Picard modular surfaces and families of automorphic forms (I)
p-adic families of modular forms as constructed first by Hida and in greater generality by Coleman and their generalizations are a great tool in modern number theory that appears in different parts of the Langlands program.
Positividad aritmética sobre variedades tóricas II
Picard modular surfaces and families of automorphic forms (II)
p-adic families of modular forms as constructed first by Hida and in greater generality by Coleman and their generalizations are a great tool in modern number theory that appears in different parts of the Langlands program.
FoCM 2017 – Computational Number Theory
See https://perso.univ-rennes1.fr/christophe.ritzenthaler/workshop-NT.html for details.
Foundations of Computational Mathematics
Workshop on Curves of low genus
See https://mat-web.upc.edu/people/jordi.guardia-rubies/Workshopcurveslowgenus2017.html for schedule and details
Idemgrups II
Seguirem estudiant els semigrups idempotents, els seus morfismes, nuclis, congruències i productes tensorials.
Applications of Goncharov’s conjectures to point-counting
The classical theory of multiple polylogarithms found a wealth of interesting relations between interesting transcendental numbers.
Dimensió de polinomis sobre semi-anells
Seguint amb l’estudi dels (semi) anells idempotents, explicaré el resultat de Joó-Mincheva que diu que per a qualsevol semi-anell idempotent A de dimensió n, la dimensió (de Krull, en un sentit apropiat) de A[x] és exactament n + 1.
El cos residual a l’infinit
Veurem quin objecte és el cos residual a l’infinit (segons Durov), i les seves àlgebres. Després estudiarem l’espectre seguint Joo i Mincheva, i l’article arXiv:1701.02178.