All posts by mprats

Ignasi Guillés-Mola, Martí Prats and Xavier Tolsa: The dimension of planar elliptic measures arising from Lipschitz matrices in Reifenberg flat domains

In this paper we show that, given a planar Reifenberg flat domain with small constant and a divergence form operator associated to a real (not necessarily symmetric) uniformly elliptic matrix with Lipschitz coefficients, the Hausdorff dimension of its elliptic measure is at most 1. More precisely, we prove that there exists a subset of the boundary with full elliptic measure and with σ-finite one-dimensional Hausdorff measure. For Reifenberg flat domains, this result extends a previous work of Thomas H. Wolff for the harmonic measure.

Kari Astala, Martí Prats and Eero Saksman: Global smoothness of quasiconformal mappings in the Triebel-Lizorkin scale

We give sufficient conditions for quasiconformal mappings between simply connected Lipschitz domains to have Hölder, Sobolev and Triebel-Lizorkin regularity in terms of the regularity of the boundary of the domains and the regularity of the Beltrami coefficients of the mappings. The results can be understood as a counterpart for the Kellogg-Warchawski Theorem in the context of quasiconformal mappings.

Carme Cascante, Núria Fagella, Eduardo Gallego, Jordi Pau i Martí Prats: apunts d’anàlisi complexa

Notes (en construcció) escrites per la primera part de l’assignatura d’Anàlisi complexa i de Fourier, assignatura obligatòria de segon curs del grau en matemàtica computacional i analítica de dades de la UAB, primavera del curs 2023/2024, i per l’assignatura amb el mateix nom del grau en matemàtiques de la UAB, primavera del curs 2024-25. Els apunts es basen en el contingut d’edicions prèvies d’aquesta assignatura, així com de l’assignatura Anàlisi complexa, obligatòria de tercer curs del grau en matemàtiques de la UB, i miren de compatibilitzar els tres enfocaments, per tal que el material es pugui fer servir (almenys) en tots aquests contextos.

Martí Prats: Triebel-Lizorkin regularity and bi-Lipschitz maps: composition operator and inverse function regularity

We study the stability of Triebel-Lizorkin regularity of bounded functions and Lipschitz functions under bi-Lipschitz changes of variables and the regularity of the inverse function of a Triebel-Lizorkin bi-Lipschitz map in Lipschitz domains. To obtain our results we provide an equivalent norm for the Triebel-Lizorkin spaces with fractional smoothness in uniform domains in terms of the first-order difference of the last weak derivative available averaged on balls.

Martí Prats and Xavier Tolsa: Notes on harmonic measure

In these notes we provide a straightforward introduction to the topic of harmonic measure.
This is an area where many advances have been obtained in the last years and we think
that this book can be useful for people interested in this topic.

In the first Chapters 2-6 we have followed classical references such as [Fol95], [Car98],
[GM05], [Lan72], [AG01], and [Ran95], as well as some private notes of Jonas Azzam. A
large part of the content of Chapter 7 is based on Kenig’s book [Ken94], and on papers by
Aikawa, Hofmann, Martell, and many others. Chapter 8 is based on a paper by Jerison
and Kenig [JK82]. In Chapter 9, the proof of Jones-Wolff theorem about the dimension
of harmonic measure in the plane follows the presentation of [CTV18]. In some parts of
Chapter 10 we follow the book of Caffarelli and Salsa [CS05] and some work by Mourgoglou
and the second named author of these notes. A large part of Chapter 11 follows [AHM’16].

We apologize in advance for possible inaccuracies or lack of citation. Anyway, we remark
that this work is still under construction and we plan to add more content as well as more
accurate citations in future versions of these notes.

Laura Brustenga i Martí Prats: Mani’m? (Bits de matemàtiques)

El Bits del número 49 de la SCM/Notícies, el vam dedicar a fer un repàs de continguts divulgatius en línia. Aquest té per objectiu exposar una eina útil per poder divulgar nosaltres. Es tracta d’un programa de creació de vídeos matemàtics anomenat Manim. Quin nom més apropiat per un llenguatge de programació! És com si ens demanés a crits que comencem a fer divulgació matemàtica en línia en català, no us sembla?

Max Engelstein, Aapo Kauranen, Martí Prats, Georgios Sakellaris and Yannick Sire: Minimizers for the thin one-phase free boundary problem

We consider the “thin one-phase” free boundary problem, associated to minimizing a weighted Dirichlet energy of the function in \(\mathbb{R}^{n+1}_+\) plus the area of the positivity set of that function in \(\mathbb{R}^{n}\). We establish full regularity of the free boundary for dimensions \(n \leq 2\), prove almost everywhere regularity of the free boundary in arbitrary dimension and provide content and structure estimates on the singular set of the free boundary when it exists. All of these results hold for the full range of the relevant weight.

While our results are typical for the calculus of variations, our approach does not follow the standard one first introduced by Alt and Caffarelli. Instead, the nonlocal nature of the distributional measure associated to a minimizer necessitates arguments which are less reliant on the underlying PDE.

Laura Brustenga i Martí Prats: LATEX per a no iniciats (Bits de matemàtiques)

Tex és un llenguatge tipogràfic nascut a finals dels anys setanta a mans de Donald Knuth per poder preservar el format dels seus escrits al passar pel procés editorial, especialment pensant en la transcripció de fórmules matemàtiques complexes. Latex és una extensió d’aquest primer llenguatge creada per Leslie Lamport durant els vuitanta i que s’ha acabat convertint en el llenguatge universal per escriure articles matemàtics.

Martí Prats and Xavier Tolsa: The two-phase problem for harmonic measure in VMO

Let \(\Omega^+\subset\mathbb R^{n+1}\) be an NTA domain and let \(\Omega^-= \mathbb R^{n+1}\setminus \overline{\Omega^+}\) be an NTA domain as well. Denote by \(\omega^+\) and \(\omega^-\) their respective harmonic measures. Assume that \(\Omega^+\) is a \(\delta\)-Reifenberg flat domain, for some \(\delta>0\) small enough. In this paper we show that \(\log\frac{d\omega^-}{d\omega^+}\in VMO(\omega^+)\) if and only if \(\Omega^+\) is vanishing Reifenberg flat, \(\omega^+\) has big pieces of uniformly rectifiable measures, and the inner unit normal of \(\Omega^+\) has vanishing oscillation with respect to the approximate normal. This result can be considered as a two-phase counterpart of a more well known related one-phase problem for harmonic measure solved by Kenig and Toro.

Laura Brustenga i Martí Prats: Un tastet de topologia algebraica (Bits de matemàtiques)

Un dels temes clàssics de les matemàtiques aplicades a ciències socials del batxillerat és la programació lineal, és a dir l’optimització de funcions lineals sobre conjunts delimitats per un conjunt finit d’hiperplans. En particular, el domini on busquem el màxim és un políedre convex i pot ser descrit com el conjunt de solucions d’un nombre finit d’inequacions lineals. Els políedres són els objectes de treball del programa que avui volem visitar: el polymake.