€F2 Agg for finite Fy, F, C D and a constant C' not

depending on f or g. Then by Proposition 4, (3) holds for all f, g € L? and Theorem
2 follows, taking into account that ||T||z2_,72 < oo by assumption.
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We have
(Tf.9)= >, (TAqf Arg).
QEF,REF,
We then observe the following two easy facts: first,
1A fI1? = [AgfllZm(Q) (4)
and, second,
IT(A /)l < CllAgfIl. (5)

To see (4), suppose that Q = U2, P, where P, are the sons of Q and let ¢; =
mp,f —mgqf. Then,

2/"/
m(Q)
80f17 = [ 1807 = o m(R)c =52 3"t
i=1 ;
and because ||Ag f|lco = maxc¢;, we get
1
@A % < 12/ I° < m@)1Aef 1%
Using assumption (i) of Theorem 2, (5) follows analogously.

In the following we prove an auxiliary lemma which deals with the case when two
cubes are far each other.

Lemma 5. Let two functions ¢g, 1p be such that supppg C Q, suppir C R, g, ¥r €
L', [ ¢q = 0 and d(Q,suppyg) > 1(Q). Then,

10
d(Q sé§;¢R)5+n||‘PQHl||¢R||1
|<T§0vaR>| < (6)
(Q)°
d(Q, suppy'r)

Proof. Let z¢ be the center of Q. Using that K is a standard kernel and [ g =0
we get

slleallllvalleo-

(T, ¥r)| = ‘/ (/K(x,y)@Q(x)@bR(y)dx) dy’
- ‘/ (/(K(“/) - K(xvﬂiQ))@cz(y)wR(y)dy) da

<c Iy =zal’) )l
- yeq, |z — y|nto
TESUPPYR
1Q)°

< .
- d(Q,Suppr)(H-nngQuleRHl

To complete the proof of the lemma notice that for z € Q) and y € R,
[z —y| < | —y[ +UQ) < |z —y| + d(Q,suppyr) < 2|z —yl.
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Therefore,
o E oyl
1
<O Npalilnlee [ ey
o folllnl

The last inequality follows because f‘ dy < d7? for all d > 0. This

—y|>d |zg— yl”*“
can be checked by integrating on annuh for instance,

1
i / T
/Ist y|>d |$Q - ?J| o Z B(zq,2+1d)\B(zq,2id |$Q — y[m o
(d2+yr 2 SN 1Y
— d2z n+é E ‘ (5)

1=0
< Cd s,

Now we do the following splitting:
Y (TAgf,Arg)= >, (TAqf,Arg)

QEF,ReEF> QEF1,REF,,
UQ)SUR)

QEF1,REF,,
HQ)>U(R)

- Sl ‘I— SQ.
We are going to bound 57, the boundedness of Sy follows analogously. We consider
the following three cases for @, R € D such that [(Q) < I(R):
(1) d(U;0P;, Q) < I(Q)"I(R)*™" where the P;’s are the sons of R,

(2) d(Q, R) > U(Q)"I(R)'
(3) d(Q,U;0P) > I(Q)I(R)' " and Q € R,

where v = m.
We will use the notation (Q, R) € (1) if @, R satisfy (1) and so on. We have

Si< Y (Tl Argl+ S (TAqf. Arg)| +
(Q,R)e(1) (Q,R)€(2)

Z (TAqf, ARQ)‘

(Q,R)E(3)

and we will bound each of the three previous terms separately.
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3.1. Estimates for (Q, R) € (1). First observe that

n/2
(TBof. Arg)l < CllAQIAng] (%) .

To see this, let
%13 = ARrgxsq- and %23 = Argxsq-
Since d(suppt'k, Q) > 1(Q), by Lemma 5, Holder’s inequality and (4) we obtain

(TAf vr)] < ClAQfIh YRl
< CllAQf 11 ARlso
< CAgflIm(Q)! || Arglm(R)~

n/2
— ClaofllArg] (%) |

Furthermore, by (4), Holder’s inequality and (5)

(TAof, 43| < ClARglle / TAof)
3Q
< C||Arg|m(R)"*m(3Q) | TAq f]]
< O\ Argllm(R)2m(Q) ]| A

n/2
— CllaoflllArgl (%) |

Therefore (7) is proved.

