All posts by mprats

Martí Prats: Measuring Triebel-Lizorkin fractional smoothness on domains in terms of first-order differences

In this note we give equivalent characterizations for a fractional Triebel-Lizorkin space [katex]F_{p,q}^s(\Omega)[/katex] in terms of first-order differences in a uniform domain [katex]\Omega[/katex]. The characterization is valid for any positive, non-integer real smoothness [katex]s\in \mathbb{R}_+\setminus \mathbb{N}[/katex] and indices [katex] 1 \leq p < \infty [/katex], [katex]1\leq q \leq \infty[/katex] as long as the fractional part [katex]s[/katex] is greater than [katex]d/p-d/q[/katex].

Martí Prats: Sobolev regularity of quasiconformal mappings on domains

Consider a Lipschitz domain [katex] \Omega [/katex] and a measurable function [katex] \mu [/katex] supported in [katex] \overline\Omega [/katex] with [katex] \left\|{\mu}\right\|_{L^\infty}< 1 [/katex]. Then the derivatives of a quasiconformal solution of the Beltrami equation [katex] \overline{\partial} f =\mu\, \partial f [/katex] inherit the Sobolev regularity [katex] W^{n,p}(\Omega) [/katex] of the Beltrami coefficient [katex] \mu [/katex] as long as [katex] \Omega [/katex] is regular enough. The condition obtained is that the outward unit normal vector [katex] N [/katex] of the boundary of the domain is in the trace space, that is, [katex] N\in B^{n-1/p}_{p,p}(\partial\Omega) [/katex].

Martí Prats: Càlculs amb el mòbil (Bits de matemàtiques)

Des de jocs de “matemàgia” fins a comprovacions rutinàries, la calculadora és una eina imprescindible per al nostre col·lectiu. L’aparició de les calculadores gràfiques comercials a finals dels 80 i el seu desenvolupament durant els 90 van portar a un intens debat sobre quin ús en podien fer els nostres alumnes. De fet, en un cert punt hom podia emmagatzemar llargs textos a la calculadora i a tombant de segle algunes calculadores ja podien enviar informació per infrarojos, de manera que el seu ús en un examen donava als alumnes que la feien servir avantatges poc legítims respecte a la resta.

Daniel Faraco and Martí Prats: Characterization for stability in planar conductivities

We find a complete characterization for sets of isotropic conductivities with stable recovery in the [katex] L^2 [/katex] norm when the data of the Calderón Inverse Conductivity Problem is obtained in the boundary of a disk and the conductivities are constant in a neighborhood of its boundary. To obtain this result, we present minimal a priori assumptions which turn out to be sufficient for sets of conductivities to have stable recovery in a bounded and rough domain. The condition is presented in terms of the integral moduli of continuity of the coefficients involved and their ellipticity bound.

Martí Prats: Beltrami equations in the plane and Sobolev regularity

Some new results regarding the Sobolev regularity of the principal solution of the linear Beltrami equation [katex]\bar\partial f = \mu \partial f + \nu\, \overline{\partial f}[/katex] for discontinuous Beltrami coefficients [katex]\mu[/katex] and [katex]\nu[/katex] are obtained, using Kato-Ponce commutators. A conjecture on the cases where the limitations of the method do not work is raised.

Martí Prats: El laboratori a classe (Bits de matemàtiques)

Aquest darrer estiu ha tornat a aflorar el debat sobre l’ús de tecnologia a l’aula. I és que el passat juny el parlament francès va aprovar la prohibició de l’ús de telèfons mòbils en col·legis i instituts, de manera que des del setembre els alumnes menors de quinze anys no poden usar aquesta tecnologia a classe. En aquesta secció no entrarem a valorar les consideracions pedagògiques, polítiques i de salut, però sembla adequat que dediquem alguns números d’aquesta a descriure algunes eines que poden ser útils per al professorat de matemàtiques per saber a què renunciem en cas de prohibició.

Marcos Oliva and Martí Prats: Sharp bounds for composition with quasiconformal mappings in Sobolev spaces

Let [katex] \phi [/katex] be a quasiconformal mapping, and let [katex] T_\phi [/katex] be the composition operator which maps [katex] f [/katex] to [katex] f\circ\phi [/katex]. Since [katex] \phi [/katex] may not be bi-Lipschitz, the composition operator need not map Sobolev spaces to themselves. The study begins with the behavior of [katex] T_\phi[/katex] on [katex]L^p [/katex] and [katex]W^{1,p} [/katex] for [katex]1 < p < \infty [/katex]. This cases are well understood but alternative proofs of some known results are provided. Using interpolation techniques it is seen that compactly supported Bessel potential functions in [katex]H^{s,p} [/katex] are sent to [katex]H^{s,q} [/katex] whenever [katex]0 < s < 1 [/katex] for appropriate values of [katex]q [/katex]. The techniques used lead to sharp results and they can be applied to Besov spaces as well.

Martí Prats and Eero Saksman: A T(1) theorem for fractional Sobolev spaces on domains

Given any uniform domain [katex] \Omega [/katex], the Triebel-Lizorkin space [katex] F^s_{p,q}(\Omega) [/katex] with [katex] 0 < s < 1 [/katex] and [katex] 1 < p,q < \infty [/katex] can be equipped with a norm in terms of first order differences restricted to pairs of points whose distance is comparable to their distance to the boundary. Using this characterization, originally due to Seeger and reproven here, we prove a T(1)-theorem for fractional Sobolev spaces with [katex] 0 < s < 1 [/katex] for any uniform domain and for a large family of Calderón-Zygmund operators in any ambient space [katex] \mathbb{R}^d [/katex] as long as [katex] sp>d [/katex].

Martí Prats: Sobolev regularity of the Beurling transform on planar domains

Consider a Lipschitz domain [katex]\Omega[/katex] and the Beurling transform of its characteristic function [katex] \mathcal{B} \chi_\Omega(z)= – {\rm p.v.}\frac1{\pi z^2}*\chi_\Omega (z) [/katex]. It is shown that if the outward unit normal vector [katex] N [/katex] of the boundary of the domain is in the trace space of [katex] W^{n,p}(\Omega) [/katex] (i.e., the Besov space [katex] B^{n-1/p}_{p,p}(\partial\Omega) [/katex]) then [katex]\mathcal{B} \chi_\Omega \in W^{n,p}(\Omega) [/katex]. Moreover, when [katex] p>2 [/katex] the boundedness of the Beurling transform on [katex] W^{n,p}(\Omega) [/katex] follows. This fact has far-reaching consequences in the study of the regularity of quasiconformal solutions of the Beltrami equation.