http://mat.uab.cat/~artes/dibuix/uab.gif
http://mat.uab.cat/~artes/dibuix/linia_bl.gif

Universitat Autňnoma de Barcelona

Departament de Matemŕtiques

Personal Pages

http://mat.uab.cat/~artes/dibuix/linia_bl.gif

Joan C. Artés

http://mat.uab.cat/~artes/dibuix/linia_bl.gif

Published Articles

http://mat.uab.cat/~artes/dibuix/linia_bl.gif

http://mat.uab.cat/~artes/dibuix/blueball.gifYe, Yan Qian; Ye, Wei Yin; Artés, Joan C.: Bifurcation of saddle-node and separatrix cycle with the variation of the parameter in a certain quadratic differential system. Ann. Differential Equations 5 (1989), no. 1.

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume: Quadratic Hamiltonian vector fields. J. Differential Equations 107 (1994), no. 1. (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume: Phase portraits for quadratic systems having a focus and one antisaddle. Rocky Mountain J. Math. 24 (1994), no. 3. (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume: On the number of slopes of invariant straight lines for polynomial differential systems. Nanjing Daxue Xuebao Shuxue Bannian Kan 13 (1996), no. 2. (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume: Corrigendum: "Quadratic Hamiltonian vector fields" [J. Differential Equations 107 (1994), no. 1; MR 95a:58071]. J. Differential Equations 129 (1996), no. 2

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume: Quadratic vector fields with a weak focus of third order. Publicacions Matemŕtiques 41(1997), no. 1. (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Kooij, Robert E.; Llibre, Jaume: Structurally stable quadratic vector fields. Mem. Amer. Math. Soc. 134 (1998), no. 639, viii+108 pp.  34C05 (34D30 58F21). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Grünbaum, B.; Llibre, Jaume: On the number of invariant straight lines for polynomial differential systems. Pacific J. Math. 184 (1998), no. 2. (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume: Statistical measure of quadratic systems. Resenhas (2003), no. 6. (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifCherkas, Leonid A.; Artés, Joan C.; Llibre, Jaume: Quadratic systems with limit cycles of normal size. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica (2003), no. 41. (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifDumortier, F.; Llibre, Jaume; Artés, Joan C.: Qualitative Theory of Planar Differential Systems. Springer-Verlag, Berlin (2006), BOOK ISBN: 3-540-32893-9. (Preface)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana: The geometry of quadratic differential systems with a weak focus of second order. Int. J. Bifurcation and Chaos 16(11) (2006). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Medrado, J.C.: Nonexistence of limit cycles for a class of structurally stable quadratic vector fields. Discrete Contin. Dyn. Syst. 17 (2007). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Quadratic systems with a rational first integral of degree 2: a complete classification in the coefficient space $R^{12}$. Rendiconti del Circolo matematico di Palermo 56 (2007). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Singular points of quadratic systems: a complete classification in the coefficient space $R^{12}$. Int. J. Bifurcation and Chaos 18(2) (2008). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: When singular points determine quadratic systems. Electron. J. Differential Equations 82 (2008). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Dumortier, Freddy; Llibre, Jaume: Limit cycles near hyperbolas in quadratic systems. J. Differential Equations 246(1) (2009). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Quadratic systems with a polynomial first integral: a complete classification in the coefficient space $R^{12}$ J. Differential Equations 246(9) (2009). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Quadratic systems with a rational first integral of degree 3: a complete classification in the coefficient space $R^{12}$ Rendiconti del Circolo matematico di Palermo 59 (2010). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana: The geometry of quadratic Differential systems with a weak focus and an invariant straight line. Int. J. Bifurcation and Chaos 20(11) (2010). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Teixeira, Marco Antonio: A universal constant for semistable limit cycles. Computational and Applied Mathematics 30 (2011). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Complete geometric invariant study of two classes of quadratic systems. Electronic Journal of Differential Equations 9 (2012). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Quadratic systems with an integrable saddle: A complete classification in the coefficient space $R^{12}$. Nonlinear Analysis 75(14) (2012). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Rezende, Alex; Oliveira, Regilene: Global phase portraits of quadratic polynomial differential systems with a semi--elemental triple node. Int. Journal of Bifurcation and chaos 23 (2013). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Configurations of singularities for quadratic differential systems with total finite multiplicity lower than 2. Bul. Acad. Stiinte Repub. Mold. Mat. 71 (2013). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Geometric configurations of singularities for quadratic differential systems with three distinct real simple finite singularities. J. Fixed Point Theory Appl. 14 (2013). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Medrado, Joao C.; Teixeira, Marco Antonio: Piecewise linear differential systems with two real saddles. Mathematics and Computers in Simulation 95 (2014).