Lemma 6. We have

n/2
S Aas Al (ﬁ%) < O fllgll

(@Q,R)e(1) )

Proof. By Cauchy-Schwarz,

n/2 n/2
S Iserliaml (75) = X iaesl > Iawl (53)

(Q,R)e(1) QeD R:(Q,R)€(1)

1/2 2
(Q\"?
< 1A f|!2> ( ( 1ARIN ) ))
(QED ¢ C;? R:(Q,ZR)G(l) (Z(R))

o\ 1/2
Q) "/2) )
<11 Iangl (1)
(Q;’ (R:(QZR)G(U (Z(R)>

1/2
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Thus we only need to show that

2\ 1/2

/2
DS HARgH(%) < lgll ®)
(1)

QeD \ R:(Q,R)e(1
We start with the following trick: we rewrite
@\ QN (UQ)N?
> lArgl (m) = > Azl 1(R) I(R)
R:(Q,R)e(1) R:(Q,R)e(1)

where ¢ is some small number to be chosen later. Now we apply Cauchy-Schwarz
and we get

2\ 1/2

S S A (%)W

QeD \ R:(Q,R)e(1)

(2| X (i) )X (G8)

QED \ R:(Q,R)e(1) R:(Q,R)e(1)

1/2

For (Q, R) € (1) we have that d(U;0P;, Q) < [(R), where the P,’s are the sons of
R. Now notice that for a fixed cube ) € D, and k € N,

H{ReD:(Q,R) e (1)and I(R) =2"1(Q)} < C

where C' only depends on n, the dimension of the space. If Rq is the dyadic cube
which contains @ and has length 2%/(Q), then C' is smaller than (3" — 1) which is
the cardinality of the set of the neighbors of all neighbors of Rgy. Thus,

Z(Q) DI
> =2 > i <
R:(Q,R)€(1) ( ) keN R:(Q,R)e(1 <Z(R keN

I(R)= 2’%(@)

Furthermore, by Fubini,

Z(Q) n—e l(Q) n—e

> > Argl® (5 = > [l Argl? > o

I(R) I(R)
QED \ R:(Q,R)E(1) ReD Q:(Q.R)e(1)

Hence in order to prove (8) and thus settle the proof, we only need to show that

s ()=

Q:(Q,R)e(1)
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To prove this we split again:

L) 2z (@) (@)

N ke Q)
= = ()
l(Q —2- kl(R)
Let dj, = 2-27™I(R), and for A C R" denote
Ny, (A) = {x : there is a € A such that d(a,y) < di}.
Then for R € D fixed
WHQED: (Q R) € (1), [(Q) = 2 *(R)} € Ny (UidP),
where P; are the sons of R. Therefore,
Sy ([9) -y 29
wel z?é(fi’f—)fz%} ( < I?Q()Q f‘kl(R) )
<3 g (Ndk (UidF;))

keN )

<022k5dk

keN

<C Z ok(e=7)

keN

Hence if we choose € = /2 the proof of (9) is complete and we are done.

Combining (7) and Lemma 6 we derive the desired estimate

> UTAqf, Arg)l < Clf gl
@R

3.2. Estimates for (Q,R) € (2). In this subsection we are going to show that
Z(Q ree (TAqf, Arg)| < [[flllg]]. We start with an auxﬂlary lemma. As usual if

I is an mdex set, (2(I) = {(zi)ier : v; € Rand Y, ;27 < oo}.

Lemma 7 (Schur’s lemma). Let I be some set of indices, and for each i € I a
number w; > 0. Suppose that, for some constant a > 0, the matrix {7} ;}; jer

satisfies
E T} ;] w; <aw; for each ¢
J
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and
Z T} j]w; < aw; for each j.

