Universitat Autňnoma de Barcelona
Departament de Matemŕtiques
Personal Pages
Joan C. Artés
Published Articles
Ye, Yan Qian; Ye, Wei Yin; Artés, Joan C.: Bifurcation of saddle-node and separatrix cycle with the variation of the parameter in a certain quadratic differential system. Ann. Differential Equations 5 (1989), no. 1.
Artés, Joan C.; Llibre, Jaume: Quadratic Hamiltonian vector fields. J. Differential Equations 107 (1994), no. 1. (Abstract)
Artés, Joan C.; Llibre, Jaume: Phase portraits for quadratic systems having a focus and one antisaddle. Rocky Mountain J. Math. 24 (1994), no. 3. (Abstract)
Artés, Joan C.; Llibre, Jaume: On the number of slopes of invariant straight lines for polynomial differential systems. Nanjing Daxue Xuebao Shuxue Bannian Kan 13 (1996), no. 2. (Abstract)
Artés, Joan C.; Llibre, Jaume: Corrigendum: "Quadratic Hamiltonian vector fields" [J. Differential Equations 107 (1994), no. 1; MR 95a:58071]. J. Differential Equations 129 (1996), no. 2
Artés, Joan C.; Llibre, Jaume: Quadratic vector fields with a weak focus of third order. Publicacions Matemŕtiques 41(1997), no. 1. (Abstract)
Artés, Joan C.; Kooij, Robert
E.; Llibre, Jaume:
Structurally stable quadratic vector fields. Mem. Amer. Math. Soc. 134 (1998),
no. 639, viii+108 pp. 34C05 (34D30 58F21). (Abstract)
Artés, Joan C.; Grünbaum, B.; Llibre, Jaume: On the number of invariant straight lines for polynomial differential systems. Pacific J. Math. 184 (1998), no. 2. (Abstract)
Artés, Joan C.; Llibre, Jaume: Statistical measure of quadratic systems. Resenhas (2003), no. 6. (Abstract)
Cherkas, Leonid A.; Artés, Joan C.; Llibre, Jaume: Quadratic systems with limit cycles of normal size. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica (2003), no. 41. (Abstract)
Dumortier, F.; Llibre, Jaume; Artés, Joan C.: Qualitative Theory of Planar Differential Systems. Springer-Verlag, Berlin (2006), BOOK ISBN: 3-540-32893-9. (Preface)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana: The geometry of quadratic differential systems with a weak focus of second order. Int. J. Bifurcation and Chaos 16(11) (2006). (additional info)
Artés, Joan C.; Llibre, Jaume; Medrado, J.C.: Nonexistence of limit cycles for a class of structurally stable quadratic vector fields. Discrete Contin. Dyn. Syst. 17 (2007). (Abstract)
Artés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Quadratic systems with a rational first integral of degree 2: a complete classification in the coefficient space $R^{12}$. Rendiconti del Circolo matematico di Palermo 56 (2007). (Abstract)
Artés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Singular points of quadratic systems: a complete classification in the coefficient space $R^{12}$. Int. J. Bifurcation and Chaos 18(2) (2008). (Abstract)
Artés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: When singular points determine quadratic systems. Electron. J. Differential Equations 82 (2008). (Abstract)
Artés, Joan C.; Dumortier, Freddy; Llibre, Jaume: Limit cycles near hyperbolas in quadratic systems. J. Differential Equations 246(1) (2009). (Abstract)
Artés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Quadratic systems with a polynomial first integral: a complete classification in the coefficient space $R^{12}$ J. Differential Equations 246(9) (2009). (Abstract)
Artés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Quadratic systems with a rational first integral of degree 3: a complete classification in the coefficient space $R^{12}$ Rendiconti del Circolo matematico di Palermo 59 (2010). (Abstract)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana: The geometry of quadratic Differential systems with a weak focus and an invariant straight line. Int. J. Bifurcation and Chaos 20(11) (2010). (additional info)
Artés, Joan C.; Llibre, Jaume; Teixeira, Marco Antonio: A universal constant for semistable limit cycles. Computational and Applied Mathematics 30 (2011). (Abstract)
Artés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Complete geometric invariant study of two classes of quadratic systems. Electronic Journal of Differential Equations 9 (2012). (Abstract)
Artés, Joan C.; Llibre, Jaume; Vulpe, Nicolae: Quadratic systems with an integrable saddle: A complete classification in the coefficient space $R^{12}$. Nonlinear Analysis 75(14) (2012). (Abstract)
Artés, Joan C.; Rezende, Alex; Oliveira, Regilene: Global phase portraits of quadratic polynomial differential systems with a semi--elemental triple node. Int. Journal of Bifurcation and chaos 23 (2013). (additional info)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Configurations of singularities for quadratic differential systems with total finite multiplicity lower than 2. Bul. Acad. Stiinte Repub. Mold. Mat. 71 (2013). (Abstract)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Geometric configurations of singularities for quadratic differential systems with three distinct real simple finite singularities. J. Fixed Point Theory Appl. 14 (2013). (Abstract)
Artés, Joan C.; Llibre, Jaume; Medrado, Joao C.; Teixeira, Marco Antonio: Piecewise linear differential systems with two real saddles. Mathematics and Computers in Simulation 95 (2014).