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Rezende, Alex; Oliveira, Regilene: The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node (A,B). Int. Journal of Bifurcation and chaos 24(4) (2014). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Geometric configurations of singularities for quadratic differential systems with total finite multiplicity $m_f= 2$. Electronic Journal of Differential Equations 159 (2014). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Geometric configurations of singularities for quadratic differential systems with total multiplicity three and at most two real singularities. Qual. Theory Dyn. Syst. 13 (2014). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Rezende, Alex; Schlomiuk, Dana; Vulpe, Nicolae: Global configurations of singularities for quadratic differential systems with exactly two finite singularities of total multiplicity four. Electronic Journal of Qualitative Theory of Differential Equations 60 (2014). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Rezende, Alex; Oliveira, Regilene: The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node (C). Int. Journal of Bifurcation and chaos 25 (2015). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: From topological to geometric equivalence in the classification of singularities at infinity for quadratic vector fields. Rocky Mountain Journal of Mathematics 45 (2015). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Global configurations of singularities for quadratic differential systems with exactly three finite singularities of total multiplicity four. Electronic Journal of Qualitative Theory of Differential Equations 49 (2015). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Rezende, Alex; Oliveira, Regilene: Topological Classification of Quadratic Polynomial Differential Systems with a Finite Semi Elemental Triple Saddle. Int. Journal of Bifurcation and chaos 26(11) (2016). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Itikawa, Jackson; Llibre, Jaume: Uniform isochronous cubic and quartic centers: Revisited. Journal of Computational and Applied Mathematics 313 (2017).

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Rezende, Alex: Structurally unstable quadratic vector fields of codimension one. Birkhäuser/Springer, Cham, ISBN: 98-3-319-92116-7, (2018). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Valls, Claudia: Dynamics of the Higgins-Selkov and Selkov systems. Chaos, Solitons and Fractals 114 (2018). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Braum, Francisco; Llibre, Jaume: The phase portrait of the Hamiltonian system associated to a Pinchuk map. Anais da Academia Brasileira de Ciencias 90(3) (2018).

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Global Topological Configurations of Singularities for the Whole Family of Quadratic Differential Systems. Qualitative Theory of Dynamical Systems 19(51) (2020). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Rezende, Alex; Mota, Marcos C.: Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1,1)SN-(A). Int. Journal of Bifurcation and chaos 31 (2) (2021). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Mota, Marcos C.; Rezende, Alex: Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electron. J. Qual. Theory Differ. Equ. 35 (2021). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Invariant conditions for phase portraits of quadratic systems with complex conjugate invariant lines meeting at a finite point. Rend. Circ. Mat. Palermo 70(2) (2021). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Rezende, Alex; Mota, Marcos C.: Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1,1)SN-(B). Int. Journal of Bifurcation and chaos 31 (9) (2021). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Invariant conditions for phase portraits of quadratic systems with complex conjugate invariant lines meeting at a finite point. Rend. Circ. Mat. Palermo 70(2) (2021). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Oliveira, Regilene; Rezende, Alex: Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing Either a Cusp Point or Two Finite Saddle-Nodes. Journal of Dynamics and Differential Equations ISSN 1040-7294 DOI 10.1007/s10884-020-09871-2 33 (4) (2021). (Abstract)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.: Structurally unstable quadratic vector fields of codimension two: families possessing one finite saddle-node and a separatrix connection. Submitted (2023). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: {Codimension in planar polynomial differential systems, preprint (2023). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifArtés, Joan C., Rezende, Alex, Mota, Marcos C.: Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. Submitted (2023). (additional info)

http://mat.uab.cat/~artes/dibuix/blueball.gifJoan C. Artés and Carles Trullas, : Quadratic differential systems with a weak focus of first order and a finite saddle-node. Submitted (2023). (additional info)

 

http://mat.uab.cat/~artes/dibuix/linia_bl.gif

http://mat.uab.cat/~artes/dibuix/flecha.gif  Tornem a la pŕgina principal

http://mat.uab.cat/~artes/dibuix/flecha.gif  Back to the main page