Then, the matrix {7} ;}; jer defines a bounded operator in ¢*(I) with norm < a.
Proof. Let {xi}ier € (*(I), and set y; = > .., Tijx;. We intend to show that
Soilvil? < a? > |x]?. So we write
(Tgllasl = (T2 i) (1Tos V2 w0 [a5]),
and then by Cauchy-Schwarz,
P < (Sl ) (S rulur k) < aw X Tl o
jel jel jeI

Summing on ¢ and interchanging the sums, we get
Sl <ad Y ITilwiw; agl < a®
i i j
O
For (@, R) € (2) we have that d(Q,0R) > I(Q) hence by Lemma 5 and Cauchy-

Schwarz we have

ey

d(Q, R)(H—n
1(Q)° 1/2 1/2

T (@ m(R) 2ol

We denote D(Q, R) = 1(Q) + I(R) + d(Q, R). It then follows that
QP HQIPUR)
d(Q, R ~ 7 D(Q,R)"+
To prove (10) we consider two cases. If d(Q, R) > I(R) then D(Q, R) < 3d(Q, R)
<

(TAqf, Arg)| < C 1A fIlL[[Arglly

<C

(10)

and furthermore 1(Q)? < I(Q)%/?1(R)%? hence (10) follows. If d(Q, R) (R) then
D(Q, R) < 3l(R) and recalling that for (Q, R) € (2), d(Q,R) > 1(Q)I(R)',
Z(Q)é - l(Q)é B l( )5 'yn+5l R)*y (n+9)
d(Q7R>n+5 = Z(Q) y(n+6)] ( ) Y (n+s) Z(R)(n-‘ré)
(Q)21(R)

RGN

as y = (n v Therefore,
(Q)P1(R)

(TAqf, Arg)| < C m(Q)*m(R) 2| Aqfl|Argl. (1)

D(Q’ R)5+n



12 V. CHOUSIONIS AND X. TOLSA

Our goal now is to apply Schur’s Lemma. To this end, consider the matrix (T r)Q,r)c(2)
defined by

§/21( 2\6/2
Tom = o s m(Q) (R

Applying Cauchy-Schwarz in ¢*(I), where I is the index set associated to the set
{(Q,R) € (2)} we get,

2\ 1/2

1/2
S Tonltoflltagl < (S| S Tonltes (ZHARqu)
(Q,R)e(2) R Q:(Q,R)e(2) R
2\ 1/2
= Z Z TorllAgfl llgll-
R Q:(Q,R)e(2)

(12)

Hence we only need to show that

Dol X Tarldesl) <c Z [raveyalis (13)

R \Q:(QR)E(2) (@R)e(2

For Q € D let wg = m(Q)Y2. By Schur’s lemma in order to prove (13) it is enough
to show that

Z TQ7RU)R < CUJQ and Z TQ7RU)Q < CU)R.
R:(Q,R)E(2) Q:(Q,R)e(2)

So it suffices to show that for all () € D,

ZTQ,R'LUR S C’LUQ. (14)

ReD

Remark that in the sum above we do not assume ¢(Q) < ¢(R). We write

§/29k3 5/2
Stomn=Y Y A EQ iy

n+o
kEZ R:I(R)=2%1(Q) D@, R)

kEZ Ril(R)=2*1(Q)
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Let z¢ be the center of ) and denote k; = max(k: 0). Then we have

I(R)"
Z W Z / D(Q, R Do sl

RiI(R)=2%1(Q) =2k1(Q

1
<C X /|xQ—x|+z Qi

Ri(R)=2*1(Q

dx

<C | e

1
=C / dz
( e—zol<2*+u@) ([T — [ + 2 1(Q))"+

1
+ / d;v)
|m—xQ\>2k+l(Q) (’xQ - .Z" + 2k+l(Q)>n+5
=C(L + ).