Artés, Joan C.; Rezende, Alex; Oliveira, Regilene: The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node (A,B). Int. Journal of Bifurcation and chaos 24(4) (2014). (additional info)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Geometric configurations of singularities for quadratic differential systems with total finite multiplicity $m_f= 2$. Electronic Journal of Differential Equations 159 (2014). (Abstract)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Geometric configurations of singularities for quadratic differential systems with total multiplicity three and at most two real singularities. Qual. Theory Dyn. Syst. 13 (2014). (Abstract)
Artés, Joan C.; Llibre, Jaume; Rezende, Alex; Schlomiuk, Dana; Vulpe, Nicolae: Global configurations of singularities for quadratic differential systems with exactly two finite singularities of total multiplicity four. Electronic Journal of Qualitative Theory of Differential Equations 60 (2014). (Abstract)
Artés, Joan C.; Rezende, Alex; Oliveira, Regilene: The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node (C). Int. Journal of Bifurcation and chaos 25 (2015). (additional info)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: From topological to geometric equivalence in the classification of singularities at infinity for quadratic vector fields. Rocky Mountain Journal of Mathematics 45 (2015). (Abstract)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Global configurations of singularities for quadratic differential systems with exactly three finite singularities of total multiplicity four. Electronic Journal of Qualitative Theory of Differential Equations 49 (2015). (Abstract)
Artés, Joan C.; Rezende, Alex; Oliveira, Regilene: Topological Classification of Quadratic Polynomial Differential Systems with a Finite Semi Elemental Triple Saddle. Int. Journal of Bifurcation and chaos 26(11) (2016). (additional info)
Artés, Joan C.; Itikawa, Jackson; Llibre, Jaume: Uniform isochronous cubic and quartic centers: Revisited. Journal of Computational and Applied Mathematics 313 (2017).
Artés, Joan C.; Llibre, Jaume; Rezende, Alex: Structurally unstable quadratic vector fields of codimension one. Birkhäuser/Springer, Cham, ISBN: 98-3-319-92116-7, (2018). (Abstract)
Artés, Joan C.; Llibre, Jaume; Valls, Claudia: Dynamics of the Higgins-Selkov and Selkov systems. Chaos, Solitons and Fractals 114 (2018). (Abstract)
Artés, Joan C.; Braum, Francisco; Llibre, Jaume: The phase portrait of the Hamiltonian system associated to a Pinchuk map. Anais da Academia Brasileira de Ciencias 90(3) (2018).
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Global Topological Configurations of Singularities for the Whole Family of Quadratic Differential Systems. Qualitative Theory of Dynamical Systems 19(51) (2020). (Abstract)
Artés, Joan C.; Rezende, Alex; Mota, Marcos C.: Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1,1)SN-(A). Int. Journal of Bifurcation and chaos 31 (2) (2021). (additional info)
Artés, Joan C.; Mota, Marcos C.; Rezende, Alex: Structurally unstable quadratic vector fields of codimension two: families possessing a finite saddle-node and an infinite saddle-node. Electron. J. Qual. Theory Differ. Equ. 35 (2021). (Abstract)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Invariant conditions for phase portraits of quadratic systems with complex conjugate invariant lines meeting at a finite point. Rend. Circ. Mat. Palermo 70(2) (2021). (Abstract)
Artés, Joan C.; Rezende, Alex; Mota, Marcos C.: Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1,1)SN-(B). Int. Journal of Bifurcation and chaos 31 (9) (2021). (additional info)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: Invariant conditions for phase portraits of quadratic systems with complex conjugate invariant lines meeting at a finite point. Rend. Circ. Mat. Palermo 70(2) (2021). (Abstract)
Artés, Joan C.; Oliveira, Regilene; Rezende, Alex: Structurally Unstable Quadratic Vector Fields of Codimension Two: Families Possessing Either a Cusp Point or Two Finite Saddle-Nodes. Journal of Dynamics and Differential Equations ISSN 1040-7294 DOI 10.1007/s10884-020-09871-2 33 (4) (2021). (Abstract)
Artés, Joan C.: Structurally unstable quadratic vector fields of codimension two: families possessing one finite saddle-node and a separatrix connection. Submitted (2023). (additional info)
Artés, Joan C.; Llibre, Jaume; Schlomiuk, Dana; Vulpe, Nicolae: {Codimension in planar polynomial differential systems, preprint (2023). (additional info)
Artés, Joan C., Rezende, Alex, Mota, Marcos C.: Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. Submitted (2023). (additional info)
Joan C. Artés and Carles Trullas, : Quadratic differential systems with a weak focus of first order and a finite saddle-node. Submitted (2023). (additional info)
Tornem a la pŕgina principal
Back to the main page