For I,

. (21(Q))"
= /Icr:—a:Q|§2k+l(Q) (2k+l(Q))n+5d = (2k1(Q))"

+6 = (2k+l(Q))76
and for I, as usual after splitting the set |xg —x| > 28+1(Q) in annuli and integrating
we get

I, < / L dr < ¢

2 X T = .
o—zg|>25+1(q) [T@ — ["F? (2M1(Q))°

Therefore,

l(R)" C
R:I(R)—szcz) D(Q, R)"+° = (2M1(Q))°’

and by (3.2),
> Tomwg < CZ(Q)”/QZTW% < CLQ)".

R:(Q,R)€(2) keZ

3.3. Estimates for (Q,R) € (3). In this subsection we are going to show that
> ree TAof, ARg)) < |IfIlllgll- To this end we need the following discrete
version of the famous embedding theorem of Carleson.

Theorem 8. [Carleson’s Embedding Theorem| Let o be a Radon measure on R™.
Let D be the dyadic lattice from R™ and let {ag}gep be a family of non negative
numbers. Suppose that for every cube R € D we have

Z ag < ca0(R). (15)

QeD:QCR
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Then, every family of non negative numbers {wg}gep satisfies

Z wg ag < cg/sup wq do(x). (16)

QeD Q>z

In particular, if f € L?(o),
> el ag < ceallfllzae), (17)
QeD

where (f),.q = fQ fdo/o(Q) and ¢ is an absolute constant.

Proof. To prove (16), consider the characteristic function defined by x(Q,t) = 1 if
0 <t <wg, and 0 otherwise. Then,

Sugao=Y [Tx@bedi= [ Y x@bagd 03

QeD QeD QeD

For each t > 0, let
o= U @

QED: w>t
Notice that if x(Q,t) = 1, then @ C €, and thus
d x@Qtag< Y ag
QeD QED: QCy

For m > 1, let I, C D be the subfamily of the cubes @ C €, such that ¢(Q) < 2™,
and let J,,, C I,,, be the subfamily of maximal cubes from I,,. Then we have

> ot e ¥ Yo
QED: QC Q€ln R€Jm QCR
By the assumption (15), for all m > 1,
Z Z ag < ¢ Z o(R) < ca0(8),
REJm QCR REJm

and so

Y X(@ t)ag < o ().

QeD
Since Q; coincides with {z € R* : w*(x) > t}, where w*(x) = supgs, wg, by (18)
we obtain .
Z wg ag < cg/ o) = 02/w*(3:) do(x).
QeD 0
To prove the estimate (17), we take wg = |(f)sq|?, and then from (16) we deduce

> WNeel’ ag < eall Moaf 72,
QeD
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where M, 4 is the Hardy-Littlewood maximal dyadic operator with respect to o.
From the L?(0) boundedness (with absolute constants) of this operator, we obtain
(17). O

We now observe that if R is the son of R that contains (), Agg is constant in @
and
AR9|RQ = MRyg —MRY ‘= crq(9)-
Therefore we write,
Arg = Xr\ReARY + crQ(9)XRe = Xm\ReARI + crQ(9) - 1 — cr(9)XRy, -

Hence,

Z (TAof,Arg)| < Z (TAqQf Xr\rRuARY)|
(Q,R)€(3) (Q,R)€(3)

+ Y (TAqf cro@xas)l+| Y. (TAqf crol9)
(Q,R)€(3)
== Al + A2 + Ag.
(19)

We will finish the proof of Theorem 2 by showing that A; < C||f|||lg]| for i = 1,2, 3.
The following lemma deals with A; + A,.

Lemma 9. We have

AtAe = Y (T(Df) xrrgAro)+ Y (TAqf cral9)xry)l < ClIf NIl
(QR)EB) (QREE)

Proof. Regarding Ay, for ¢r := xr\r,ARrY, We have
d(Q, suppyr) > 1(Q)I(R)' .
Reasoning as in the proof of (11) and taking into account that D(Q, R) ~ ¢(R),

l 6/2l R 5/2
(T xmaga)] < OID I

l Q n+d/2
~ (s |80 Il Sngll (20)

We know turn our attention to A,. Since d(R, Q) > 1(Q)"I(R)' ™7, by Lemma 5
applied to pg = Agf and Yr = XRg,, We deduce

Q)
(@)°U(R)

m(Q)'*m(R)"| Aqfl2| Argll:

Q) ) 5(1-) |

(Ao S, xre)| < CldefIh;

= < CllBofIm(@)
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Furthermore by (4),

1ARg]
m(R)/2

Icr@(9)] < |Arglo =

Thus,
] 5(1=7) 1/2
era(o)T8af x| < Claafllandl (i) ()

Together with (20), for ¢ = min(6/2, (1 — 7)), this yields

L ase Y Jaeflial (1D (m@y "

(QR)e(3)
l c 1/2
SO lArgll D2 1Aefl (;gi) (ZEQRD
ReD Q:(Q,R)€(3)
2 12 Q) m 1/2\ 2 1/2
< |ang] 120/l (W) (m )
ReD ReD Q:QCR

— Cllgl (RZ; (Q;RHAQN ( @ ;)/ (%)E/Q (%y) ) 1/2
< gl (Z[Z IIAQfHQ(%)e Lw )

iep loacn ()
where we used twice Cauchy-Schwarz. For a cube R € D let Di(R) = {Q €
Q C R, 1(Q) =27"I(R)}. We then notice that,

> (i) i 2,32, (i)

Q:QCR keEN QeDy(R)
— 2= ke (Q) — 2—k5 < C
IR DU S
keN QEeDi(R) keN

Therefore, by the previous two estimates and Fubini,

N 172
A+ A < Clgl (Z Z ||AQf||2 <%> )

ReD Q:QCR
1/2
l €
_ i) (Z 1207 Y () )
QeD R:RDQ

< C[IfIlgll-
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The last inequality follows, because as previously

T @z = (@) -56) =
I(R)=2"1(Q)

O
Finally we have to estimate Az. Given a cube @ € D, let (R;);en be the increasing
sequence of cubes in D which strictly contain (). Recall that R;; denotes the
son of R; which contains () and notice that Ry = @, Risig = R and since
g = ZReFQ Agrf and F, is a finite set of cubes, there exists some iy and some
F5 C F5 such that
suppg N R;, = Uger,, R.

= Apg =
/Riog Z/RRQ 0

ReF,,
and mpg, g = 0. Furthermore,

Y cralo) =D cry =Y (Mro9 —mr.g)

R2Q i€N ieN

Hence, by Proposition 3,

By the previous observations this sum is telescopic and since mp, g = 0 we get
Z crq(9) = mqg-
R2Q

Now we can estimate:

Y. (TAqficro)l) = D crol9)(TAgf 1)

(QR):R2Q (QR):R2Q
Yy (z cR,Q<g>> T20f 1
QeD \R2Q
= mo(g)(Aqf T*1).
QeD
Furthermore,
> cro(9)(TAgf,1) = cro(@)(TAf. 1) = Y cro(g){TAgf, 1)
(QR)E®B) (QR):R2Q (QR):R2Q,
(QR)¢(3)
= mo(9)(Aof, T°1) = Y crolg){TAgf, 1)
(QR):R2Q (Q,R):R2Q
(QR)¢(3)
=953 — 5,
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Therefore |As| < [Ss5] + |S4], and in order to finish the proof we only need to bound
the terms S3 and Sjy.

Lemma 10. For Sy as in (21) we have

1Sal < CIfIlgll-
Proof. We have,
|54 < > lcra(9)|[(TAq f, 1)]
(Q,R):R2Q,

d(QR)<U(Q)I(R)'~
< > lcrQ(IITAGSI]1-
(Q,R):R2Q,

d(QR)<U(Q)I(R)!~

By the second estimate in (6) and duality, it is clear that
I(TAqf)xearlh < Clagfli < CllAgfIm(Q)"2.
Using Again by Holder’s inequality and (5),
TAqf)xsall < CITAQfIm(@Q)? < CllAqfm(@)' 2.

On the other hand, by (4),

AR
m(R)1/?’

cr@(9)l < [[Arglle ~

So by all the previous estimates

1/2

AnglA M) .
3 Iwlisen (2

(Q,R)€(3)

Now notice that the pairs (@, R) ¢ (3) such that R 2 @ belong to the case (1), and
thus by Lemma 6,

1S4 < C
@

1S4l < Cl flllgll

Finally we need to bound |S3|. By (5) and (6) of Proposition 3,

Sy =Y mag(Bof, T*1) = > mqg(f, Ag(T 1))

QeD QeD

=Y mog(f, Ag(T*1)) = (f, Y mqgAqg(T*1)).

erl QEFl
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Notice that the functions go = mggAg(T*1) are orthogonal, and thus

[Ss| < [(f, D maglo(T V)| < If11|| D magle(T™1)
Qer QEF;
1/2
= [l (Z |ng|2HAQ<T*1)H2> :
Qem
The following lemma settles the case for Ss.
Lemma 11. We have
> ImaglPllAT1]* < CllgP*. (22)
QeD
Proof. By Theorem 8 it suffices to prove that
D AT 1 < Cm(P) (23)

QCP,QeD

for all P € D.
By Proposition 4, since (T*1 — mp(T*1))xp € L?, we have

Yo 2T P = Y AT L — mp(T 1)xp) |

QeD,QCP QeD,QCP

= > IAQUT™ 1 = mp(T*1))xp) |

QeD
= [(T"1 = mp(T"1))xp |

Thus in order to complete the proof it is enough to show that for all P € D,

1

— /P T*1 = mp(T ) < C. (24)

This is equivalent to saying that 7*1 € BMO?, the dyadic BMO space.

Lemma 12. If [|T*x2p||? < Cm(P),

1
—— | |T*1 —mp(T*1)|> < C.
5 [T meryR <0

Proof. We have

71 —=mp(T*1) = T"x2p — mp(T"x2p) + T"X(2P)c — Mp(T"X(2P)c)
= A+ B.
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We first deal with A:

/ |A]? :/ IT*x2p — mp(T*xap)|?
P P

ST xzp|I? 4+ m(P)[mp(T*x2p)|*

But by Holder’s inequality,

1 2
\mP T XzP (m(P ’T sz\)
T xarl?
m(P) X2pP
1
< (C——m(P) =
< Cm(P)m( )=C

Hence,
/ Al < Cm(P).
P
Now we will estimate [, |B|*. The first step is to show that for all 2y, z, € P,

I T"X2p)e (1) — T" X 2Py (22)| < C. (25)

To see this,

IT* X opye (1) — T*Xapye ()] < /( ()~ K ()l
2P)¢

AT
S O/ |l’1 :L‘ZL_(sdy
@pye [T1 =y

< cupy / !
(2P)e

—d
Ty — y|n+6 Yy

where in the last inequality we used integration in annuli as usual.
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2

dl‘l

/ B2 =

1 *
T X(2pye(21) — W/PT X(2p)e (22)dz2
2

1
del

1
(P)/T X(2P)c(331)d$2 W/PT*X@P)c(xz)dl’z

1 2
/ il (T"x(2pye (71) — T"X(2P)e (2) )d2

dzq
/ m(P (/ IT"X(2p)e(71) — T" X (2P)c (I2)|2> m(P)dxy

< Cm(P

For the last two 1nequahtles we used Holder’s inequality and (25). This finishes the
proof of Lemma 12 and the proof of Lemma 11 as well. Hence the proof of Theorem
2 is completed. O

Remark 13. Expressions of the form
th = Z ngAQh
QeD

are called paraproducts of g associated to h. In our case Ilg = Zer mqogAg(T*1)
is the paraproduct associated to 7*(1). Using Lemma 11 and orthogonality it follows
that [|[IIg|| < C/g]l.

g



